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Abstract

We recall main facts about ordinal and cardinal numbers and a clas-
sification of topological spaces based on the convergence of sequences.
We give an example of a R-monolithic and weakly Whyburn space nei-
ther radial nor sequential nor Whyburn. We introduce the new notion
of essential sequence, giving some results.

1 Ordinal numbers

The concept of an ordinal number arises from the process of enumerating
things taking memory of the order followed in counting. In the realm of
ordinal numbers, even infinite ones, there is always the successor of every
number, but there will not always be a predecessor for infinite ordinals (and
0). According to von Neumann [vN], in ZF, an ordinal is the set of all its
predecessors. A common definition of an ordinal number is a set which is
transitive (a set A is transitive if a ∈ A implies a ⊆ A) and well ordered
(every nonempty subset has a least element) by the relation ∈. For example

0 = ∅
1 = {0}
5 = {0, 1, 2, 3, 4}
ω = {0, 1, . . . , n, . . .}

ω + 1 = ω ∪ {ω} = {0, 1, . . . , n, . . . , ω}.

The ordinal number ω is denoted also by ω0. Given an ordinal β its imme-
diate successor is β + 1 := β ∪ {β}. Every ordinal number α is of one of
these two types: successor (if α = β +1) or limit (if lacking of an immediate
predecessor, as ω). Between ordinals operations of addition, multiplication
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and exponentiation are defined (see for example [K]). Given a set A of ordi-
nals we define supA := ∪{α : α ∈ A}. One proves that sup A is an ordinal
number. Addition and multiplication are not commutative: for example
(ω + 1) + 1 = ω + 2 6= 2 + ω = sup{2 + n : n ∈ ω} = ω. And ω · 2 =
ω + ω = sup{ω + n : n ∈ ω}; instead 2 · ω = sup{2 · n : n ∈ ω} = ω 6= ω · 2.
And ω2 = ω · ω = sup{ω · n : n ∈ ω} 6= 2ω = sup{2n : n ∈ ω} = ω.
Remark that sup{n · ω : n ∈ ω} = ω, since n · ω = ω for all n ∈ ω; and
α · (β + γ) = α · β + α · γ but [K] not always (β + γ) · α = β · α + γ · α.
In Figure 1, taken from [W], one can recognize 0, 1, 2, . . . , ω, ω + 1, ω +
2, . . . , ω · 2, ω · 2 + 1, . . . , ω · 3, ω · 3 + 1, . . . , ω2, ω2 + 1, . . . , ω2 + ω, ω2 + ω +
1, . . . , ω2 + ω · 2, ω2 + ω · 2 + 1, · · · , ω3, · · · , ωω. The next ordinal, not shown
in figure, will be ωω + 1; and so on: . . . , ωω + ω, ωω + ω + 1, . . . , ωω +

ω2, . . . , ωωω
, . . . , ωωω...ω

, . . . , ε0, ε0 + 1, . . . This ε0 is the first ordinal α such
that α = ωα.
Every ordinal number α > 0 has [S] a unique Cantor normal form

α = ωβ1 · b1 + ωβ2 · b2 + . . . ωβn · bn,

where b1, b2, . . . , bn are positive integers numbers and α ≥ β1 > β2 > . . . >
βn ≥ 0 are ordinal numbers.

Figure 1: Ordinals up to ωω.
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2 Cardinal numbers

Also cardinal numbers extend natural numbers beyond finite sets, but the
idea of a cardinal number arises from the process of counting sets altogether,
without taking memory of order. The original idea of Cantor was to compare
two different sets by maps: two sets A,B have the same cardinality if there
is a one-to-one and surjective map f : A → B and in this case we say that
card (A) = card (B). Obviously this notion does not define the cardinality
of a set A. Naively, if we suppose the existence of the set of all sets it would
be sufficient to consider the equivalence relation of equal cardinality and
define the cardinality of a set A as the equivalence class of sets with the
same cardinality of A. But the naive point of view of considering the set of
all sets leads [R] to Russel’s paradox (or Barber paradox).
In the theory ZFC of Zermelo - Fraenkel with the Axiom of Choice, for
example, the problem is solved by means of ordinal numbers. Using the
Axiom of Choice (AC) every set D can be well ordered, and every well
ordered set is isomorphic to some ordinal number δ (i.e. there is an order
preserving bijection h : D → δ). So under AC every set has a bijection with
some ordinal number. The least ordinal δ0 which is in bijection with a given
set D is called the cardinality or cardinal number of D, denoted by card (D)
or by |D|. The first cardinal and ordinal numbers are natural numbers:
0 = card (∅), 1 = card ({0}), 2 = card ({0, 1}), . . . The first infinite cardinal
is the cardinality of N, denoted by ω or ω0 or ℵ0. As is well known, one can
prove that, though N ( Q, it is card (Q) = ω0, essentially by considering
the ”weight” n + m of

n

m
, with some attention to take care of negative

rational numbers and to avoid to enumerate twice rationals with different
representations. Already in 1638 Galilei observed [Ga] that N is in bijection
with its proper subset of squares.
By the Diagonal Argument of Cantor [C] one can show that there are infinite
sets of cardinality greater that ω0; in particular that card (R) > card (N).
There exists [H] a minimal cardinal bigger than ω0 denoted by ω1 (or ℵ1),
similarly the next cardinal is denoted by ω2 (or ℵ2) and so on. Since Cantor
showed that c := card (R) is bigger than ω0, and so c ≥ ω1, the problem
arises of where in the sequence of the ωα the cardinal c has to be placed.
Cantor tried to prove that c = ω1, without success. Gödel [G] proved in 1937,
by exhibiting the minimal model of ZFC, L, of constructible sets, that c can
be ω1 and in 1963 Cohen [Co], inventing the Method of Forcing, showed
that it can be greater than ω1. So the Cantor’s Continuum Hypothesis
(noted CH), c = ω1, is independent from axioms of ZFC. The current view
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is that c = ω2 could be a good choice [Wo]. There are infinite cardinals
since by Cantor’s Theorem card (P(E)) > card (E), for every set E, where
P(E) = {G : G ⊆ E} is the powerset of E.
Operations among cardinals are rather trivial if they concern addition and
multiplication. In fact, if κ := card (K), µ := card (M), with K ∩M = ∅, it
can be proved that κ⊕µ := card (K∪M) = max(κ, µ) = µ⊕κ. Analogously,
if κ := card (K), µ := card (M), κ⊗µ := card (K×M) = max(κ, µ) = µ⊗κ,
and distributivity holds. Note that ω ⊕ 1 = 1 ⊕ ω = ω = ω ⊕ ω = ω ⊗ ω.
But exponentiation of cardinals is highly non-trivial. If κ := card (K),
2κ := card (P(K)). In general, given two sets K and M , consider the
set of all maps f : M → K, which is denoted by KM or MK. If κ :=
card (K), µ := card (M), then κµ := card (MK). Since R is in bijection with
P(N), c = card (R) = 2ω.
The Generalized Continuum Hypothesis (GCH) affirms that ωα+1 = 2ωα .
Every ordinal is a set and so has a cardinality but even “enormous” ordinals
like ε0 are countable. Note that µκ is a very different operation if intended
as an ordinal or as a cardinal. The ordinal ωω is countable, but in cardinal
sense ωω = ℵℵ0

0 = 2ℵ0 = c > ω = ℵ0.
In the last decades the theory of cardinal numbers have been widely ex-
panded and employed in Set Theory (see for example [K, J]) and in Set-
Theoretic Topology (see for example [Av]). In Topology, the so called small
cardinals, a, b, d, . . ., play a very important role. The seminal article in this
field is The integers and topology by E. K. van Douwen in [Av].

3 Long Sequences and New Ideas

A sequence is a map S : N → X, where X is a set. To consider the concept
of convergence, X will be supposed a topological space. We can think of
N as represented by the ordinal ω. From this point of view it is immediate
to step from the ordinal ω to an arbitrary ordinal α. A long sequence is a
map S : α → X. If X is a topological space it is natural to say that the
(long) sequence S converges to a point x ∈ X if given a neighborhood U
of x, there is an ordinal δ such that for all ordinals η > δ we have xη ∈ U .
It can be interesting to find which (long) sequences converge in a given
topological space X. There are also spaces in which no sequence converges,
as βω (see for example [E]). Topological spaces in which usual sequences
suffice to determine the topology are called sequential spaces. Sequential
spaces belonged to the folklore of topology since its beginning, but were
first formalized in the Sixties in the papers of Dolcher [D], Franklin [F1, F2]
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and Novák [N]. In a sequential space X a notion of sequential closure can
be defined; given A ⊆ X, its sequential closure Â is {x ∈ X : there is a
sequence 〈xn〉n∈ω of elements of A which converges to x}. The sequential

closure of A can be iterated; Â0 := A, Âη+1 := ̂̂
Aη and Âη :=

⋃
β<η Âβ if

η is limit. In sequential spaces the least ordinal η such that Âη = A (the
topological closure of A) is called the sequential order of the sequential space.
If η = 1 then the space is called a Fréchet-Urysohn space. In general it can
be shown that η ≤ ω1. There are [AF] spaces that have every sequential
order up to ω1. Examples of compact Haudorff sequential spaces of every
sequential order up to ω1 where described [B, Ba, Ka] under CH, but it is
an open problem to find such example in ZFC or even with extra axioms
and the negation of CH. Some progress was obtained by Dow [D1, D2] and
the Authors [ST], under the Martin’s Axiom (MA) or at least b = c. We
recall that b is the least cardinal number of an unbounded subset of ωω.
In the sequel, topological spaces will be assumed to be Hausdorff. We re-
member a classification of topological spaces concerning convergent (long)
sequences. X is said to be radial if for every subset A ⊆ X and for every
x ∈ A there is a sequence 〈xα〉α<κ, with xα ∈ A which converges to x. The
space X is R-monolithic if for every subset A ⊆ X if B ⊆ A is closed for se-
quences of length not greater that |A|, then B is closed. It is pseudoradial if
for every non-closed subset A ⊆ X there is a point x ∈ A\A and a sequence
〈xα〉α<κ, with range in A, converging to x. Radial and pseudoradial spaces
are generalizations of Fréchet-Urysohn and sequential spaces respectively. A
space X is Whyburn if for every subset A ⊆ X, for every x ∈ A there is
a subset B ⊆ A such that B = B ∪ {x}; it is weakly Whyburn if for any
non-closed subset A ⊆ X there is some x ∈ A \A and a subset B ⊆ A such
that B = B ∪ {x}.

Proposition 1 There is a space which is R-monolythic, weakly Whyburn
and neither radial nor sequential nor Whyburn.

Proof. Let X := ω1 × (ω1 + 1) ∪ {∞}. The topology is the following: all
points of ω1 × ω1 are isolated, points of type 〈η, ω1〉 have a neighborhood
base of type Uδ := {〈η, ω1〉 : δ < η < ω1} while a base of neighborhoods of
the point ∞ are sets

Uε,f := {〈γ, δ〉 : ε < γ < ω1, f(γ) < δ ≤ ω1} ∪ {∞} , (1)

where f(γ) :]ε, ω1[→ ω1 is an arbitrary function. The space is not radial,
since if A := ω1 × ω1, then ∞ ∈ A, but any sequence in A cannot converge
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to the point ∞; in fact given any sequence S := 〈xα, yα〉α<ω1 , if for any
β < ω1 the cardinality of Yβ := {yα : xα = β} is not bigger than ω,
let f(β) := supYβ and then U0,f ∩ im S = ∅; if there is some β < ω1

such that |Yβ| = ω1 there is in Yβ a subsequence of S which converges to
〈β, ω1〉 6= ∞, a contradiction. By a similar proof it is easy to check that X is
Whyburn. Obviously the space is not sequential because if S := 〈xn, yn〉n∈ω

is a sequence in A, let ε := sup π1(S) and then Uε,0 ∩ im S = ∅. The space is
R-monolythic; in fact let A ⊆ ω1 × (ω1 + 1) and suppose that there is some
η < ω1 such that y ≤ η for all 〈x, y〉 ∈ A, then A = A and if B ⊆ A = A it
is closed; if there is not such an η, there are two cases: or there is α < ω1

such that 〈α, ω1〉 ∈ A or there is not such an α and A is closed. Observe
that if ∞ ∈ A then there must be ω1 many α < ω1 such that 〈α, ω1〉 ∈ A.
If not there is δ < ω1 such that ]δ, ω1[×{ω1} ∩ A = ∅ and so ∞ /∈ A. If
B ⊆ A and ∞ /∈ A, if B is ω1-sequentially closed, since the only converging
ω1-sequences are the one converging to some point 〈α, ω1〉 it must be closed.
If ∞ ∈ A and B ⊆ A is ω1 is sequentially closed and ∞ ∈ B then an ω1

sequence 〈αγ , ω1〉 converging to ∞ must be contained in B. So any B ⊆ A
if it is ω1-sequentially closed must be closed. This shows that the space is
R-monolythic. A similar proof shows that the space is weakly Whyburn. �

Remark 1 Theorem 3.8 in [BY] gives an example of a space which is R-
monolythic, weakly Whyburn and neither Whyburn nor radial (nor sequen-
tial).The space considered there is Cp(κ) where κ is an ω-inaccessible cardi-
nal (i.e. for every λ < κ, we have λω < κ). Our example is simpler.

Definition 1 We say that a κ-sequence 〈xα〉α<κ in a Hausdorff space is
essential if it is injective, converging and

{xα : α < κ} = {xα : α < κ} ∪ {x} , (2)

where x := lim xα. (It is not excluded x = xα for one α).

Proposition 2 Usual injective and converging ω-sequences are essential.

Proof. In fact if 〈xn〉n∈ω converges to a point x and y /∈ {x} ∪ {xn : n ∈ ω},
any neighborhood W of y disjoint from a neighborhood U of x contains only
a finite number of points of the sequence, and then y /∈ {xn : n ∈ ω}. �

Remark 2 Then the notion of essential sequence does not add anything
new to Fréchet-Uryson and sequential spaces. However, if the space is not
Hausdorff and sequences are usual countable sequences the notion of Defini-
tion 1 was introduced with the name of SC-spaces in [AW] and considered,
for example, in [Be, BC].
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Recall that a κ-sequence 〈xα〉α<κ converging to a point x is said a thin
sequence if for every λ < κ, x /∈ {xα : α < λ}[AIT, Ny].

Proposition 3 There are injective convergent sequences that are: (i) es-
sential and thin; (ii) essential and not thin; (iii) not essential but thin; (iv)
neither essential nor thin.

Proof. (i) Let xn := 1
n+1 , for n < ω. (ii) Let x0 := 0, xn := 1

n , for 0 < n < ω.
(iii) Let 〈xβ〉β<ω1 the sequence of successor ordinals in the set ω1 + 1. (iv)
The same as in (iii) except x0 := ω1. �

Definition 2 A topological space X is said to be essentially radial if for
every subset A ⊆ X and for every x ∈ A there is an essential sequence
〈xα〉α<κ, with xα ∈ A, which converges to x.

Proposition 4 (i) All Fréchet-Urysohn spaces are essentially radial spaces.
(ii) X := ω1 + 1, endowed with the topology where all points α < ω1 are
isolated and ]β, ω1] are fundamental neighborhoods of ω1, is an essentially
radial space. (iii) ω1 + 1 = ω1 ∪ {ω1} with the usual topology is a radial but
not essentially radial space.

Proof. (i) and (ii) are obvious. For (iii) let A := {β + 1 : β < ω1}. We
have ω1 ∈ A \ A, but if 〈βδ〉δ<ω1 is a sequence in A converging to ω1, the
closure of its image contains all limit ordinals γ < ω1. So no sequence in A
converging to ω1 can be essential. �
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Torino, Quaderno n. 13 (2007), 22 pp.

[Be] A. Bella, Remarks on the finite derived set property, Appl. Gen. Topol-
ogy, Vol. 6,1, (2005), 101-106.

[BY] A. Bella, I.V. Yaschenko, On AP and WAP spaces, Comment. Math.
Univ. Carolinae, 40 (1999), 531-536.

[C] G. Cantor,Uber ein elementare Frage der Mannigfaltigkeitslehre, Journ.
Deutsche Mathematiker-Vereinigung, Bd. I, S. 75-78 (1890-1)

[Co] P. Cohen, The independence of the continuum hypothesis, Proc. Nat.
Acad. Sci. U.S.A., 50 (1963), 1143–1148.

[D] M. Dolcher, Topologie e strutture di convergenza, (Italian) Ann. Scuola
Norm. Sup. Pisa (3) 14 (1960) 63–92.

[D1] A. Dow, On MAD families and sequential order.
See http://www.math.uncc.edu/ adow/Others.html under the title ”On
the sequential order of Compact spaces”.

[D2] A. Dow, Sequential order under MA, Topology Appl. 146-147(2005)
501-510.

[E] R. Engelking, General Topology, PWN- Polish Scientific Publishers,
(1977), Warszawa.

[F1] S.P. Franklin, Spaces in which sequences suffice, Fund. Math. 57
(1965) 107–115.

[F2] S.P. Franklin, Spaces in which sequences suffice. II, Fund. Math. 61
(1967) 51–56.

8
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