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Abstract

By the use of a higher dimensional version of the Poincaré–Birkhoff
theorem, we are able to generalize a result of Jacobowitz [15], thus
proving the existence of infinitely many periodic solutions for a weakly
coupled superlinear system.

1 Introduction

In 1976, using the Poincaré–Birkhoff fixed point theorem, Jacobowitz [15]
proved the existence of infinitely many periodic solutions for a superlinear
second order scalar equation of the type

x′′ + f(t, x) = 0 . (1)

His result was refined one year later by Hartman [14], assuming the function
f : R × R → R to be continuous, T -periodic in its first variable t, locally
Lipschitz continuous in its second variable x (so to guarantee the uniqueness
of solutions to the associated Cauchy problems), and satisfying the following
two hypotheses:

(i)
f(t, x)

x
is bounded near x = 0, uniformly in t ∈ [0, T ] ;

(ii) lim
|x|→∞

f(t, x)
x

= +∞ , uniformly in t ∈ [0, T ] .

Our aim here is to provide a generalization of this result for weakly coupled
systems.

In order to simplify the statements of our results, let us consider a slightly
less general situation, and write equation (1) as

−x′′ = xh(t, x) ,

assuming h : R × R → R to be continuous. In such a way, condition (i)
above is trivially satisfied, while (ii) becomes

(ii′) lim
|x|→∞

h(t, x) = +∞ , uniformly in t ∈ [0, T ] .
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We now consider a system of the type

(S)


−x′′1 = x1 [h1(t, x1) + p1(t, x1, . . . , xN )]

...
−x′′N = xN [hN (t, xN ) + pN (t, x1, . . . , xN )] .

Here, all the functions hi : R × R → R are continuous, T -periodic in their
first variable t, and such that

lim
|x|→∞

hi(t, x) = +∞ , uniformly in t ∈ [0, T ] . (2)

The functions pi : R × RN → R are continuous, T -periodic in their first
variable t, and bounded. Hence, there is a constant D > 0 for which

|pi(t, x1, . . . , xN )| ≤ D ,

for every (t, x1, . . . , xN ) ∈ [0, T ]× RN and i = 1, . . . , N .
(3)

Similarly as in [14, 15], we assume that our nonlinearities are Lipschitz
continuous in x1, . . . , xN . Moreover, we require (S) to be a Hamiltonian
system: hence, we assume the existence of a function U : R×RN → R such
that

∂U
∂xi

(t, x1, . . . , xN ) = xipi(t, x1, . . . , xN ) ,

for every (t, x1, . . . , xN ) ∈ [0, T ]× RN and i = 1, . . . , N .

Simple examples of such functions can be given. For instance, we could have

U(t, x1, . . . , xN ) = α(t)
∏n

i=1 Gi(xi) ,

where the C2-functions Gi : R → R are bounded with their derivatives,
satisfying G′

i(0) = 0. Or else, we could choose U(t, x1, . . . , xN ) = Ũ(t, r),
where r = x2

1 + . . . + x2
n , with a bounded derivative ∂Ũ/∂r.

We will prove the following result.

Theorem 1 There exists a positive integer K such that, for any choice of
N integers K1, . . . ,KN ≥ K, there are N + 1 solutions of system (S) which
are T -periodic and such that, for every index i, the component xi has exactly
2Ki simple zeros in the interval [0, T [ .

In the above theorem, we only consider T -periodic solutions with all
nontrivial components. Admitting that the solutions to system (S) can
have trivial components, we can state the following.
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Corollary 2 There exists an integer K > 0 such that, for every choice of
N integers K1, . . . ,KN ≥ K, there exist 2N−1(N + 2) distinct T -periodic
solutions to system (S) such that, for every index i, the component xi is
either identically zero, or has exactly 2Ki zeros in the period [0, T [ .

Indeed, for every fixed k = 1, . . . , N one has
(
N
k

)
possibilities of having

exactly k nontrivial components, and for each of these Theorem 1 provides
k + 1 solutions. The result then follows from the formula

N∑
k=0

(
N

k

)
(k + 1) = 2N−1(N + 2) .

Notice that, in the case N = 1, Corollary 2 gives us the existence of three
T -periodic solutions for equation (1): the equilibrium x ≡ 0 and the two
nontrivial solutions having exactly 2K1 zeros in the period interval [0, T [ ,
given by the Poincaré–Birkhoff theorem.

As a direct corollary of Theorem 1, we also find mT -periodic solutions,
where m is any positive integer. Notice that, if at least one of the in-
tegers K1, . . . ,KN is relatively prime with m, these solutions will not be
`T -periodic, for any ` = 1, . . . ,m− 1. Such solutions are sometimes named
subharmonic solutions. However, their minimal period could be small, as it
happens for an autonomous scalar equation like x′′ + x3 = 0. On the other
hand, for some particularly structured equations, the period of the solutions
cannot be less that T : take, for instance, an equation like x′′ + q(t)x3 = 0,
with q(t) having minimal period T . We thus see that Theorem 1 can some-
times be used to provide subharmonic solutions having minimal period mT .

The proof of Theorem 1 will be carried out using a higher dimensional
version of the Poincaré–Birkhoff theorem for Poincaré maps of Hamiltonian
systems, recently obtained by the first author and A. J. Ureña in [12]. Let us
mention that, in our assumptions, the solutions to Cauchy problems need not
be globally defined. For instance, it was shown in [7] that there are positive
continuous functions q(t) such that the differential equation x′′+ q(t)x3 = 0
has a solution which does not exist on [0, T ]. So, the Poincaré map may
not be well defined. To overcome this difficulty, Jacobowitz [15] considered
the successor map, instead of the Poincaré map. However, in order to have
this map well defined, he needed to assume an additional sign condition
on the nonlinearity. Our approach will follow the idea of Hartman [14] of
modifying the nonlinearities, and making use of some a priori estimates for
the solutions with a prescribed number of rotations in the phase plane (see
also [18]).

The global existence problem does not arise when the differential equa-
tion has some particular structure, e.g. when f(t, x) in (1) is of the type
f(x)+ e(t). In this case, the existence of periodic solutions has been proved
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in [5, 6, 8, 13, 17] (see also [4]). Let us mention that existence results
for systems have also been obtained by the use of variational methods, see
e.g. [1, 2, 3, 9, 16, 19, 20]. Usually, the main difficulty encountered in these
papers is the verification of the Palais–Smale condition, for which some pecu-
liar hypotheses must be assumed. Our method does not need such technical
assumptions: however, we can only apply it to systems which are weakly
coupled.

2 Proof of Theorem 1

In this section, we provide a proof for Theorem 1, mainly based on the
higher dimensional version of the Poincaré–Birkhoff theorem given in [12,
Theorem 8.2].

In order to recover the existence of global solutions to the associated
Cauchy problems, let us introduce the following truncations of the func-
tions hi . For every R > 1, let

hR
i (t, xi) =


hi(t,−R) , if xi < −R ,

hi(t, xi) , if |xi| ≤ R ,

hi(t, R) , if xi > R .

To simplify the notation, we will write the vector in RN−1, obtained remov-
ing from some x ∈ RN its i-th component, as follows:

λi = (x1, . . . , xi−1, xi+1, . . . , xn) .

We define the functions gR
i : R× R× RN−1 → R by

gR
i (t, xi, λ

i) = xi

[
hR

i (t, xi) + pi(t, x1, . . . , xN )
]

.

These functions are continuous, and satisfy, for every i = 1, . . . , N and
R > 1,

gR
i (t, 0, λi) = 0 , for every t ∈ [0, T ] and λi ∈ RN−1. (4)

Moreover, it is readily verified that, by continuity, there is a constant a > 0
such that ∣∣∣∣gR

i (t, xi, λ
i)

xi

∣∣∣∣ ≤ a , when 0 < |xi| < 1, (5)

for every t ∈ [0, T ] and λi ∈ RN−1.

Let us now consider the modified system

(SR)


−x′′1 = gR

1 (t, x1, λ
1)

...
−x′′N = gR

N (t, xN , λN ) .

Notice that, by construction, the solutions of the Cauchy problems associ-
ated to (SR) are unique and globally defined.
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By (4), a solution x = (x1, . . . , xN ) to system (SR) may have some triv-
ial components. The uniqueness of the solutions to the associated Cauchy
problems allows us to state the following.

Proposition 3 If a solution x = (x1, . . . , xN ) to system (SR) satisfies
xi(t0) = x′i(t0) = 0, for some t0 ∈ [0, T ] and i ∈ {1, . . . , N}, then the
component xi must be constantly equal to zero.

Let us write the 2N -dimensional system

(PR)

{
x′i = yi

−y′i = gR
i (t, xi, λ

i)
i = 1, . . . , N ,

which is equivalent to (SR). In the following, we will denote by y the vector
(y1, . . . , yN ), and we will write z = (x, y) ∈ R2N . We know by Proposition 3
that, if a solution x of (SR) has a component xi which is not identically
zero, then (xi(t), yi(t)) 6= (0, 0) for every t, so that we can parametrize
zi(t) = (xi(t), yi(t)) in polar coordinates as

xi(t) = ρi(t) cos(ϑi(t)) , yi(t) = ρi(t) sin(ϑi(t)) . (6)

In this case, we can define the rotation number of the i-th component of
z = (x, y) as

roti(z) = − 1
2π

(ϑi(T )− ϑi(0)) .

In particular, if x is a T -periodic solution of (SR) with a nontrivial compo-
nent xi, then roti(z) is an integer, and xi has exactly 2 roti(z) simple zeros
in [0, T [ . Indeed, roti(z) is the number of clockwise rotations performed by
zi = (xi, yi) around the origin, in the time interval [0, T ].

2.1 The a priori bound

The following lemma gives us an a priori bound to the T -periodic solutions
of (PR) whose nontrivial components perform at most a fixed number of
rotations around the origin.

Lemma 4 (A priori bound) For every positive integer K0, there exists
a constant R = R(K0) > 1 with the following property: if z = (x, y) is a
T -periodic solution to (PR), with R > R, such that roti(z) ≤ K0 for every
nontrivial component zi, then

|zi(t)| < R , for every t ∈ [0, T ] and i = 1, . . . , N .

Proof. Given K0, fix a constant b > 1 such that,

b > 2
(

2π

T
K0

)2

.
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By (2) and (3), there exist two positive constants c and R, with 1 < c < R,
such that, for every R ≥ R and every index i,

gR
i (t, xi, λ

i)
xi

= hR
i (t, xi) + pi(t, xi, λ

i) > hR
i (t, xi)−D > b ,

for every xi with |xi| ≥ c , t ∈ [0, T ] , and λi ∈ RN−1 ,
(7)

Moreover, by continuity, it is possible to find a constant M > 0 such that,
for every index i,

|gR
i (t, xi, λ

i)| < M ,

for every xi with |xi| ≤ c , t ∈ [0, T ] , and λi ∈ RN−1 .
(8)

Then, choose d > 0 large enough to have d2 > max{4Mc, 4c2b}, and define

A0 = [−c, c]× [−d, d] .

Consider now a T -periodic solution (x, y) to (PR), with R > R, such that,
for some index i0,(

xi0(t), yi0(t)
)

/∈ A0 , for every t ∈ [0, T ] . (9)

We will now show that, in such a case, (xi0 , yi0) has to perform more than K0

rotations around the origin in the time interval [0, T ]. Indeed, if |xi0(t)| ≤ c,
then |yi0(t)| ≥ d, so one has

−ϑ′i0(t) =
gR
i0

(t, xi0(t), λ
i0(t))xi0(t) + yi0(t)

2

xi0(t)2 + yi0(t)2

≥ −Mc + yi0(t)
2

xi0(t)2 + yi0(t)2

>

(
1− Mc

d2

)
sin2(ϑi0(t))

>
3
4

sin2(ϑi0(t))

> b cos2(ϑi0(t)) +
1
2

sin2(ϑi0(t)) ,

and, if |xi0(t)| ≥ c, one has

−ϑ′i0(t) =
gR
i0

(t, xi0(t), λ
i0(t))xi0(t) + yi0(t)

2

xi0(t)2 + yi0(t)2

> b cos2(ϑi0(t)) + sin2(ϑi0(t))

> b cos2(ϑi0(t)) +
1
2

sin2(ϑi0(t)) .
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Consequently, every solution to (PR), with R > R, satisfying (9) is such
that the component (xi0 , yi0) takes a time τ to perform a rotation around
the origin estimated by

τ <

∫ 2π

0

dϑ

b cos2 ϑ + 1
2 sin2 ϑ

=
2π√
b/2

<
T

K0
.

Hence, every T -periodic solution z = (x, y) to (PR), with R > R, satisfy-
ing (9) is such that

roti0(z) > K0 .

Now, in order to find the needed a priori bound, we will use the so-called
admissible spiral method, a tool introduced by the authors in [10, 11]. We
recall that, roughly speaking, an admissible spiral for a system in R2 is a
curve which guides the solutions in the phase plane, forcing them to rotate
around the origin when they increase in norm. The generalization to systems
in R2N of the type 

z′1 = F1(t, z1, . . . , zN )
...

z′N = FN (t, z1, . . . , zN ) ,

with zi ∈ R2, has been explained in [11], and is depicted in Figure 1.

Figure 1: An artistic view of the admissible spirals when N = 3.

Precisely, for each index i, an i-admissible spiral is a continuous and
injective curve γi : [0,+∞[→ R2, satisfying the following properties:

1. There exists an unlimited strictly increasing sequence

0 = σ0 < σ1 < σ2 < · · · < σk < σk+1 < · · ·
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such that the restriction of γi to every closed interval [σk, σk+1] is
continuously differentiable, and

〈Jγ̇i(s) , γi(s)〉 > 0 , for every s ∈ [σk, σk+1] .

Here, J denotes the standard symplectic 2× 2 matrix:

J =
(

0 −1
1 0

)
.

2. The curve grows in norm to infinity:

lim
s→+∞

|γi(s)| = +∞ .

3. The curve rotates clockwise infinitely many times:∫ +∞

0

〈Jγ̇i(s) , γi(s)〉
|γi(s)|2

ds = +∞ .

4. When restricted to any subinterval [σk, σk+1], it satisfies

〈Jγ̇i(s) , Fi(t, z1, . . . , zi−1, γ
i(s), zi+1, . . . , zN )〉 < 0 ,

for every t ∈ [0, T ], s ∈ [σk, σk+1], and zj ∈ R2 with j 6= i.

So, we need to construct, for every index i = 1, . . . , N , an i-admissible
spiral γi. The construction will be essentially the same for every index i, and
we will briefly follow the ideas explained in [10, 11] (see, in particular, [10,
Theorem 3.10] and [11, Theorem 4.1]). Let η ∈ ]0, 1[ be a small constant.
The spirals will be defined piecewise in the following regions (see Figure 2).

A1 = [ c,+∞[×[−η, η ] ,
A2 = [ c,+∞[× ]−∞,−η ] ,
A3 = [−c, c ]× ]−∞,−d ] ,
A4 = ]−∞,−c ]× ]−∞,−η ] ,
A5 = ]−∞,−c ]× [−η, η ] ,
A6 = ]−∞,−c ]× [ η, +∞[ ,
A7 = [−c, c ]× [ d,+∞[ ,
A8 = [ c,+∞[×[ η, +∞[ .

The construction in the regions with an even index makes use of some
energy estimates. Recalling (7), notice that, for every index i, it is possible
to find two continuous functions gi,j : R → R , with j = 1 , 2, such that, for
every sufficiently large positive R,

gi,1(xi) < gR
i (t, xi, λ

i) < gi,2(xi) = −1 , when xi ≤ −c ,
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Figure 2: The nine considered regions.

and
1 = gi,1(xi) < gR

i (t, xi, λ
i) < gi,2(xi) , when xi ≥ c .

Consider then their primitives

Gi,j(ξ) =
∫ ξ

0
gi,j(σ) dσ ,

and the associated energy functions Ei,j(ξ, υ) = 1
2υ2 + Gi,j(ξ). It is easy to

see that, for every solution z = (x, y) of (PR), with x = (x1, . . . , xN ) and
y = (y1, . . . , yN ),

d

dt
Ei,1

(
xi(t), yi(t)

)
< 0 , if

(
xi(t), yi(t)

)
∈ A4 ∪ A8 ,

and
d

dt
Ei,2

(
xi(t), yi(t)

)
< 0 , if

(
xi(t), yi(t)

)
∈ A2 ∪ A6 .

So, the spiral γi will be chosen as a level curve of Ei,1 in A4 and A8, and as
a level curve of Ei,2 in A2 and A6.

The branches of γi in A3 and A7 will be built following the idea in [11,
Lemma 4.2]. In fact, by (8), in these regions, the superlinearity property of
gi does not affect the estimate of the radial velocity of each component of
the solutions and, being the angular velocity positively bounded from below,
it is possible to have a limitation to the radial velocity with respect to the
spanned angle (see the proof of [11, Lemma 4.2]). At last, in regions A1 and
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Figure 3: The construction of the first lap of admissible spiral.

A5 the spiral γi consists of lines with sufficiently small negative slope −χ.
See Figure 3 for an overall view of the first lap of the spiral thus constructed.

Once clarified how every branch must be built, we can choose a starting
point P = (r0, 0) lying in A1 and draw the first lap of the spirals γi passing
in the eight regions. Iterating this procedure, we can construct an infinite
number of laps for each of this curves. We take r0 large enough, so that the
spirals do not intersect A0. Moreover, choosing the slope χ of the lines in
A1 and A5 small enough at each lap, we can ensure that all the spirals are
injective and grow to infinity in norm.

Let R > max{
√

c2 + d2, R} be such that the open ball BR fully contains
all the first K0 + 1 laps of the spirals γi. This radius represents the a priori
bound we are looking for. In fact, assume by contradiction that there exists
a T -periodic solution z = (x, y) to system (PR), with R > R, satisfying
roti(z) ≤ K0 for every i, and that there also exist an index i0 and an instant
t1 for which |zi0(t1)| ≥ R. We know that if such a solution satisfies (9),
then roti0(z) > K0. Hence, there must exist an instant t2 ∈ [t1, t1 + T ] at
which zi0(t2) ∈ A0. Therefore, the i0-th component of z must go from A0

to R2 \ BR in the time-interval [t2, t1 + T ], guided by the spiral γi0 , thus
performing at least K0 + 1 rotations around the origin in this time interval
[t2, t1 + T ]. On the other hand, since x′i0 = yi0 , the i0-th component of
the solutions can never perform counterclockwise rotations. So, the i0-th
component has to perform more than K0 rotations around the origin in the
time interval [0, T ], a contradiction which ends the proof of the lemma.
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2.2 The Poincaré–Birkhoff geometrical setting

To complete the proof of Theorem 1, we will apply a higher dimensional
version of the Poincaré–Birkhoff theorem for Poincaré maps of Hamiltonian
systems recently obtained in [12]. Precisely, let 0 < R1 < R2 and consider
the N -annulus in R2N defined as

Ω =
[
BR2 \BR1

]N =
(
BR2 \BR1

)
× · · · ×

(
BR2 \BR1

)
.

As a direct consequence of [12, Theorem 8.2], the following statement holds.

Theorem 5 Assume that every solution z of (PR), departing from z(0) ∈
∂Ω, is defined on [0, T ] and satisfies

zi(t) 6= (0, 0) , for every t ∈ [0, T ] and i = 1, . . . , N .

Assume moreover that there are positive integers K1, . . . ,KN such that, for
each i = 1, . . . , N

roti(z) < Ki if |zi(0)| = R1 , and roti(z) > Ki if |zi(0)| = R2 .

Then, the Hamiltonian system has at least N+1 distinct T -periodic solutions
z, with z(0) ∈ Ω, such that roti(z) = Ki, for every i = 1, . . . , N .

The first ingredient for completing the proof of Theorem 1 is an estimate
of the rotation number for solutions having a small component.

Lemma 6 There exist a positive integer K and a positive constant δ such
that, if a solution z = (x, y) to system (PR) satisfies 0 < |zi(0)| < δ for a
certain index i, then roti(z) < K.

Proof. Assume 0 < |zi(0)| < 1. After parametrizing zi = (xi, yi) in polar
coordinates (6), one has, by (5), as long as ρi(t) = |zi(t)| < 1,

ρ′i(t) =
x′i(t)xi(t) + y′i(t)yi(t)√

xi(t)2 + yi(t)2

=
xi(t)yi(t)

(
1− gR

i (t, xi(t), λi(t))
xi(t)

)
√

xi(t)2 + yi(t)2

≤ (a + 1)ρi(t) .

By Gronwall Lemma, choosing δ < e−(a+1)T , we see that, if ρi(0) < δ, then

ρi(t) ≤ ρi(0)e(a+1)t < e(a+1)(t−T ),
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so that necessarily ρi(t) < 1 for every t ∈ [0, T ]. Now, recalling (5), the
following estimate holds for the angular velocity of zi = (xi, yi):

−ϑ′i(t) =
gR
i (t, xi(t), λi(t))xi(t) + yi(t)2

xi(t)2 + yi(t)2

< a cos2(ϑi(t)) + sin2(ϑi(t)) .

Thus, the time needed by zi to perform a complete rotation around the origin
must be greater than 2π/

√
a. Hence, choosing the integer K satisfying

a <

(
2π

T
K

)2

,

one has that roti(z) < K, thus completing the proof of the lemma. �

We now estimate the number of rotations performed by a solution with
a component which starts sufficiently far from the origin.

Lemma 7 Given a positive integer K0, let R = R(K0) be the constant
provided by Lemma 4. If z = (x, y) is any solution to (PR), with R > R,
such that |zi(0)| = R for some index i, then roti(z) > K0.

Proof. Following the proof of Lemma 4, we only need to consider the case of
a solution, starting with |zi(0)| = R for some index i, such that zi = (xi, yi)
enters the region A0 at a certain time t0 ∈ ]0, T ]. If we change the time
variable t into s = t0 − t, we obtain a solution z̃ = (x̃, ỹ) to the system{

x̃′i = ỹi

−ỹ′i = gR
i (t0 − s, x̃1, . . . , x̃N )

i = 1, . . . , N ,

such that z̃i(0) ∈ A0 and |z̃i(t0)| = R. Clearly, the admissible spiral γi still
guides also the solution z̃ of this system, forcing the component z̃i = (x̃i, ỹi)
to rotate clockwise at least K0+1 times around the origin in the time interval
[0, t0]. By the same argument in the proof of Lemma 4, we then have that
roti(z̃) > K0. The proof is thus completed, since roti(z) = roti(z̃). �

We are now ready to conclude the proof of Theorem 1. Using Lemma 6,
we find the integer K. Then, once the integers K1, . . . ,KN ≥ K are given,
we can define K0 = max{K1, . . . ,KN} and apply Lemma 4 so to find the
constant R = R(K0). Choose R > R and consider the Poincaré map
associated to the Hamiltonian system (PR). By Lemmas 6 and 7, choosing
R1 = δ and R2 = R, we can apply Theorem 5 above so to find N +1 distinct
T -periodic solutions whose i-th component performs exactly Ki clockwise
rotations around the origin in the time interval [0, T ]. Lemma 4 guarantees
us that all these solutions are also solutions to system (S), since gi(t, xi, λ

i) =
gR
i (t, xi, λ

i) when |xi| < R. The proof of Theorem 1 is thus completed.
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