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Abstract

In this paper we study the rate of convergence of the Markov chain Xn+1 =

AXn + Bn (mod p), where A is an integer matrix with nonzero eigenvalues, and

{Bn}n is a sequence of independent and identically distributed integer vectors, with

support not parallel to a proper subspace of Qk invariant under A. If A has an

eigenvalue of length 1, then n = O
(
p2
)

steps are necessary and sufficient to have Xn

sampling from a nearly uniform distribution. In general, if no assumptions on the

eigenvalues of A are done, then O
(
p2
)

steps are sufficient.
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1 Introduction

In this paper, we study the Markov chain on Zk defined by the affine recursion

Xn+1 = AXn + Bn (mod p), (1)

where X0 = x0 ∈ Zk, A ∈ GLk(Q) ∩Mk(Z), p is an integer, and {Bn}n is a sequence of

independent and identically distributed integer vectors.

Several results on this recursion have been obtained in the mathematical literature. In

particular, if k = 1 and Bn is a fixed integer b, for particular values of p (for example,

p = 231 − 1 or p = 232), the sequence (1) is used to produce pseudorandom numbers on

computers. These matters can be found in the book [10].

In [1], [4], and [8], the term b is a random variable Bn chosen with the same probability

at each step, and so the authors study the following Markov chain:

Xn+1 = aXn + Bn (mod p),

where a ∈ N∗. The aim of these studies is to produce uniformly distributed random

numbers on the set {0, 1, ..., p− 1}. In [4], it is shown that, for a = 2, n = O(ln p ln ln p)

steps are sufficient to sample Xn from a distribution almost uniform. Moreover, if a = 1,

then n = O
(
p2
)

steps are necessary and sufficient. In [7], also the integer a is a random

variable An, but the same estimate n = O(ln p ln ln p) for the number of steps sufficient

is found.

In [2] and in [9], the extension of the previous results to the higher-dimensional case

is done, but the recursion (1) is studied only in some particular cases on the distribution

of Bn and on the eigenvalues of A. In the paper [3], the conditions on Bn are the most

general (‖Bn‖∞ ∈ L2 and the support of the distribution of Bn cannot be parallel to any

proper subspace of Qk invariant under A). The results of the paper depend on the size

of the complex eigenvalues of A. If |λi| 6= 1 for all eigenvalues λi, then n = O
(
(ln p)2

)
steps are sufficient and n = O(ln p) steps are necessary to reach the uniform distribution.

Conversely, if A has an eigenvalue of length 1, only some particular results are obtained.

In this paper, we improve and complete the study begun in [2] and [3] and we provide

some results that agree with the one-dimensional case studied in [4]. In general, we prove
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that, without any assumptions on the eigenvalues of A, n = O(p2) steps are sufficient to

achieve randomness (Theorem 3.1). This theorem generalizes Theorems 4.1 in [2] and 3.9

in [3]. In particular, if A has an eigenvalue of length 1, then O
(
p2
)

steps are also necessary

(Theorem 3.3). This theorem generalizes Theorem 3.11 in [3].

In Sect. 2, we provide some preliminary results and we recall shortly the theory of the

random walks on groups. In Sect. 3, we expose the main results of our work, and in Sect.

4 we introduce some problems for further study.

2 Preliminary results

The aim of this paper is to prove that, with some conditions on p and on Bn, the distri-

bution of the Markov chain {Xn} tends to the uniform distribution on Zk
p, as n → +∞,

where {Xn} is defined by (1), and so it can be supposed on Zk
p. Moreover, we wish to

estimate the rate of convergence of the process.

Set Pn(x) = P (Xn = x), ∀ x ∈ Zk
p, and µ(x) = P (Bn = x), ∀ x ∈ Zk, ∀ n ∈ N;

moreover, denote by U the uniform distribution on Zk
p. Define:

V = {x ∈ Zk : x = h− k, where h,k ∈ supp µ}.

Denote by d, where d ≤ k, the degree of the minimum polynomial of A. By definition we

have:
d∏

i=1

(A− λiI) =
d∏

i=1

(tA− λiI) = 0 ∈ Mk(Z), λi ∈ {λ1, ..., λd}, ∀ i = d + 1, ..., k,

where λ1, ..., λd, ..., λk are the eigenvalues of A. Finally, set:

V d−1 = {Amx : x ∈ V ,m = 0, 1, ..., d− 1}.

We use the Fourier analysis (see for example [5], [6], [11], and [12]). Define the variation

distance between Pn and U in the following way:

‖Pn − U‖ =
1
2

∑
α∈Zk

p

|Pn(α)− U(α)|.

It is possible to prove that

‖Pn − U‖ =
1
2

sup
f∈F

|EPn(f)− EU (f)| = max
A⊂Zk

p

|Pn(A)− U(A)|, (2)
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where F ≡ {f : Zk
p −→ C :‖f‖ ≤ 1}.

Henceforth, our purpose will be to find an upper bound and a lower bound for ‖Pn−U‖

in terms of n and p. Observe that we can suppose X0 = 0; in fact, if we denote by {Yn}n

the sequence defined by (1) and the condition X0 = 0, we have Xn = ϕn(Yn), where the

one to one function ϕn : Zk
p −→ Zk

p is defined by ϕn(x) = Anx0 + x. Moreover:

‖Pn − U‖ = ‖(Pn ◦ ϕn)− U‖.

Let E be a countable group of Rk and let f : E −→ C; define the generalized Fourier

transform f̂ : Ck −→ C by:

f̂(α) =
∑
h∈E

exp
(

2πi

p
〈h,Re(α)〉

)
f(h),

where Re(α) is the vector whose components are the real parts of the components of α.

Henceforth, we consider only E = Zk or E = Zk
p.

The following lemma is proved in [2] (Lemma 2.5), and also in [5], in a more general

case.

Lemma 2.1 (Upper bound lemma).

‖Pn − U‖2 ≤ 1
4

∑
α∈Zk

p−{0}

|P̂n(α)|2. (3)

Lemma 2.2. Suppose that M ∈ GLk(Q) ∩ Mk(Z) and gcd(det(M), p) = 1; then,

M ∈ GLk(Zp).

Proof. By assumption, there exist k1, k2 ∈ Z such that

k1 det(M) + k2p = 1,

from which k1 det(M) = 1 (mod p). Moreover:

M−1 =
1

det(M)
N,

where N ∈ Mk(Z), and so M ∈ GLk(Zp). 2

The following two results follow from Lemma 2.2 and their proofs are similar to those

of Lemmas 3.1 and 3.4 in [2]: the only difference is that α ranges in Ck instead of Zk
p.
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Lemma 2.3. Suppose that gcd(det(A), p) = 1, X0 = 0, α ∈ Ck. Then:

1) P̂n(α) =
n−1∏
j=0

µ̂
(
tAjα

)
.

2) |P̂n(α)|2 =
n−1∏
j=0

 ∑
h,i∈Zk

µ(h)µ(i) cos
(

2π

p

〈
h− i, tAj Re(α)

〉)
≤

n−1∏
j=0

(
1− 2µ (u) µ (v) + 2µ (u) µ (v) cos

(
2π

p

〈
u− v, tAjα

〉))
,

∀u,v ∈ supp µ.

Lemma 2.4. Suppose that the support of µ is not parallel to a proper subspace of

Qk invariant under A. Then, there exists a basis {y1, ...,yk} ⊂ V d−1 of Qk. Furthermore,

for all p ∈ N such that gcd(det(y1...yk), p) = 1 and for all α ∈ Ck − (pZ)k, there exists

i ∈ {1, ..., k} such that 〈yi, α〉 6= 0 (mod p). In particular, if the support of µ is not

parallel to a proper subspace of Qk, we have y1, ...,yk ∈ V , 〈yi, α〉 6= 0 (mod p), for some

i ∈ {1, ..., k}.

Henceforth, we denote by B the matrix (y1...yk), where the vectors y1, ...,yk are

defined by Lemma 2.4.

Lemma 2.5. Let α ∈ Ck. Then:

‖Pn − U‖ ≥ 1
2

∣∣∣P̂n(α)− Û(α)
∣∣∣ .

In particular, if α ∈ Zk − (pZ)k, then:

‖Pn − U‖ ≥ 1
2

∣∣∣P̂n(α)
∣∣∣ .

Proof. From (2), we have:

‖Pn − U‖ =
1
2

sup
‖f‖≤1

|EPn(f)− EU (f)|.

For all α ∈ Ck, define the following function f : Zk
p −→ C:

f(x) = exp
(

2πi

p
〈x,Re(α)〉

)
.
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Since ‖f‖ = 1, we obtain:

‖Pn − U‖ ≥ 1
2
|EPn(f)− EU (f)|

=
1
2

∣∣∣∣∣∣
∑
x∈Zk

p

Pn(x) exp
(

2πi

p
〈x,Re(α)〉

)
− 1

pk

∑
x∈Zk

p

exp
(

2πi

p
〈x,Re(α)〉

)∣∣∣∣∣∣
=

1
2

∣∣∣P̂n(α)− Û(α)
∣∣∣ .

In particular, if α ∈ Zk − (pZ)k, there exists j0 ∈ {1, ..., k} such that αj0 ∈ Z − pZ;

then:

Û(α) =
1
pk

k∏
j=1

 ∑
xj∈Zp

exp
(

2πi

p
xjαj

)
=

1
pk

∏
j∈{1,...,k}−j0

 ∑
xj∈Zp

exp
(

2πi

p
xjαj

) ∑
xj0

∈Zp

exp
(

2πi

p
xj0αj0

)
.

Moreover:

∑
xj0

∈Zp

exp
(

2πi

p
xj0αj0

)
=

1−
(
exp

(
2πi
p αj0

))p

1− exp
(

2πi
p αj0

) = 0

⇒ Û(α) = 0,

from which

‖Pn − U‖ ≥ 1
2

∣∣∣P̂n(α)
∣∣∣ . 2

3 Main results

Theorem 3.1. Assume that A has eigenvalues λ1, ..., λk ∈ C∗, and assume that the

support of µ is not parallel to a proper subspace of Qk invariant under A. Then, there

exist α, c ∈ R+ and N ∈ N such that, for all p ∈ N such that p > N , gcd(det(A), p) =

gcd(det(B), p) = 1, and for all n ≥ cp2, we have:

‖Pn − U‖ ≤ 2k−1 exp
(
−α(n− k + 1)

p2

)
.
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Proof. For all s ∈ N, from Lemma 2.3, we have:

∑
α∈Zk

p−{0}

|P̂n(α)|2 ≤
∑

α∈Zk
p−{0}

n−s−1∏
j=0

fs(α, j), (4)

where fs(α, j) ≡

 ∑
u,v∈Zk

µ(u)µ(v) cos
(

2π

p

〈
u− v, tAj+sα

〉).

Observe that, for all j ∈ N and for all α1, α2 ∈ Zk
p − {0} such that α1 6= α2, from

Lemma 2.2 we have tAjα1 6= tAjα2 (mod p), and so{
tAjα :α ∈ Zk

p − {0}
}

= Zk
p − {0}.

Moreover, use the following result:

Lemma 3.2.
s∑

j=1

r∏
i=1

aπi(j) ≤
s∑

j=1

ar
j ,

where, for all i = 1, ..., r and all j = 1, ..., s, πi is a permutation of {1, ..., s} and aj ≥ 0.

Then we have:

∑
α∈Zk

p−{0}

n−s−1∏
j=0

fs(α, j) ≤
∑

α∈Zk
p−{0}

fs(α, 0)n−s. (5)

Consider the vectors y1, ...,yk defined by Lemma 2.4; then, for all m = 1, ..., k:

ym = Azm(um−vm), where um,vm ∈ supp µ, zm ∈ {0, 1, ..., d− 1}.

For all m = 1, ..., k, set:

g(m) =
(

1− 2µ(um)µ(vm) + 2µ(um)µ(vm)cos
(

2π

p
〈ym, α〉

))n−zm

.

Then:

fzm(α, 0)n−zm ≤ g(m).

Let m ∈ {1, ..., k} be such that g(m) = min
m=1,...,k

g(m); by (4) and (5), choosing s = zm,

we have: ∑
α∈Zk

p−{0}

|P̂n(α)|2 ≤
∑

α∈Zk
p−{0}

g(m). (6)
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Moreover, we have the following relation:

Zk
p − {0} =

⋃
∅6=S⊂{1,...,k}

YS ,

where, for any ∅ 6= S ⊂ {1, ..., k}:

YS =
{

α ∈ Zk
p − {0} : 〈ym, α〉 6= 0 (mod p), ∀ m ∈ S,

〈ym, α〉 = 0 (mod p), ∀ m /∈ S} .

Then, (6) implies: ∑
α∈Zk

p−{0}

|P̂n(α)|2 ≤
∑

∅6=S⊂{1,...,k}

∑
YS

g(m)

≤
∑

∅6=S⊂{1,...,k}

∑
YS

min
m∈S

(
1− 2µ(um)µ(vm) + 2µ(um)µ(vm)cos

(
2π

p
〈ym, α〉

))n−zm

. (7)

If ∅ 6= S ⊂ {1, ..., k}, reorder the set S in the following way:

S =
{
m1,S , ...,m|S|,S

}
, where mi,S < mj,S ⇔ i < j.

Then, for all h = 1, ..., |S|:

ymh,S
= Azmh,S (umh,S

−vmh,S
), where umh,S

,vmh,S
∈ supp µ, zmh,S

∈ {0, 1, ..., d− 1}.

Set yh,S ≡ ymh,S
, uh,S ≡ umh,S

, vh,S ≡ vmh,S
, and z = max

m=1,...,k
zm. Moreover, set:

ah,S =
〈
yh,S , α

〉
.

We have:∑
YS

min
m∈S

(
1− 2µ(um)µ(vm) + 2µ(um)µ(vm)cos

(
2π

p
〈ym, α〉

))n−zm

≤
∑
YS

min
h=1,...,|S|

(
1− 2µ(uh,S)µ(vh,S) + 2µ(uh,S)µ(vh,S) cos

(
2π

p
ah,S

))n−z

≤
∑

ah,S∈Zp−{0},
∀ h=1,...,|S|

|S|∏
h=1

(
1− 2µ(uh,S)µ(vh,S) + 2µ(uh,S)µ(vh,S) cos

(
2π

p
ah,S

))(n−z)/|S|

=
|S|∏

h=1

∑
ah,S∈Zp−{0}

(
1− 2µ(uh,S)µ(vh,S) + 2µ(uh,S)µ(vh,S) cos

(
2π

p
ah,S

))(n−z)/|S|
. (8)
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Note that −1 + cos x ≤ − 2
π2

x2, for all x ∈ [−π, π]. Furthermore, if ah,S ∈ Zp − {0}, we

can suppose:

ah,S ∈ Z∗ ∩
[
−p− 1

2
,
p

2

]
⇒ 2π

p
ah,S ∈ [−π, π].

Then, for all h = 1, ..., |S|:

∑
ah,S∈Zp−{0}

(
1− 2µ(uh,S)µ(vh,S) + 2µ(uh,S)µ(vh,S) cos

(
2π

p
ah,S

))(n−z)/|S|

≤ 2
∑

ah,S∈(Z∩[1, p
2 ])

(
1− 16

p2
µ(uh,S)µ(vh,S)a2

h,S

)(n−z)/|S|

≤ 2
∑

ah,S∈N∗

exp
(
− 16

kp2
µ(uh,S)µ(vh,S)(n− k + 1)a2

h,S

)
, (9)

since z ≤ d− 1 ≤ k − 1 and |S| ≤ k.

Let τ ∈ (0, 1) be such that 2τ3 + τ2 − 1 = 0 (⇔ τ3

1− τ2 =
1
2
), and set:

th,S = exp
(
− 16

kp2
µ(uh,S)µ(vh,S)(n− k + 1)

)
, c = max

h,S

−klnτ

16µ(uh,S)µ(vh,S)
.

Let c > c, N =

⌊√
k − 1
c− c

⌋
, p > N , and n ≥ cp2; then:

n− k + 1≥cp2 ⇒ th,S ≤ τ ,

from which

(9) = 2

 ∑
ah,S∈N∗

t
a2

h,S

h,S

 = 2

th,S+
∑

ah,S≥2

t
a2

h,S

h,S

 ≤ 2

th,S+
∑

ah,S≥2

t
2ah,S

h,S


= 2

(
th,S+

t4h,S

1− t2h,S

)
≤ 2th,S

(
1+

τ3

1−τ2

)
= 3th,S

by the definition of τ . Then:∑
ah,S∈Zp−{0}

(
1− 2µ(uh,S)µ(vh,S) + 2µ(uh,S)µ(vh,S) cos

(
2π

p
ah,S

))(n−z)/|S|

≤ 3exp
(
− 16

kp2
µ(uh,S)µ(vh,S)(n− k + 1)

)

⇒
|S|∏

h=1

∑
ah,S∈Zp−{0}

(
1− 2µ(uh,S)µ(vh,S) + 2µ(uh,S)µ(vh,S) cos

(
2π

p
ah,S

))(n−z)/|S|
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≤ 3|S| exp
(
−2αS(n− k + 1)

p2

)
, where αS =

8
k

|S|∑
h=1

µ(uh,S)µ(vh,S).

Moreover, from (7) and (8) we have:

∑
α∈Zk

p−{0}

|P̂n(α)|2 ≤ exp
(
−2α(n− k + 1)

p2

) k∑
|S|=1

 k

|S|

 3|S|

=
(
4k − 1

)
exp

(
−2α(n− k + 1)

p2

)
,

where α = min
∅6=S⊂{1,...,k}

αS = 8
kmin

h,S
µ(uh,S)µ(vh,S) = − ln τ

2c . Then, from (3) we have:

‖Pn − U‖2 ≤ 1
4

(
4k − 1

)
exp

(
−2α(n− k + 1)

p2

)
≤ 4k−1 exp

(
−2α(n− k + 1)

p2

)
,

from which

‖Pn − U‖ ≤ 2k−1 exp
(
−α(n− k + 1)

p2

)
. 2 (10)

Observe that, for k = 1, the bound (10) reduces to the following:

‖Pn − U‖ ≤ exp
(
− α

p2

)
,

that agrees with the one-dimensional case studied in [4] (case a = 1).

The following theorem proves that, if A has an eigenvalue of length 1, then O
(
p2
)

steps are also needed to reach the uniform distribution.

Theorem 3.3. Suppose that the matrix A has an eigenvalue λ ∈ C such that |λ| = 1

(hence, so does the matrix tA), that the support of µ is not parallel to a proper subspace

of Qk invariant under A, and that ‖Bn‖∞ ∈ L2 for all n ∈ N. Then, there exist γ, c ∈ R+

and N ∈ N such that, for all p ∈ N such that p > N , gcd(det(A), p) = 1, and for all

n ≤ cp2, we have:

||Pn − U || ≥ γ.

Proof. By assumption, there exists λ ∈ C such that tAα = λα, for some α ∈ Ck−{0}.
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Case 1: Re(α) 6= 0. From Lemmas 2.3 and 2.5, we have:

‖Pn − U‖ ≥ 1
2

∣∣∣P̂n(α)− Û(α)
∣∣∣ ≥ 1

2

(∣∣∣P̂n(α)
∣∣∣− ∣∣∣Û(α)

∣∣∣)
=

1
2

n−1∏
j=0

 ∑
h,i∈ZK

µ(h)µ(i) cos
(

2π

p

〈
h− i,t Aj Re(α)

〉)1/2

−

∣∣∣∣∣∣ 1
pk

∑
x∈Zk

p

exp
(

2πi

p
〈x,Re(α)〉

)∣∣∣∣∣∣
 .

Since cos x ≥ 1− x2

2
for all x ∈ R, we have:

n−1∏
j=0

 ∑
h,i∈ZK

µ(h)µ(i) cos
(

2π

p

〈
h− i,t Aj Re(α)

〉)1/2

≥
n−1∏
j=0

(
1−

ρ
∥∥tAj Re(α)

∥∥2

∞
p2

)1/2

, (11)

where ρ = 2π2k2
∑

h,i∈ZK

µ(h)µ(i) ‖h− i‖2
∞ ∈ R+.

Denote by α the vector whose components are the complex conjugated values of the

components of α; then:

tAα = tAα = λα = λα

⇒ tAj Re(α) = tAj α + α

2
=

λjα + λ
j
α

2

⇒
∥∥tAj Re(α)

∥∥2

∞ ≤
(‖α‖∞ + ‖α‖∞)2

4
.

Moreover, since Re(α) ∈ Rk−{0}, for all p > ‖Re(α)‖∞ we can suppose that Re(α) ∈
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Rk − (pZ)k; then, there exists j0 ∈ {1, ..., k} such that αj0 ∈ R− pZ, from which:∣∣∣∣∣∣ 1
pk

∑
x∈Zk

p

exp
(

2πi

p
〈x,Re(α)〉

)∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1
pk

k∏
j=1

 ∑
xj∈Zp

exp
(

2πi

p
xj Re(α)j

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
pk−1

∏
j∈{1,...,k}−j0

 ∑
xj∈Zp

exp
(

2πi

p
xj Re(α)j

)∣∣∣∣∣∣
∣∣∣∣∣∣1p

∑
xj0

∈Zp

exp
(

2πi

p
xj0 Re(α)j0

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣1p
∑

xj0
∈Zp

exp
(

2πi

p
xj0 Re(α)j0

)∣∣∣∣∣∣ =
∣∣∣1− (exp

(
2πi
p Re(α)j0

))p∣∣∣
p
∣∣∣1− exp

(
2πi
p Re(α)j0

)∣∣∣
≤

√
2

p

√
1− cos

(
2π
p Re(α)j0

) .

Observe that

lim
p→+∞

√
2

p

√
1− cos

(
2π
p Re(α)j0

) = lim
p→+∞

2
p · 2π

p Re(α)j0

=
1

π Re(α)j0

.

Then, for sufficiently large p and since α is an eigenvector of tA, we can suppose that∣∣∣∣∣∣ 1
pk

∑
x∈Zk

p

exp
(

2πi

p
〈x,Re(α)〉

)∣∣∣∣∣∣ ≤ 1
3 Re(α)j0

< 1,

from which

‖Pn − U‖ ≥ 1
2

(1−
ρ (‖α‖∞ + ‖α‖∞)2

4p2

)n/2

− 1
3 Re(α)j0

 .

Moreover, there exists d ∈ R+ such that 1 − x ≥ exp(−2x), for all x ∈ [0, d]. For

sufficiently large p, we can suppose that
ρ (‖α‖∞ + ‖α‖∞)2

4p2
∈ [0, d]; hence:

||Pn − U || ≥ 1
2

[
exp

(
−

ρ (‖α‖∞ + ‖α‖∞)2 n

4p2

)
− 1

3 Re(α)j0

]
.

Let c ∈ R+ be such that

exp (−c) >
1

3 Re(α)j0

and suppose that n ≤ cp2, where c =
4c

ρ (‖α‖∞ + ‖α‖∞)2
. Then, we have:

||Pn − U || ≥ 1
2

(
exp (−c)− 1

3 Re(α)j0

)
≡ γ ∈ R+.
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Case 2: Re(α) = 0. In this case, Im(α) ∈ Rk − {0}, tA Im(α) = λ Im(α), and so

λ ∈ {−1, 1}, which implies α ∈ Qk − {0}; then, there exists x ∈ Zk − {0} such that
tAx ∈ {−x,x}, and so, for all j ∈ N, tAjx ∈ {−x,x}. For all p > ‖x‖∞, we can suppose

that x ∈ Zk − (pZ)k; then, from Lemmas 2.3 and 2.5, we have:

‖Pn − U‖ ≥ 1
2

∣∣∣P̂n(x)
∣∣∣

=
1
2

n−1∏
j=0

 ∑
h,i∈Zk

µ(h)µ(i) cos
(

2π

p

〈
h− i, tAjx

〉)1/2

=
1
2

 ∑
h,i∈Zk

µ(h)µ(i) cos
(

2π

p
〈h− i,x〉

)n/2

.

By proceeding as in the proof of the previous case, we obtain the following formula,

analogous to (11):

||Pn − U || ≥ 1
2

(
1− δ

p2

)n/2

,

where δ = 2π2k2 ‖x‖2
∞

∑
h,i∈ZK

µ(h)µ(i) ‖h− i‖2
∞ ∈ R+. Finally, for all p sufficiently large:

||Pn − U || ≥ 1
2

exp
(
−δn

p2

)
.

Then, for all n ≤ cp2, we have:

||Pn − U || ≥ 1
2

exp (−δc) ≡ γ ∈ R+.

From the cases 1 and 2, we have the statement, with γ = min{γ, γ}. 2

4 Problems for further study

In this paper, we complete the study of the recursion (1) when the Markov chain {Xn}

ranges in Zk
p, but the study of the analogous recursion in Rk reduced modulo p, for some

real number p, is an open problem. Moreover, the sequence (1) can be generalized and

replaced by the following:

Xn+1 = f(Xn) + Bn (mod p), (12)

13



where f : Rk −→ Rk is a one to one function such that ‖f‖∞ < +∞.

We think that, by using the Fourier transform defined by an integral on Rk instead of

a sum on Zk or Zk
p, it is possible to generalize the lemmas in Sect. 2, and to prove the

convergence in law of the Markov chain (12) to the uniform distribution on some subset

of Rk (mod p), the set where the chain ranges. This set can be different from Rk (mod

p), and it can be also countable (for example, in the case where the recursion (12) reduces

to (1)), then it is necessary to develop a theory and to establish it. Another problem is to

estimate the rate of convergence of the Markov chain: the idea is to use the arguments of

functional analysis that generalize the theory of the eigenvalues and the eigenvectors of a

matrix.
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