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Abstract

The Hamiltonian systems considered in this paper are obtained by weakly coupling two systems hav-
ing completely different behaviors. The first one satisfies the twist assumptions usually considered for the 
application of the Poincaré–Birkhoff Theorem, while the second one presents the existence of some well-
ordered lower and upper solutions. In the higher dimensional case, we also treat a coupling situation where 
the classical Hartman condition is assumed.
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1. Main results in low dimension

In the first part of the paper we are interested in the periodic problem associated with a four-
dimensional system of the type
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
q̇ = ∂pH(t, q,p) + ε ∂pP (t, q,p,u, v) ,

ṗ = −∂qH(t, q,p) − ε ∂qP (t, q,p,u, v) ,

u̇ = f (t, v) + ε ∂vP (t, q,p,u, v) ,

v̇ = g(t, u) − ε ∂uP (t, q,p,u, v) .

(1.1)

The idea is to consider a Poincaré–Birkhoff situation for the system

q̇ = ∂pH(t, q,p) , ṗ = −∂qH(t, q,p) , (1.2)

and the existence of well-ordered lower/upper solutions for the system

u̇ = f (t, v) , v̇ = g(t, u) . (1.3)

The coupling function P = P(t, q, p, u, v) will be assumed to have a bounded gradient with 
respect to (q, p, u, v), and ε will be a small parameter. All functions involved are assumed to be 
continuous, and T -periodic in their first variable t .

In the second part of the paper we will extend our results to higher dimensional systems, both 
concerning the couple (q, p) and the couple (u, v). To this aim, for the couple (q, p) we will 
apply some recent generalizations of the Poincaré–Birkhoff Theorem (see [12,13,18,19]), while 
for the couple (u, v) the treatment of lower and upper solutions will be based on two different sit-
uations. The first one comes from the recent papers [14,17], while the second approach involves 
a classical condition by Hartman [22].

Now, in order to better understand the spirit of our results, some historical hints may be useful.
Just three months before his death, in 1912, Poincaré published his paper [28] in which he 

conjectured the existence of at least two fixed points for an area-preserving homeomorphism of a 
planar circular annulus onto itself, such that the points of the inner circle �1 are moved along �1
in the clockwise sense and the points of the outer circle �2 are moved along �2 in the counter-
clockwise sense. The existence of one fixed point was proved by Birkhoff the year later, while 
the proof of the existence of a second fixed point was provided by Birkhoff himself only in 1925 
(see [4] for a modern exposition). The Poincaré–Birkhoff Theorem has then been generalized in 
several directions (see [15] and the references therein).

In 1983, one of the most brilliant results for the periodic problem associated with a Hamilto-
nian system was proved by Conley and Zehnder [7], giving a partial answer to a conjecture by 
Arnold [1,2]. They obtained the multiplicity of periodic solutions for a Hamiltonian system in 
R2M assuming the C2-smooth Hamiltonian function H = H(t, q, p) to be periodic in t and in 
the space variables q1, . . . , qM , and quadratic in p on a neighborhood of infinity. They also men-
tioned a possible relation of their result with the Poincaré–Birkhoff Theorem. The results in [7]
have been developed by different researchers in several directions (see, e.g., [5,9,21,23–25]).

Recently, a deeper relation between these results and the Poincaré–Birkhoff Theorem has been 
established by the first author and Ureña [18], replacing the quadratic assumption considered 
in [7] by a local “twist condition” on the solutions of the system. The first author then extended 
the results of [18] jointly with Gidoni [12], introducing a very general twist condition in order to 
find the periodic solutions. The same authors further extended the theory, in a second paper [13], 
to the case when the Hamiltonian function includes a nonresonant quadratic term. The possibility 
of resonance has also been studied in [6] by assuming some Ahmad–Lazer–Paul conditions.
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On the other hand, the history of lower and upper solutions goes back to the pioneering work 
of Picard [27] in 1893. The first attempts towards a modern definition of lower and upper solu-
tions were made by Scorza Dragoni [29] in 1939 for the following equation

ü = g(t, u, u̇). (1.4)

A few years later Nagumo [26] provided the classical definition of lower solution α and upper 
solution β of (1.4) by assuming the inequalities

α̈(t) ≥ g(t, α(t), α̇(t)) , β̈(t) ≤ g(t, β(t), β̇(t)) .

He also introduced an extra assumption, which we nowadays call Nagumo condition, so to find 
the existence of a solution. We refer to [8] for more historical information and further develop-
ments of the theory.

The notion of lower and upper solutions has recently been extended in [14,17] to planar sys-
tems. Moreover, the first author together with Garzon and Sfecci [11] further extended this fertile 
theory to coupled systems which contain both the periodicity-twist conditions and a pair of well-
ordered lower and upper solutions. However, due to some technical problems, they only used 
constant lower and upper solutions, while proposing as an open problem the case of non-constant 
lower/upper solutions.

In this paper, we provide a partial answer to this open problem and extend the theory to 
systems which contain the periodicity-twist conditions together with generalized well-ordered 
lower/upper solutions, coupled by a perturbation term.

The paper is organized as follows.
In Section 2 we state our result in the low dimensional case by coupling “twist” and strict 

lower/upper solutions. The proof of this result is given in Section 3. In Section 4 we provide 
some consequences of the main result and an example of application.

In Section 5 we extend our previous theorem to higher dimensions, and provide some variants 
and an example of application. In Section 6 we prove a result by coupling “twist” with a Hartman-
type condition [22] in higher dimensions. This condition extends the concept of constant lower 
and upper solutions to higher dimensions, and has been extensively studied by many authors 
(see [10] and the references therein).

Finally, in Section 7 we illustrate an application to the theory of perturbations of completely 
integrable systems.

2. A first multiplicity result

Let us first recall what we know about systems (1.2) and (1.3), separately.

The Poincaré–Birkhoff Theorem. Here are our assumptions concerning system (1.2).

A1. The function H(t, q, p) is 2π -periodic in q .
A2. There are a < b such that all the solutions (q, p) of system (1.2) starting with p(0) ∈ [a, b]

are defined on [0, T ] and{
p(0) = a ⇒ q(T ) − q(0) < 0 ,

p(0) = b ⇒ q(T ) − q(0) > 0 .
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Notice that the original Poincaré–Birkhoff Theorem was stated for functions defined on a 
planar annulus. However, as explained in [4], it can equivalently be stated on the strip [a, b] ×R, 
after a change of variables in suitable polar coordinates. In this setting, assumption A2 is usually 
called a “twist condition”.

The following result was proved in [18].

Theorem 2.1. Assume that A1 and A2 hold true. Then, system (1.2) has at least two geometri-
cally distinct T -periodic solutions (q, p) such that p(0) ∈]a, b[ .

Notice that, when a T -periodic solution (q, p) has been found, infinitely many others appear 
by just adding an integer multiple of 2π to the q-th component. We say that two solutions are 
geometrically distinct if they cannot be obtained from each other in this way.

We also want to remark here that the period 2π in assumption A1 is inessential; any period 
would be possible.

Lower and upper solutions. Let us first recall the definitions of lower and upper solutions for 
the T -periodic problem associated with system (1.3).

Definition 2.2. A T -periodic C1-function α : R → R is said to be a “lower solution” for the T -
periodic problem associated with system (1.3) if there exists a T -periodic C1-function vα : R →
R such that {

v < vα(t) ⇒ f (t, v) < α̇(t) ,

v > vα(t) ⇒ f (t, v) > α̇(t) ,
(2.1)

and

v̇α(t) ≥ g(t, α(t)) . (2.2)

The lower solution is “strict” if the strict inequality in (2.2) holds.

Definition 2.3. A T -periodic C1-function β : R → R is said to be an “upper solution” for the 
T -periodic problem associated with system (1.3) if there exists a T -periodic C1-function vβ :
R →R such that {

v < vβ(t) ⇒ f (t, v) < β̇(t) ,

v > vβ(t) ⇒ f (t, v) > β̇(t) ,
(2.3)

and

v̇β(t) ≤ g(t, β(t)) . (2.4)

The upper solution is “strict” if the strict inequality in (2.4) holds.

Notice that, when f (t, v) = v, the above definitions reduce to the classical ones for the second 
order equation (1.4), by choosing vα = α̇ and vβ = β̇ .

The following result was proved in [14,17].
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Theorem 2.4. Assume that there exist a lower solution α and an upper solution β for the T -
periodic problem associated with system (1.3), such that α ≤ β . Then, system (1.3) has a T -
periodic solution (u, v) such that α ≤ u ≤ β .

Back to the coupled system. Let us state our hypotheses. We will assume A1, A2, and

A3. There exist a strict lower solution α and a strict upper solution β for the T -periodic problem 
associated with system (1.3), such that α ≤ β .

Moreover, we need the function f (t, v) to be smooth and strictly increasing in its second 
variable, precisely as follows.

A4. The second order partial derivatives ∂2
tvf (t, v) and ∂2

vvf (t, v) exist and are continuous; 
moreover, there exists λ > 0 such that

∂vf (t, v) ≥ λ , for every (t, v) ∈ [0, T ] ×R .

Concerning the function P(t, q, p, u, v), besides its periodicity in t and q , we also need some 
smoothness condition, as specified in the next assumption.

A5. The function P(t, q, p, u, v) is 2π -periodic in q and has a bounded gradient with respect 
to (q, p, u, v); moreover, the partial derivative ∂vP is independent of q and p, and the map 
∂vP (t, u, v) is continuously differentiable.

Here is the main result of this section.

Theorem 2.5. Assume that A1 – A5 hold true. Then there exists ε̄ > 0 such that, if |ε| ≤ ε̄, there 
are at least two geometrically distinct T -periodic solutions of system (1.1), with p(0) ∈]a, b[
and α ≤ u ≤ β .

The proof of the Theorem 2.5 will be given in Section 3.

Remark 2.6. Theorem 2.5 provides a partial answer to an open problem raised in [11], where 
only constant lower and upper solutions were considered. However, our result only applies to 
weakly coupled systems with strict lower and upper solutions. Hence, the problem raised in [11]
remains open.

Remark 2.7. As already noticed in [18], instead of using a constant interval [a, b], it is possible 
to deal with a varying interval [a(q), b(q)], where a, b : R →R are continuous and 2π -periodic 
functions. Indeed, if a and b are continuously differentiable, then this case can be reduced to the 
previous one by the symplectic change of variables

ψ(q,p) =
⎛⎝ q∫

b(s) − a(s)

2
ds ,

2p − b(q) − a(q)

b(q) − a(q)

⎞⎠ .
0
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On the other hand, if the functions a and b are only continuous, then by the Fejer Theo-
rem they can be replaced by smooth functions. Notice that the new Hamiltonian H̃(t, q̃, p̃) =
H(t, ψ−1(q̃, p̃)) is periodic in q̃ with period τ := 1

2

∫ 2π

0 (b(s) − a(s))ds.

Before going to the proof, we now present a variant of Theorem 2.5 which is more related to 
Poincaré-Birkhoff Theorem as originally stated by Poincaré [28].

We first recall the definition of “rotation number”. Assume that t1 < t2 and let φ : [t1, t2] →
R2 be a continuous curve such that φ(t) �= (0, 0) for every t ∈ [t1, t2]. Writing φ(t) =
ρ(t)(cos θ(t), sin θ(t)), where ρ :R →]0, +∞[ and θ :R → R are continuous, we define

Rot(φ; [t1, t2]) = −θ(t2) − θ(t1)

2π
.

In the sequel, D(�) denotes the open bounded region delimited by a planar Jordan curve �. 
Here is the statement.

Theorem 2.8. Let assumptions A3 – A5 hold true. Let k be any integer and assume that there 
exist ρ > 0 and two planar Jordan curves �1, �2, strictly star-shaped with respect to the origin, 
with

0 ∈D(�1) ⊆ D(�1) ⊆ D(�2) ,

such that the solutions of system (1.2) starting with (q(0), p(0)) ∈ D(�2) \D(�1) are defined on 
[0, T ] and satisfy

(q(t),p(t)) �= (0,0) , for every t ∈ [0, T ] ;

moreover, {
(q(0),p(0)) ∈ �1 ⇒ Rot((q,p); [0, T ]) < k ,

q(0),p(0)) ∈ �2 ⇒ Rot((q,p); [0, T ]) > k .
(2.5)

Then system (1.1) has at least two T -periodic solutions (q, p, u, v) such that

α ≤ u ≤ β ,

(q(0),p(0)) ∈D(�2) \D(�1) ,

and

Rot((q,p); [0, T ]) = k .

The same is true if (2.5) is replaced by the following:{
(q(0),p(0)) ∈ �1 ⇒ Rot((q,p); [0, T ]) > k ,

(q(0),p(0)) ∈ �2 ⇒ Rot((q,p); [0, T ]) < k .
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In the above theorem, the Hamiltonian function H is not assumed to be periodic in the variable 
q . The 2π -periodicity can indeed be recovered when passing to some kind of polar coordinates. 
The proof is almost the same as in [11, Theorem 10], so we omit it, for briefness.

3. Proof of Theorem 2.5

Let A = minα and B = maxβ . Then there exists a constant C > 0 such that

|g(t, u)| ≤ C , for every (t, u) ∈ [0, T ] × [A,B] .
Moreover, by A4, there exist positive constants c, d such that |α̇(t)| < c, |β̇(t)| < c for every 
t ∈ [0, T ], and {

f (t, v) ≥ c , for v ≥ d ,

f (t, v) ≤ −c , for v ≤ −d .
(3.1)

We can find two straight lines γ± : R → R, whose equations are

γ+(u) = μu + R , γ−(u) = μu − R ,

where μ < −C/c and R > 0 are chosen in such a way that

γ−(u) < −d < d < γ+(u) ,

and

γ−(u) ≤ α̇(t), vα(t), β̇(t), vβ(t) ≤ γ+(u) , (3.2)

for every (t, u) ∈ [0, T ] × [A, B].
Let us define the set

V = {(t, q,p,u, v) ∈ R5 : α(t) ≤ u ≤ β(t) , γ−(u) ≤ v ≤ γ+(u)} .

We can choose a constant d̂ > max{c, d, C/|μ|} such that

−d̂ < γ−(u) < γ+(u) < d̂ , for every u ∈ [A,B] .
Consider the function η : R ×R → R, defined as

η(t, u) =

⎧⎪⎨⎪⎩
α(t) , if u ≤ α(t) ,

u , if α(t) ≤ u ≤ β(t) ,

β(t) if u ≥ β(t) .

Now define the functions

g̃(t, u) = g(t, η(t, u)) − η(t, u) + u , (3.3)
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and

f̃ (t, v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v , if v ≤ −d̂ − 1 ,

f (t, v) − (v + d̂)(v − f (t, v)) , if − d̂ − 1 ≤ v ≤ −d̂ ,

f (t, v) , if − d̂ ≤ v ≤ d̂ ,

f (t, v) + (v − d̂)(v − f (t, v)) , if d̂ ≤ v ≤ d̂ + 1 ,

v , if v ≥ d̂ + 1 .

(3.4)

By A3, there exists a ξ > 0 such that

v̇α(t) − g(t, α(t)) > ξ , for every t ∈ [0, T ] , (3.5)

v̇β(t) − g(t, β(t)) < −ξ , for every t ∈ [0, T ] . (3.6)

By the global existence assumption in A2, we note that there exists a constant C1 > 0 such that, 
for any solution (q, p) of (1.2) starting with p(0) ∈ [a, b], one has that

|p(t)| ≤ C1 , for every t ∈ [0, T ] .
Let σ : R → R be a C∞-function such that

σ(s) =
{

1 , if s ≤ C1 ,

0 , if s > C1 + 1 ,
(3.7)

and set Ĥ (t, q, p) = σ(|p|)H(t, q, p). Then Ĥ has a bounded gradient with respect to (q, p). 
Now consider the modified system⎧⎪⎪⎪⎨⎪⎪⎪⎩

q̇ = ∂pĤ (t, q,p) + ε ∂pP (t, q,p,u, v) ,

ṗ = −∂qĤ (t, q,p) − ε ∂qP (t, q,p,u, v) ,

u̇ = f̃ (t, v) + ε ∂vP (t, q,p,u, v) ,

v̇ = g̃(t, u) − ε ∂uP (t, q,p,u, v) ,

(3.8)

where the new Hamiltonian function is defined as

H̃ (t, q,p,u, v) = Ĥ (t, q,p) +
v∫

0

f̃ (t, s) ds −
u∫

0

g̃(t, s) ds + εP (t, q,p,u, v) .

We can also write the modified system (3.8) as ż = J∇H̃ (t, z), where J = ( 0 −1
1 0

)
is the standard 

symplectic matrix, and z = (q, p, u, v). Notice that

H̃ (t, z) = 1
2 (v2 − u2) + K(t, z) ,

where K is a function having a bounded gradient with respect to z. Moreover, by A2, since ∂pP

and ∂qP are bounded, if |ε| is small enough, for any solution (q, p, u, v) of (3.8) one still has 
that
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{
p(0) = a ⇒ q(T ) − q(0) < 0 ,

p(0) = b ⇒ q(T ) − q(0) > 0 .

Then, by [13, Corollary 2.4], we conclude that the modified system (3.8) has at least two geomet-
rically distinct T -periodic solutions such that p(0) ∈]a, b[ , provided that |ε| is small enough.

We now need to show that such solutions z are such that (t, z(t)) ∈ V for every t ∈ [0, T ]. Let 
us first prove the following five lemmas.

Lemma 3.1. If |ε| is small enough, there exist vε
α and vε

β such that

f (t, vε
α(t)) + ε ∂vP

(
t, α(t), vε

α(t)
) = α̇(t) , (3.9)

f (t, vε
β(t)) + ε ∂vP (t, β(t), vε

β(t)) = β̇(t) , (3.10)

for every t ∈ [0, T ]. Moreover,

lim
ε→0

vε
α = vα , lim

ε→0
v̇ε
α = v̇α , lim

ε→0
vε
β = vβ , lim

ε→0
v̇ε
β = v̇β ,

uniformly in [0, T ], i.e., vε
α → vα and vε

β → vβ in C1 ([0, T ],R), as ε → 0.

Proof. We only prove the statement concerning vε
α, since the one for vε

β can be proved in a 
similar way. Consider the space X = C1([0, T ], R). By A4 and A5, the functions f and ∂vP are 
continuously differentiable, and since

f (t, vα(t)) = α̇(t) , for every t ∈R ,

we have that α ∈ C2([0, T ], R). We can then define a function F̃ : X ×R → X by

F̃ (v, ε)(t) = f (t, v(t)) + ε ∂vP (t, α(t), v(t)) − α̇(t) . (3.11)

Now, clearly F̃ (vα, 0) = 0, and for all h ∈ X, we have

∂F̃

∂v
(vα,0)(h)(t) = lim

σ→0

F̃ (vα + σh,0) − F̃ (vα,0)

σ
(t)

= lim
σ→0

f (t, vα(t) + σh(t)) − f (t, vα(t))

σ

= ∂vf (t, vα(t))h(t) .

Let us prove that F̃ is differentiable with respect to its first variable at (vα, 0), with[
dvF̃ (vα,0)(h)

]
(t) = ∂vf (t, vα(t))h(t) .

Writing

F̃ (v,0) = F̃ (vα,0) + dvF̃ (vα,0)(v − vα) + r(v) , (3.12)
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we need to prove that

v
C1−→ vα ⇒ r(v)

‖v − vα‖C1

C1−→ 0 . (3.13)

Substituting (3.11) in (3.12), we obtain

f (t, v(t)) = f (t, vα(t)) + ∂vf (t, vα(t))(v(t) − vα(t)) + r(v)(t) .

By the Lagrange Mean Value Theorem, for every t ∈ [0, T ] there exists ζ(t) ∈ [vα(t), v(t)] such 
that

f (t, v(t)) − f (t, vα(t)) = ∂vf (t, ζ(t))(v(t) − vα(t)) .

Then,

|r(v)(t)|
‖v − vα‖C1

= |∂vf (t, ζ(t)) − ∂vf (t, vα(t))| |v(t) − vα(t)|
‖v − vα‖C1

≤ |∂vf (t, ζ(t)) − ∂vf (t, vα(t))| , for every t ∈ [0, T ] .

If v → vα in C1, then v → vα uniformly, hence also ζ → vα uniformly. Since the par-
tial derivative of f with respect to v is continuous, taking a constant M > ||vα||∞, the map 
∂vf : [0, T ] × [−M, M] → R is uniformly continuous. It then follows that, if v → vα in C1, 
then

r(v)(t)

‖v − vα‖C1
→ 0 , uniformly for t ∈ [0, T ] .

It remains to be proved that, if v → vα in C1, then

d

dt

(
r(v)(t)

‖v − vα‖C1

)
→ 0 , uniformly for t ∈ [0, T ].

We have

d

dt
r(v)(t) = ∂tf (t, v(t)) + ∂vf (t, v(t))v̇(t) − ∂tf (t, vα(t)) − ∂vf (t, vα(t))v̇α(t)

−
(
∂2
tvf (t, vα(t)) + ∂2

vvf (t, vα(t))v̇α(t)
)

(v(t) − vα(t))

−∂vf (t, vα(t))(v̇(t) − v̇α(t))

=
(
∂tf (t, v(t)) − ∂tf (t, vα(t)) − ∂2

tvf (t, vα(t))(v(t) − vα(t))
)

+ (∂vf (t, v(t)) − ∂vf (t, vα(t))) v̇(t) − ∂2
vvf (t, vα(t))v̇α(t)(v(t) − vα(t)) .

Again by using the Lagrange Mean Value Theorem twice, for every t ∈ [0, T ] there exist ξ(t)

and η(t) in [vα(t), v(t)] such that
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∂tf (t, v(t)) − ∂tf (t, vα(t)) = ∂2
tvf (t, ξ(t))(v(t) − vα(t)) , (3.14)

∂vf (t, v(t)) − ∂vf (t, vα(t)) = ∂2
vvf (t, η(t))(v(t) − vα(t)) . (3.15)

Then,

d

dt
r(v(t)) =

(
∂2
tvf (t, ξ(t)) − ∂2

tvf (t, vα(t))
)

(v(t) − vα(t))

+
(
∂2
vvf (t, η(t))v̇(t) − ∂2

vvf (t, vα(t))v̇α(t)
)

(v(t) − vα(t)) .

If v → vα in C1, the first term in the sum converges to 0 when divided by ||v −vα||C1 , uniformly 
on [0, T ], by the continuity of ∂2

tvf . For the second term, we have

∣∣∣∂2
vvf (t, η(t))v̇(t) − ∂2

vvf (t, vα(t))v̇α(t)

∣∣∣ ≤

≤
∣∣∣∂2

vvf (t, η(t)) − ∂2
vvf (t, vα(t))

∣∣∣ |v̇(t)| +
∣∣∣∂2

vvf (t, vα(t))

∣∣∣ |v̇(t) − v̇α(t)| ,

which converges uniformly to 0 when v → vα in C1, since both |v̇(t)| and 
∣∣∂2

vvf (t, vα(t))
∣∣ are 

bounded, v̇ → v̇α uniformly on [0, T ], and the map ∂2
vvf is continuous.

We have thus proved (3.13). Therefore,

dvF̃ (vα,0) = ∂vf (·, vα(·)) Id ,

where Id : X → X is the identity map. By A4, we have that ∂vf (t, vα(t)) > 0, for every t ∈
[0, T ], so the map dvF̃ (vα, 0) : X → X is invertible.

By the Implicit Function Theorem, there exists an ε̄ > 0 and a map ϕ : ] − ε̄, ̄ε[ → BX(vα, ̄ε), 
of class C1, such that, for every ε ∈] − ε̄, ̄ε[ and v ∈ BX(vα, ̄ε),

F̃ (v, ε) = 0 ⇐⇒ v = ϕ(ε) .

Setting vε
α = ϕ(ε), the proof is completed. �

Lemma 3.2. There exists ε̃ > 0 such that, if |ε| < ε̃, then for every t ∈ [0, T ] and u ∈ [A, B] the 
following inequalities hold:{

f̃ (t, v) + ε ∂vP (t, u, v) < α̇(t) , if v < vε
α(t) ,

f̃ (t, v) + ε ∂vP (t, u, v) > α̇(t) , if v > vε
α(t) ,

(3.16)

{
f̃ (t, v) + ε ∂vP (t, u, v) < β̇(t) , if v < vε

β(t) ,

f̃ (t, v) + ε ∂vP (t, u, v) > β̇(t) , if v > vε
β(t) ,

(3.17)

{
g̃(t, u) − ε ∂uP (t, q,p,u, v) < v̇ε

α(t) , if u ≤ α(t) ,

g̃(t, u) − ε ∂uP (t, q,p,u, v) > v̇ε (t) , if u ≥ β(t) .
(3.18)
β
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Proof. We only prove the first inequality in (3.16), the proof of the second inequality in (3.16)
and of the inequalities in (3.17) being similar.

We first want to prove that, for |ε| small enough, we have

v < vε
α(t) ⇒ f (t, v) + ε ∂vP (t, u, v) < α̇(t) . (3.19)

By A4, there exists λ > 0 such that ∂vf (t, vε
α(t)) ≥ λ, and by A5 there exists a constant Ĉ > 0

such that ∣∣∣∂2
vvP (t, u, vα(t))

∣∣∣ ≤ Ĉ , for every (t, u) ∈ [0, T ] × [A,B] .

So, if 2|ε|Ĉ < λ, we have

∂v

(
f (t, vε

α(t)) + ε ∂vP (t, u, vε
α(t))

) ≥ λ

2
, for every (t, u) ∈ [0, T ] × [A,B] .

By continuity, there exists a δ̄ > 0 such that

|v − vε
α(t)| < δ̄ ⇒ ∂v

(
f (t, v) + ε ∂vP (t, u, v)

) ≥ λ

4
,

for every (t, u) ∈ [0, T ] × [A, B]. So, by (3.9), there exists τ > 0 such that

v ∈ [vε
α(t) − τ, vε

α(t)] ⇒ f (t, v) + ε ∂vP (t, u, v) < α̇(t) ,

v ∈ [vε
α(t), vε

α(t) + τ ] ⇒ f (t, v) + ε ∂vP (t, u, v) > α̇(t) .

Without loss of generality, we can assume

−d < α̇(t), vα(t), β̇(t), vβ(t) < d ,

where the constant d is as in (3.1), and take |ε|, τ small enough so that

−d < vε
α(t) − τ < vε

α(t) + τ < d .

By (2.1) and (3.1), there exists � > 0 such that

f (t, v) − α̇(t) ≤ −� , for v ≤ −d ,

f (t, v) − α̇(t) ≥ � , for v ≥ d .

If |ε| is small enough, since ∂vP is bounded, we have that

f (t, v) + ε ∂vP (t, u, v) − α̇(t) ≤ −�

2
, for v ≤ −d ,

f (t, v) + ε ∂vP (t, u, v) − α̇(t) ≥ �
, for v ≥ d .
2
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Now it remains only to check what happens in the intervals [vε
α(t) + τ, d] and [−d, vε

α(t) − τ ]. 
Let us only consider the first interval, the argument being similar for the other one. If v ∈ [vε

α(t) +
τ, d], then, if |ε| is small enough, by Lemma 3.1 and (2.1), using (3.1), we have

f (t, v) ≥ f (t, vε
α(t) + τ) ≥ f

(
t, vα(t) + τ

2

)
> α̇(t) .

By Weierstrass Theorem, there exists a m > 0 such that

f (t, v) − α̇(t) ≥ m,

for every t ∈ [0, T ] and v ∈ [vε
α(t) + τ, d]. Then, for |ε| small enough,

f (t, v) + ε ∂vP (t, u, v) − α̇(t) > 0 ,

for every t ∈ [0, T ] and v ∈ [vε
α(t) + τ, d]. We have thus proved (3.19).

Now, since −d̂ < vε
α(t) < d̂ for |ε| small enough, we have the following three cases.

Case 1. If −d̂ ≤ v < vε
α(t), then by (3.4) and (3.19) we have

f̃ (t, v) + ε ∂vP (t, u, v) = f (t, v) + ε ∂vP (t, u, v) < α̇(t) .

Case 2. If v ≤ −d̂ − 1, then by (3.4) we have

f̃ (t, v) + ε ∂vP (t, u, v) = v + ε ∂vP (t, u, v)

≤ −d̂ + ε ∂vP (t, u, v) < α̇(t) ,

for |ε| small enough, since ∂vP is bounded.

Case 3. If −d̂ − 1 ≤ v < −d̂ , then by (3.4) and (2.1) we have

f̃ (t, v) + ε∂vP (t, u, v) = f (t, v) − (v + d̂)(v − f (t, v)) + ε ∂vP (t, u, v)

= (1 + (v + d̂))f (t, v) − (v + d̂)v + ε ∂vP (t, u, v)

< α̇(t) ,

for |ε| small enough, since −(v + d̂) ∈ [0, 1] and f (t, v) < α̇(t), v < α̇(t).
The proof of the first inequality in (3.16) is thus completed.
We now prove the first inequality in (3.18), the second one being analogous. Suppose u ≤

α(t). By (3.3) and (3.5), we have

g̃(t, u) − ε ∂uP (t, q,p,u, v) = g(t, α(t)) − α(t) + u − ε ∂uP (t, q,p,u, v)

≤ g(t, α(t)) − ε ∂uP (t, q,p,u, v)

< v̇α(t) − ξ − ε ∂uP (t, q,p,u, v)

< v̇ε
α(t) ,
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for |ε| small enough, since v̇ε
α → v̇α uniformly. The proof of the first inequality in (3.18) is thus 

completed. �
Let us define the open sets

ANW = {(t, u, v) ∈ R3 : u < α(t), v > vε
α(t)} ,

ASW = {(t, u, v) ∈ R3 : u < α(t), v < vε
α(t)} ,

ANE = {(t, u, v) ∈ R3 : u > β(t), v > vε
β(t)} ,

ASE = {(t, u, v) ∈R3 : u > β(t), v < vε
β(t)} .

Lemma 3.3. For every solution z = (q, p, u, v) of system (3.8), the following assertions hold 
true:

(t0, u(t0), v(t0)) ∈ ANW ⇒ (t, u(t), v(t)) ∈ ANW for every t < t0 ,

(t0, u(t0), v(t0)) ∈ ASE ⇒ (t, u(t), v(t)) ∈ ASE for every t < t0 ,

(t0, u(t0), v(t0)) ∈ ANE ⇒ (t, u(t), v(t)) ∈ ANE for every t > t0 ,

(t0, u(t0), v(t0)) ∈ ASW ⇒ (t, u(t), v(t)) ∈ ASW for every t > t0 .

Proof. We only prove the first assertion, since the remaining ones can be proved similarly. We 
suppose on contrary that there exists t1 < t0 such that

(t0, u(t0), v(t0)) ∈ ANW ,

(t, u(t), v(t)) ∈ ANW , for t ∈]t1, t0[ ,
and

(t1, u(t1), v(t1)) ∈ ∂ANW .

Notice that

∂ANW = {t, u, v) ∈R3 : u = α(t), v ≥ vε
α(t)}

∪ {t, u, v) ∈R3 : u ≤ α(t), v = vε
α(t)} . (3.20)

Assume v(t1) > vε
α(t1). Without loss of generality, we may assume that there exists δ > 0 such 

that [t1, t1 + δ] ⊆ [t1, t0[ and v(t) > vε
α(t) for every t ∈ [t1, t1 + δ]. Now define w : [t1, t1 + δ] →

R by w(t) = u(t) − α(t). Then, we have that w(t1 + δ) < 0 and, by Lemma 3.2,

ẇ(t) = u̇(t) − α̇(t) = f̃ (t, v) + ε ∂vP (t, u(t), v(t)) − α̇(t) > 0 ,

for every t ∈]t1, t1 + δ] and |ε| small enough. Hence, w(t1) < 0, implying that u(t) < α(t) for 
every t ∈ [t1, t1 + δ]. Then, by (3.20), we necessarily have that v(t1) = vε

α(t1). Now if we define 
the map G(t) = v(t) − vε

α(t), then G is continuous on [t1, t0], G(t1) = 0 and G(t) > 0 for every 
t ∈]t1, t0]. But then, using (3.18) and the fact that u(t) ≤ α(t) for every t ∈ [t1, t0], we have
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Ġ(t1) = v̇(t1) − v̇ε
α(t1) = g̃(t1, u(t1)) − ε ∂uP (t, q,p,u, v) − v̇ε

α(t1) < 0 ,

for |ε| small enough; a contradiction. �
We now define the sets

AW = {(t, u, v) ∈ R3 : u < α(t), v = vε
α(t)} ,

AE = {(t, u, v) ∈ R3 : u > β(t), v = vε
β(t)} .

Lemma 3.4. If z = (q, p, u, v) is a solution of system (3.8) such that (t0, u(t0), v(t0)) ∈ AW , then 
there exists a δ > 0 such that

t ∈]t0 − δ, t0[ ⇒ (t, u(t), v(t)) ∈ ANW ,

t ∈]t0, t0 + δ[ ⇒ (t, u(t), v(t)) ∈ ASW .

Similarly, if (t0, u(t0), v(t0)) ∈ AE , then there exists a δ > 0 such that

t ∈]t0 − δ, t0[ ⇒ (t, u(t), v(t)) ∈ ASE ,

t ∈]t0, t0 + δ[ ⇒ (t, u(t), v(t)) ∈ ANE .

Proof. We give only the proof of the first part, the proof of the second part being similar. Let 
z = (q, p, u, v) be a solution of system (3.8) such that (t0, u(t0), v(t0)) ∈ AW . Then v(t0) =
vε
α(t0) and u(t0) < α(t0). Let us define a map G(t) = v(t) − vε

α(t). Then, G is continuous with 
G(t0) = 0, and by (3.18) we have

Ġ(t0) = v̇(t0) − v̇ε
α(t0)

= g̃(t0, u(t0)) − ε ∂uP (t0, q(t0),p(t0), u(t0), v(t0)) − v̇ε
α(t0) < 0 ,

for |ε| small enough. So, there exists δ > 0 such that G(t) > 0 for every t ∈]t0 − δ, t0[ , and 
u(t) < α(t) for every t ∈ [t0 − δ, t0 + δ]. The conclusion is thus proved. �
Lemma 3.5. If z = (q, p, u, v) is a T -periodic solution of system (3.8), then (t, z(t)) ∈ V , for 
every t ∈R.

Proof. Let us first prove that, for every t ∈ R, we have

α(t) ≤ u(t) ≤ β(t) . (3.21)

Suppose that there exists a solution z = (q, p, u, v) of system (3.8) such that u(t0) < α(t0) for 
some t0 ∈ [0, T ]. If (t0, u(t0), v(t0)) ∈ ANW , then from Lemma 3.3 we have that (t, u(t), v(t)) ∈
ANW for every t < t0. Then, by (3.16), we have

d
(u − α)(t) = f̃ (t, v(t)) + ε ∂vP (t, u(t), v(t)) − α̇(t) > 0 ,
dt
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for |ε| small enough and every t < t0, which is clearly a contradiction, because u −α is a periodic 
solution. The same reasoning applies if (t0, u(t0), v(t0)) ∈ ASW . Finally, if (t0, u(t0), v(t0)) ∈
AW , then by Lemma 3.4 we know that the solution will be in ASW or in ANW at some time near 
t0, hence we obtain a contradiction again. Then, u(t) ≥ α(t) for every t ∈ [0, T ]. In a similar way 
we can prove that u(t) ≤ β(t) for every t ∈ [0, T ].

Finally we prove that

γ−(u(t)) ≤ v(t) ≤ γ+(u(t)) . (3.22)

For such a solution z = (q, p, u, v), by (3.3) and (3.21) we see that g̃(t, u(t)) = g(t, u(t)). Now, 
define the T -periodic function H−(t) = v(t) − γ−(u(t)). Let tm ∈ [0, T ] be such that H−(tm) =
minH− and assume by contradiction that H−(tm) < 0. Then,

Ḣ−(tm) = v̇(tm) − γ ′−(u(tm))u̇(tm)

= g(tm,u(tm)) − ε ∂uP (t, q(tm),p(tm),u(tm), v(tm)) − μu̇(tm)

= g(tm,u(tm)) − μf̃ (tm, v(tm))

−ε (∂uP (tm, q(tm),p(tm),u(tm), v(tm)) + μ∂vP (tm,u(tm), v(tm))) .

We now consider the following cases:

Case 1. If −d̂ ≤ v(tm) ≤ γ−(u(tm)), then f̃ (tm, v(tm)) = f (tm, v(tm)) and so we have

Ḣ−(tm) ≤ C − μ · (−c)

−ε (∂uP (tm, q(tm),p(tm),u(tm), v(tm)) + μ∂vP (tm,u(tm), v(tm)))

< 0 ,

for |ε| small enough, since g(tm, u(tm)) ≤ C and μ < −C
c

.

Case 2. If v(tm) < −d̂ − 1, then f̃ (tm, v(tm)) = v(tm) and so we have

Ḣ−(tm) ≤ C − μv(tm)

−ε (∂uP (tm, q(tm),p(tm),u(tm), v(tm)) + μ∂vP (tm,u(tm), v(tm)))

< C − μ · (−d̂ − 1)

−ε (∂uP (tm, q(tm),p(tm),u(tm), v(tm)) + μ∂vP (tm,u(tm), v(tm)))

< 0 ,

for |ε| small enough, since g(tm, u(tm)) ≤ C and d̂ > C/|μ|.

Case 3. If −d̂ −1 ≤ v(tm) ≤ −d̂ , then f̃ (tm, v(tm)) is a linear interpolation between f (tm, v(tm))

and v(tm), hence

min{f (tm, v(tm)), v(tm)} ≤ f (tm, v(tm)) ≤ max{f (tm, v(tm)), v(tm)} ,
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so we have

Ḣ−(tm) ≤ C − μmax{f (tm, v(tm)), v(tm)}
−ε (∂uP (tm, q(tm),p(tm),u(tm), v(tm)) + μ∂vP (tm,u(tm), v(tm))) .

If f (tm, v(tm)) ≤ v(tm), then

Ḣ−(tm) ≤ C + μd̂

−ε (∂uP (tm, q(tm),p(tm),u(tm), v(tm)) + μ∂vP (tm,u(tm), v(tm)))

< 0 ,

for |ε| small enough, since d̂ > c and μ < −C/c. On the other hand, if v(tm) < f (tm, v(tm)), 
then again

Ḣ−(tm) ≤ C − μ · (−c)

−ε (∂uP (tm, q(tm),p(tm),u(tm), v(tm)) + μ∂vP (tm,u(tm), v(tm)))

< 0 ,

for |ε| small enough.
In all the above three cases we obtain contradictions, hence we have proved that v(t) ≥

γ−(u(t)), for every t ∈ [0, T ]. In a similar way we can prove that v(t) ≤ γ+(u(t)), for every 
t ∈ [0, T ]. �

We have thus proved that, if z = (q, p, u, v) is a solution of system (3.8), then (t, z(t)) ∈ V , for 
every t ∈ R, and so z is a solution of system (1.1). This completes the proof of Theorem 2.5. �
4. Consequences and applications of Theorem 2.5

Let φ :R → R be an increasing diffeomorphism with a bounded derivative, such that φ(0) =
0. Consider the system ⎧⎪⎨⎪⎩

q̇ = ∂pH(t, q,p) + ε ∂pP (t, q,p,u) ,

ṗ = −∂qH(t, q,p) − ε ∂qP (t, q,p,u) ,
d
dt

(φ(u̇)) = g(t, u) − ε ∂uP (t, q,p,u) ,

(4.1)

where P = P(t, q, p, u) is a perturbation term which is 2π -periodic in q and has a bounded 
gradient with respect to (q, p, u). As a direct consequence of the Theorem 2.5, we have the 
following result.

Corollary 4.1. Let A1 and A2 hold. Moreover, let there exist two T -periodic C2-functions α, β :
R →R with α ≤ β , such that

d
(φ(α̇))(t) > g(t, α(t)) ,

d
(φ(β̇))(t) < g(t, β(t)) ,
dt dt
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for every t ∈ [0, T ]. Then there exists ε̄ > 0 such that, if |ε| ≤ ε̄, system (4.1) has at least two 
geometrically distinct T -periodic solutions, such that p(0) ∈]a, b[ and α ≤ u ≤ β .

Proof. Define vα, vβ : R → R as

vα(t) = φ(α̇(t)) , vβ(t) = φ(β̇(t)) .

Setting f (t, v) = φ−1(v), all the assumptions of Theorem 2.5 are satisfied, and so the conclusion 
follows. �

Notice that, taking φ(s) = s for all s ∈R, the last equation in (4.1) becomes

ü = g(t, u) − ε ∂uP (t, q,p,u) .

Example 4.2. Consider the following system{
−q̈ = a sinq + ε ∂qP (t, q,u) ,

−ü = −g(t, u) + ε ∂uP (t, q,u) ,
(4.2)

where a > 0. Assume that P is 2π -periodic in q and has a bounded gradient with respect to 
(q, u), and the function g satisfies the Landesman–Lazer condition

T∫
0

lim sup
u→−∞

g(t, u)dt < 0 <

T∫
0

lim inf
u→+∞g(t, u)dt . (4.3)

By using (4.3) and [16, Lemma 2], we get a strict lower solution α and a strict upper solution 
β of the equation ü = g(t, u). So, Corollary 4.1 applies, and thus system (4.2) has at least two 
geometrically distinct solutions. Notice that also Theorem 2.8 could be applied in this case, 
providing subharmonic solutions of period kT , with any integer k > 2π/(T

√
a), in the spirit 

of [20].

5. The higher dimensional case

We now consider the following system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q̇ = ∇pH(t, q,p) + ε ∇pP (t, q,p,u, v) ,

ṗ = −∇qH(t, q,p) − ε ∇qP (t, q,p,u, v) ,

u̇j = fj (t, vj ) + ε ∂vj
P (t, q,p,u, v) , j = 1, . . . ,L ,

v̇j = gj (t, uj ) − ε ∂uj
P (t, q,p,u, v) , j = 1, . . . ,L .

(5.1)

For z = (q, p, u, v) ∈ RN we write

q = (q1, . . . , qM) ∈RM, p = (p1, . . . , pM) ∈RM,

u = (u1, . . . , uL) ∈RL, v = (v1, . . . , vL) ∈ RL.
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We assume all the involved functions to be continuous, and T -periodic in their first variable t .
We first recall the definition of lower and upper solution for the T -periodic problem associated 

with the system

u̇j = fj (t, vj ) , v̇j = gj (t, uj ) , j = 1, . . . ,L . (5.2)

Definition 5.1. A T -periodic C1-function α : R → RL is said to be a “lower solution” for the 
T -periodic problem associated with system (5.2) if there exists a T -periodic C1-function vα :
R →RL such that, for every j = 1, . . . , L we have{

s < vα,j (t) ⇒ fj (t, s) < α̇j (t) ,

s > vα,j (t) ⇒ fj (t, s) > α̇j (t) ,
(5.3)

and

v̇α,j (t) ≥ gj (t, αj (t)) . (5.4)

The lower solution is “strict” if the strict inequalities in (5.4) hold.

Definition 5.2. A T -periodic C1-function β : R → RL is said to be an “upper solution” for 
the T -periodic problem associated with system (5.2) if there exists a T -periodic C1-function 
vβ :R → RL such that, for every j = 1, . . . , L we have{

s < vβ,j (t) ⇒ fj (t, s) < β̇j (t) ,

s > vβ,j (t) ⇒ fj (t, s) > β̇j (t) ,
(5.5)

and

v̇β,j (t) ≤ gj (t, βj (t)) . (5.6)

The upper solution is “strict” if the strict inequalities in (5.6) hold.

We first consider the case when D is a rectangle in RM , i.e.

D = [a1, b1] × · · · × [aM,bM ] .

Let us state our hypotheses in this setting.

A1′. The function H(t, q, p) is 2π -periodic in each variable q1, . . . , qM .
A2′. There exists an M-tuple σ = (σ1, . . . , σM) ∈ {−1, 1}M such that all the solutions (q, p) of 

system (5.10) starting with p(0) ∈D are defined on [0, T ], and, for every i = 1, . . . , M , we 
have {

pi(0) = ai ⇒ σi(qi(T ) − qi(0)) < 0 ,

pi(0) = bi ⇒ σi(qi(T ) − qi(0)) > 0 .
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In the sequel, inequalities of n-tuples will be meant componentwise.

A3′. There exist a strict lower solution α and a strict upper solution β for the T -periodic problem 
associated with system (5.2), such that α ≤ β .

A4′. The second order partial derivatives ∂2
tsfj (t, s) and ∂2

ssfj (t, s) exist and are continuous; 
moreover, there exists λ > 0 such that

∂sfj (t, s) ≥ λ , for every (t, s) ∈ [0, T ] ×R ,

for every j = 1, . . . , L.
A5′. The function P(t, q, p, u, v) is 2π -periodic in q1, . . . , qM and has a bounded gradient with 

respect to (q, p, u, v); moreover, the partial derivative ∇vP is independent of q and p, and 
the map ∇vP (t, u, v) is continuously differentiable.

Here is our first generalization of Theorem 2.5.

Theorem 5.3. Assume that A1′ – A5′ hold true. Then there exists ε̄ > 0 such that, if |ε| ≤ ε̄, there 
are at least M +1 geometrically distinct T -periodic solutions of system (5.1), with p(0) ∈ D̊ and 
α ≤ u ≤ β .

The proof follows exactly the lines of the proof of Theorem 2.5, working separately on the 
components (uj , vj ) of the solutions z = (q, p, u, v) of system (5.1). The main idea is to modify 
the system so to have a Hamiltonian function of the type

H̃ (t, z) = 1
2 (|v|2 − |u|2) + K(t, z) ,

where K is a function having a bounded gradient with respect to z, and then apply [13, Corollary 
2.4] again. We avoid the details, for briefness.

Remark 5.4. Based on the Remark 2.7, we could have varying intervals [ai(s), bi(s)] instead 
of the intervals [ai, bi] in the rectangle D, where ai, bi : R → R are 2π -periodic continuous 
functions.

We can now provide a higher dimensional version of Theorem 2.8. Recall that D(�) denotes 
the open bounded region delimited by a planar Jordan curve �.

Theorem 5.5. Assume that A3′ – A5′ hold true. Let k1, k2, . . . , kM be integers and assume that, 
for each i ∈ {1, . . . , M}, there exist two planar Jordan curves �i

1, �i
2, strictly star-shaped with 

respect to the origin, with

0 ∈D(�i
1) ⊆ D(�i

1) ⊆ D(�i
2) ,

such that the solutions of system (5.10) with (qi(0), pi(0)) ∈ D(�i
2) \ D(�i

1) for every i ∈
{1, . . . , M} are defined on [0, T ] and satisfy

(qi(t),pi(t)) �= (0,0), ∀t ∈ [0, T ] ,
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and {
(qi(0),pi(0)) ∈ �i

1 ⇒ Rot((qi,pi); [0, T ]) < ki ,

(qi(0),pi(0)) ∈ �i
2 ⇒ Rot((qi,pi); [0, T ]) > ki .

(5.7)

Then system (5.1) has at least M + 1 geometrically distinct T -periodic solutions z(n) =
(q(n), p(n), u(n), v(n)) for n = 1, . . . , M + 1 such that

α ≤ u(n) ≤ β ,

(q
(n)
i (0),p

(n)
i (0)) ∈ D(�i

2) \D(�i
1) ,

and

Rot((q(n)
i , p

(n)
i ); [0, T ]) = ki ,

for i = 1, . . . , M . The same is true if for some i ∈ {1, . . . , M} the assumption (5.7) is replaced by 
the following {

(qi(0),pi(0)) ∈ �i
1 ⇒ Rot((qi,pi); [0, T ]) > ki ,

(qi(0),pi(0)) ∈ �i
2 ⇒ Rot((qi,pi); [0, T ]) < ki .

Here is an example of application of the above theorems.

Example 5.6. Consider the following system{
−q̈i = ai sinqi + ε ∂qi

P (t, q,u) , i = 1, . . . ,M ,

−üj = −gj (t, uj ) + ε ∂uj
P (t, q,u) , j = 1, . . . ,L ,

(5.8)

where ai > 0. Assume that P is 2π -periodic in q1, . . . , qM and has a bounded gradient with 
respect to (q, u), and for each j ∈ {1, . . . , L}, the function gj satisfies the Landesman–Lazer 
condition

T∫
0

lim sup
s→−∞

gj (t, s) dt < 0 <

T∫
0

lim inf
s→+∞ gj (t, s) dt . (5.9)

By using (5.9) and [16, Lemma 2], we get a strict lower solution αj and a strict upper solution βj

of the equation üj = gj (t, uj ), with αj (t) < βj (t). So all the assumptions of Theorem 5.3 hold 
and thus system (5.8) has at least M + 1 geometrically distinct T -periodic solutions. As noticed 
in Example 4.2, subharmonic solutions with a sufficiently large period may be detected also in 
this case.

We now consider two variants of Theorem 5.3.
We say that D is a convex body of RM if it is a closed convex bounded subset of RM having 

nonempty interior. By assuming that D has a smooth boundary, we denote the unit outward 
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normal at ζ ∈ ∂D by νD(ζ ). Moreover, we say that D is strongly convex if for any p ∈ ∂D, the 
map F :D → R defined by F(ξ) = 〈ξ − p, νD(p)〉 has a unique maximum point at ξ = p.

Let us first state the following “avoiding rays” assumption for the system

q̇ = ∇pH(t, q,p) , ṗ = −∇qH(t, q,p) . (5.10)

A2′′. There exists a convex body D of RM , having a smooth boundary, such that all the solutions 
(q, p) of system (5.10) starting with p(0) ∈D are defined on [0, T ], and

p(0) ∈ ∂D ⇒ q(T ) − q(0) /∈ {λνD(p(0)) : λ ≥ 0} .

Theorem 5.7. If in the statement of Theorem 5.3 we replace assumption A2′ by A2′′, the same 
conclusion holds.

The only difference in the proof is that instead of [13, Corollary 2.4], we apply [13, Corollary 
2.1].

To conclude this section we introduce an “indefinite twist” assumption.

A2′′′. There are a strongly convex body D of RM having a smooth boundary and a symmetric 
regular M × M matrix A such that all the solutions (q, p) of system (5.10) starting with 
p(0) ∈ D are defined on [0, T ], and

p(0) ∈ ∂D ⇒ 〈q(T ) − q(0) , AνD(p(0))〉 > 0 .

Theorem 5.8. If in the statement of Theorem 5.3 we replace assumption A2′ by A2′′′, the same 
conclusion holds.

Again the proof is the same, the only difference being that instead of [13, Corollary 2.4], we 
apply [13, Corollary 2.3].

Remark 5.9. We could also have assumed some very general twist conditions, in the line of [11–
13]. These involve the “avoiding cones condition” for rather general domains. However, in this 
paper we preferred to present our ideas in some more concrete situations. The interested reader 
will have no difficulties in adapting our results to the more general setting.

6. Twist with Hartman type condition

In this section we consider a system in R2M+2L of the type⎧⎪⎨⎪⎩
q̇ = ∇pH(t, q,p) + ε ∇pP (t, q,p,u) ,

ṗ = −∇qH(t, q,p) − ε ∇qP (t, q,p,u) ,

u̇ = v , v̇ = ∇uG(t, u) − ε ∇uP (t, q,p,u) .

(6.1)

Here again all functions involved are assumed to be continuous, and T -periodic in t . We will 
assume the periodicity condition A1′ and one of the twist conditions A2′, A2′′ or A2′′′, even if 
in the following statement we concentrate on A2′′′. We also assume condition A5′ which, in this 
setting, can be stated in the following simpler form.
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A5′′. The function P(t, q, p, u) is 2π -periodic in q1, . . . , qM and has a bounded gradient with 
respect to (q, p, u).

Here is our statement, involving a Hartman-type condition (see [10,22] and the references 
therein).

Theorem 6.1. Assume that A1′, A2′′′ and A5′′ hold true and that there exists R > 0 such that

|u| = R ⇒ 〈∇uG(t, u),u〉 > 0 . (6.2)

Then there exists ε̄ > 0 such that for |ε| ≤ ε̄, there are at least M + 1 geometrically distinct 
T -periodic solutions of system (6.1) such that p(0) ∈ D̊ and |u(t)| ≤ R for every t ∈R.

Proof. First of all, we modify the function G outside the ball BR = {u : |u| ≤ R}. By (6.2) and 
the continuity of the inner product, there exists ρ̃ > 0 and δ > 0 such that

R ≤ |u| ≤ R + ρ̃ ⇒ 〈∇uG(t, u),u〉 ≥ δ . (6.3)

We can assume without loss of generality that

G(t,u) ≤ 0 , when R ≤ |u| ≤ R + ρ̃ . (6.4)

Indeed, if it is not already the case, it is sufficient to replace G(t, u) by G(t, u) − M , where

M = max{|G(t,u)| : 0 ≤ t ≤ T , R < |u| ≤ R + ρ̃} .

Its gradient will not be changed.
Moreover, as in the previous proofs, after a truncation we can from now on assume that H has 

a bounded gradient with respect to (q, p).
Now choose a C∞-function η : R → R satisfying⎧⎪⎨⎪⎩

η(s) = 1 , if s ≤ R ,

η̇(s) ≤ 0 , if R ≤ s ≤ R + ρ̃ ,

η(s) = 0 , if s > R + ρ̃ ,

and define the function

G̃(t, u) =

⎧⎪⎨⎪⎩
G(t,u) , if |u| ≤ R ,

η(|u|)G(t, u) + (1 − η(|u|)) 1
2 |u|2, if R ≤ |u| ≤ R + ρ̃ ,

1
2 |u|2, if |u| > R + ρ̃ .

Notice that, outside the ball BR+ρ̃ , the system becomes almost linear.
We now consider the new system⎧⎪⎨⎪⎩

q̇ = ∇pH(t, q,p) + ε ∇pP (t, q,p,u) ,

ṗ = −∇qH(t, q,p) − ε ∇qP (t, q,p,u) ,

u̇ = v, v̇ = ∇ G̃(t, u) − ε ∇ P(t, q,p,u) ,

(6.5)
u u
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where the new Hamiltonian function is

H̃ (t, q,p,u, v) = H(t, q,p) + 1
2 |v|2 − G̃(t, u) + ε P (t, q,p,u) .

Writing the modified system (6.5) as ż = J∇H̃ (t, z), we see that

H̃ (t, z) = 1

2
(|v|2 − |u|2) + K(t, z) ,

with K(t, z) has a bounded gradient with respect to z = (q, p, u, v). Then, by [13, Corollary 
2.3], the modified system (6.5) has at least M + 1 geometrically distinct T -periodic solutions, 
such that p(0) ∈ D̊, provided that |ε| is small enough.

We need to prove that the T -periodic solutions of system (6.5) we have found are such that 
|u(t)| ≤ R for every t ∈ [0, T ], so that they are indeed solutions of system (6.1).

Assume by contradiction that there exists t0 ∈R such that

|u(t0)| = max{|u(t)| : t ∈ [0, T ]} > R .

Consider the function f (t) = |u(t)|2. We have that ḟ (t0) = 0 and f̈ (t0) ≤ 0. Being ḟ (t) =
〈2u(t), u̇(t)〉, we compute

f̈ (t) = 2〈u̇(t), u̇(t)〉 + 2 〈u(t), ü(t)〉
= 2|u̇(t)|2 + 2

〈
u(t),∇uG̃(t, u(t)) − ε ∇uP (t, q(t),p(t), u(t))

〉
≥ 2

〈
u(t),∇uG̃(t, u(t)) − ε ∇uP (t, q(t),p(t), u(t))

〉
. (6.6)

We have two cases.

Case 1. If |u(t0)| > R + ρ̃, then by the Cauchy–Schwartz inequality and the fact that 
|∇uP (t, q, p, u)| < C, the inequality (6.6) implies that

f̈ (t0) ≥ 2 〈u(t0), u(t0) − ε ∇uP (t0, q(t0),p(t0), u(t0))〉
≥ 2|u(t0)|2 − 2|ε| |u(t0)| |∇uP (t0, q(t0),p(t0), u(t0))|
≥ 2|u(t0)|

(|u(t0)| − |ε| |∇uP (t0, q(t0),p(t0), u(t0))|
)

> 2R2 > 0 ,

for |ε| small enough, a contradiction.
Case 2. If R < |u(t0)| < R + ρ̃, then again (6.6) implies that

f̈ (t0) ≥ 2

〈
u(t0), η̇ (|u(t0)|) u(t0)

|u(t0)|G(t0, u(t0)) + η (|u(t0)|)∇uG(t0, u(t0))

〉
+2

〈
u(t0),−η̇ (|u(t0)|) u(t0)

|u(t0)|
1

2
|u(t0)|2 + (1 − η (|u(t0)|))u(t0)

〉
−2|u(t0)| |ε| |∇uP (t0, q(t0),p(t0), u(t0))|
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= 2η̇ (|u(t0)|) |u(t0)|G(t0, u(t0)) + 2η (|u(t0)|) 〈u(t0),∇uG(t0, u(t0))〉
−η̇ (|u(t0)|) |u(t0)|3 + 2 (1 − η (|u(t0)|)) |u(t0)|2
−2|u(t0)| |ε| |∇uP (t0, q(t0),p(t0), u(t0))| .

By (6.3) and (6.4), since η̇ (|u(t0)|) ≤ 0 and

η (|u(t0)|) 〈u(t0),∇uG(t0, u(t0))〉 + (1 − η (|u(t0)|)) |u(t0)|2 ≥ min{δ,R2} ,

we have that

f̈ (t0) ≥ 2 min{δ,R2} − 2(R + ρ̃)|ε| |∇uP (t0, q(t0),p(t0), u(t0))| > 0 ,

when |ε| is small enough, a contradiction. The proof is thus completed. �
Remark 6.2. In the case L = 1, writing g(t, u) = ∇uG(t, u), the Hartman condition becomes

g(t,−R) < 0 < g(t,R) .

It is thus seen that α = −R and β = R are constant strict lower/upper solutions, with α < β .

7. Perturbations of completely integrable systems

There is a very large literature on the periodic problem for perturbations of completely inte-
grable systems (see, e.g., [3,13] and references therein), starting from Poincaré, who referred to 
Hamiltonian perturbation theory as the “Problème général de la Dynamique”.

We will add now an extra term to the Hamiltonian function, involving a Hartman-type situa-
tion. Consider the system

{
ϕ̇ = ∇K(I ) + ε ∇IP (t, ϕ, I, u) , İ = −ε ∇φP (t, ϕ, I, u) ,

ü = ∇uG(t, u) − ε ∇uP (t, ϕ, I, u) ,
(7.1)

where (ϕ, I ) ∈ R2M and u ∈ RL. As usual we assume that all the involved functions are contin-
uous and T -periodic in t . The perturbation function P : R ×R2M+L → R is assumed to have a 
bounded gradient with respect to (ϕ, I, u). Moreover, it is τi-periodic in each variable ϕi , i.e.

P(t, . . . , ϕi + τi, . . . ) = P(t, . . . , ϕi, . . . ) ,

and we assume that there exist I 0 ∈RM and some integers m1, . . . , mM such that

T ∇K(I 0) = (m1τ1, . . . ,mMτM) .

We are thus dealing with a completely resonant torus. Here is our result.
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Theorem 7.1. In the above setting, assume that there exist I 0 ∈ RM , a symmetric invertible 
M × M matrix A and ρ > 0 such that

0 < |I − I 0| ≤ ρ ⇒
〈
∇K(I ) − ∇K(I 0) , A(I − I 0)

〉
> 0 . (7.2)

Moreover, let there exist R > 0 such that

|u| = R ⇒ 〈∇uG(t, u),u〉 > 0 .

Then, for every σ > 0, there exists ε̃ > 0 such that, for |ε| < ε̃, there are at least M + 1 geomet-
rically distinct solutions of system (7.1), with

ϕ(t + T ) = ϕ(t) + T ∇K(I 0), u(t + T ) = u(t), I (t + T ) = I (t) ,

|ϕ(t) − ϕ(0) − t∇K(I 0)| + |I (t) − I 0| < σ ,

and

|u(t)| ≤ R ,

for every t ∈R.

The proof is based on Theorem 6.1, following the same reasoning as in [11, Theorem 24], so 
we omit it, for briefness.

Remark 7.2. It can easily be seen that assumption (7.2) is satisfied if the function K is twice 
continuously differentiable at I 0, with

detK′′(I 0) �= 0 .

It is indeed sufficient to choose A =K′′(I 0).

Data availability

No data was used for the research described in the article.

References

[1] V.I. Arnold, Sur une propriété topologique des applications globalement canoniques de la mécanique classique, 
C. R. Acad. Sci. Paris 261 (1965) 3719–3722.

[2] V.I. Arnold, The stability problem and ergodic properties for classical dynamical systems, in: Proc. Internat. Congr. 
Math., Moscow, 1966, Mir, Moscow, 1966, pp. 387–392 (in Russian), English translation in: AMS Transl. Ser. 2, 
vol. 70, 1968, pp. 5–11.

[3] D. Bernstein, A. Katok, Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian sys-
tems with convex Hamiltonians, Invent. Math. 88 (1987) 222–241.

[4] M. Brown, W.D. Neumann, Proof of the Poincaré–Birkhoff fixed point theorem, Mich. Math. J. 24 (1977) 21–31.
[5] K.C. Chang, On the periodic nonlinearity and the multiplicity of solutions, Nonlinear Anal. 13 (1989) 527–537.
[6] F. Chen, D. Qian, An extension of the Poincaré–Birkhoff theorem for Hamiltonian systems coupling resonant linear 

components with twisting components, J. Differ. Equ. 321 (2022) 415–448.
173

http://refhub.elsevier.com/S0022-0396(23)00644-7/bib25437FE2EBD07174DD58E2CAB586DBEFs1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib25437FE2EBD07174DD58E2CAB586DBEFs1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib0D9600714F236BB4C972B4719AF12FA1s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib0D9600714F236BB4C972B4719AF12FA1s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib0D9600714F236BB4C972B4719AF12FA1s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibFBF0A33C32AA3713DC0C1871330C63A9s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibFBF0A33C32AA3713DC0C1871330C63A9s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib89D9C340B8422E1992124BBC1D60A330s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibC9ED4D48D9F7005262C1C92DC57FE052s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib9819CFAB2910E1D66B96A757E60E8E45s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib9819CFAB2910E1D66B96A757E60E8E45s1


A. Fonda and W. Ullah Journal of Differential Equations 379 (2024) 148–174
[7] C.C. Conley, E.J. Zehnder, The Birkhoff–Lewis fixed point theorem and a conjecture of V.I. Arnold, Invent. Math. 
73 (1983) 33–49.

[8] C. De Coster, P. Habets, Two-Point Boundary Value Problems, Lower and Upper Solutions, Elsevier, Amsterdam, 
2006.

[9] P.L. Felmer, Periodic solutions of spatially periodic Hamiltonian systems, J. Differ. Equ. 98 (1992) 143–168.
[10] G. Feltrin, F. Zanolin, Bound sets for a class of φ-Laplacian operators, J. Differ. Equ. 297 (2021) 508–535.
[11] A. Fonda, M. Garzón, A. Sfecci, An extension of the Poincaré–Birkhoff Theorem coupling twist with lower and 

upper solutions, J. Math. Anal. Appl. 528 (2023) 127599.
[12] A. Fonda, P. Gidoni, An avoiding cones condition for the Poincaré–Birkhoff Theorem, J. Differ. Equ. 262 (2017) 

1064–1084.
[13] A. Fonda, P. Gidoni, Coupling linearity and twist: an extension of the Poincaré–Birkhoff Theorem for Hamiltonian 

systems, NoDEA Nonlinear Differ. Equ. Appl. 27 (2020) 55.
[14] A. Fonda, G. Klun, A. Sfecci, Well-ordered and non-well-ordered lower and upper solutions for periodic planar 

systems, Adv. Nonlinear Stud. 21 (2021) 397–419.
[15] A. Fonda, M. Sabatini, F. Zanolin, Periodic solutions of perturbed Hamiltonian systems in the plane by the use of 

the Poincaré–Birkhoff Theorem, Topol. Methods Nonlinear Anal. 40 (2012) 29–52.
[16] A. Fonda, R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems, Proc. Am. Math. 

Soc. 140 (4) (2012) 1331–1341.
[17] A. Fonda, R. Toader, A dynamical approach to lower and upper solutions for planar systems, Discrete Contin. Dyn. 

Syst. 41 (2021) 3683–3708.
[18] A. Fonda, A.J. Ureña, A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows, Ann. Inst. Henri 

Poincaré, Anal. Non Linéaire 34 (2017) 679–698.
[19] A. Fonda, A.J. Ureña, A Poincaré–Birkhoff theorem for Hamiltonian flows on nonconvex domains, J. Math. Pures 

Appl. 129 (2019) 131–152.
[20] A. Fonda, F. Zanolin, Periodic oscillations of forced pendulums with a very small length, Proc. R. Soc. Edinb. 127A 

(1997) 67–76.
[21] G. Fournier, D. Lupo, M. Ramos, M. Willem, Limit Relative Category and Critical Point Theory, Dynamics Re-

ported: Expositions in Dynamical Systems, vol. 3, Springer, Berlin, 1994, pp. 1–24.
[22] P. Hartman, On boundary value problems for systems of ordinary, nonlinear, second order differential equations, 

Trans. Am. Math. Soc. 96 (1960) 493–509.
[23] F.W. Josellis, Lyusternik-Schnirelman theory for flows and periodic orbits for Hamiltonian systems on Tn ×Rn, 

Proc. Lond. Math. Soc. 68 (1994) 641–672.
[24] J.Q. Liu, A generalized saddle point theorem, J. Differ. Equ. 82 (1989) 372–385.
[25] J. Mawhin, Forced second order conservative systems with periodic nonlinearity, in: Analyse Non Linéaire, Perpig-

nan, 1987, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6 (suppl) (1989) 415–434.
[26] M. Nagumo, Über die Differentialgleichung y′′ = f (t, y, y′), Proc. Phys. Math. Soc. Jpn. 19 (1937) 861–866.
[27] E. Picard, Sur l’application des méthodes d’approximations successives à l’étude de certaines équations différen-

tielles ordinaires, J. Math. Pures Appl. 9 (1893) 217–271.
[28] H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912) 375–407.
[29] G. Scorza Dragoni, Il problema dei valori ai limiti studiato in grande per le equazioni differenziali del secondo 

ordine, Math. Ann. 105 (1931) 133–143.
174

http://refhub.elsevier.com/S0022-0396(23)00644-7/bib241A02DB4BC46D22D53BD6B6D7A5C1D6s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib241A02DB4BC46D22D53BD6B6D7A5C1D6s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib09E6DB42AF61AD43C25BEF24F736B550s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib09E6DB42AF61AD43C25BEF24F736B550s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib1F3045D7CBE2BB1EDFF0F570F54B4235s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibEA73B1AAB3F7B9EFE524884DDF2C8056s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibEB2593583C4EE7A4B8E781D4B4AFEC8Fs1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibEB2593583C4EE7A4B8E781D4B4AFEC8Fs1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib4D07EB3748C51080B92AF8F41934E373s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib4D07EB3748C51080B92AF8F41934E373s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib58DC3CF54A3D3A5CB7AD99F048E0381As1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib58DC3CF54A3D3A5CB7AD99F048E0381As1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibDA903CA60798A80D7342483459BECC54s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibDA903CA60798A80D7342483459BECC54s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib470B5821E06BEB626D9A6E38D5DBCD05s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib470B5821E06BEB626D9A6E38D5DBCD05s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibE5365FD7F98FAF11B3DFBBAFA304FF85s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibE5365FD7F98FAF11B3DFBBAFA304FF85s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib878DC22B80CDF0A9AE52D856D4616E96s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib878DC22B80CDF0A9AE52D856D4616E96s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibE1EECC91297138038D7188C7E49336F3s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibE1EECC91297138038D7188C7E49336F3s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibDD57E8ADC7B27BEE948FC5149D98FC42s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibDD57E8ADC7B27BEE948FC5149D98FC42s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibB27932CC6A972126CDEBD635CDC1CF85s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibB27932CC6A972126CDEBD635CDC1CF85s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib52F1FB7240321E503B74474E04C7091Fs1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib52F1FB7240321E503B74474E04C7091Fs1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib92C1FE91C2334E393AAB051CF54E8CBBs1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib92C1FE91C2334E393AAB051CF54E8CBBs1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib5A4F9FA28E043348880FAE1B07ABCB8As1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib5A4F9FA28E043348880FAE1B07ABCB8As1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib7D155795F4DB237AF4F6E99DF25C3C04s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib2D6706C50DC216B99F2FE6EDC0EF879Es1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib2D6706C50DC216B99F2FE6EDC0EF879Es1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib769A415B946A7BFD2F4071052F966653s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibAAC93FDA33525C3AC91EA24529128E4As1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bibAAC93FDA33525C3AC91EA24529128E4As1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib29E7F2A869AA024E6AFBC57831651B85s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib67EFB96960E17A579673FBE9E3DFE697s1
http://refhub.elsevier.com/S0022-0396(23)00644-7/bib67EFB96960E17A579673FBE9E3DFE697s1

	Periodic solutions of Hamiltonian systems coupling twist with generalized lower/upper solutions
	1 Main results in low dimension
	2 A first multiplicity result
	3 Proof of Theorem 2.5
	4 Consequences and applications of Theorem 2.5
	5 The higher dimensional case
	6 Twist with Hartman type condition
	7 Perturbations of completely integrable systems
	Data availability
	References


