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Abstract

We considered a quatum oscillator in a Minkowski space-time endowed of noncommuting
spatial coordinate operators, namely [xi, xj ] = iλ2Θij . Time is still retained commutative.
We reproduced the noncommutative hamiltonian in terms of usual commutative coordinates.
Having in mind the scalar field theory we adopt the raising/lowering operator formalism. We
show that the noncommutativity induces energy level splitting.

Quantum Field Theory (QFT) and General Relativity (GR) can be considered among the most
successful physical theories for the agreement between theoretical predictions and experimental data
1. Nevertheless they are not free of problems and in particular that regarding the irregularity of their
short distance behavior is still unsolved. Various attempts of solutions one can find in literature
are mostly unsatisfactory for the introduction of further (and even worse) complications, while
on the other hand people advance the hypothesis that, mimicking quantum mechanics, a correct
’noncommutative’ formulation of these theories could furnish a natural cut-off i.e. a minimal length
λ able to cover QFT ultraviolet divergences and GR singularities. This is an explanation for the
increasing interest towards the so called noncommutative geometry, an old theme [3] common to
several sectors of theoretical physics [4] and recently reappeared in a context of string theory [5].

The noncommutative formulation of QFT can be achieved through two main different (but
equivalent) ways [6]: one by the introduction of the Moyal product on the space of ordinary func-
tions, the other by deforming the coordinate operator algebra into a noncommutative one. Central
at this stage is the study of the harmonic oscillator, as first step towards the noncommutative quan-
tization of field theories [7]: recently some authors have put in evidence that noncommutativity
manifests itself through redefinitions of various parameters and produces additional terms in the
Hamiltonian of the equivalent commutative description [8]. In this paper we follow an equivalent ap-
proach, but using the ’language’ of the second quantization: the noncommutative raising/lowering
operators ξi, ξ

†
i are built from a set of noncommutative coordinates xi and noncommutative mo-

menta yi. Furthermore we try to build a noncommutative scalar field theory, using what found
for the oscillator, in order to shed a bit of light in a formulation affected by the controversial
appearance of IR/UV mixing in NC Feynman diagrams.
∗nicolini@cmfd.univ.trieste.it
1The relative error of GR prediction for the measure of the revolution period of the binary pulsar Hulse Taylor PSR

1913+16 [1] is 10−14. Experimental data and QFT prediction of the value of the anomalous magnetic momentum of
the electron agree within a relative error of 10−11 [2].
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We start from the description of the noncommutative world through the coordinates xi and the
momenta yi satisfying extended commutator relations2

[xi, xj ] = iλ2Θij

[yi, yj ] = iλ−2Bij

[xi, yj ] = i1ij (1)

where λ is the minimal length and Θij , Bij are antisymmetric matrices. Having in mind the
noncommutative field theory it is useful to define the counterpart of the raising and lowering
operators

ξi =
mωxi − iyi√

2mω

ξ†i =
mωxi + iyi√

2mω
. (2)

subject to the following commutation relations one can get from (1)

[ξi, ξj ] = iTij[
ξ†i , ξ

†
j

]
= iTij

[
ξi, ξ

†
j

]
= i1ij + iSij (3)

with

Tij =
mωλ2Θij

2
− Bij

2mωλ2
(4)

and

Sij =
mωλ2Θij

2
+

Bij
2mωλ2

. (5)

At this stage we may try to define states and observables for physical systems defined through these
variables: the procedure requires a complete set of commuting observables, thing that is in contra-
diction with the noncommutative structure a priori deliberately introduced. A reasonable solution
to bypass this contradiction consists in postulating the existence of a transformation between the
set of noncommutative operators (ξ, ξ†) and an ordinary set of (η, η†), defined through a set of
canonically conjugate variables qi and pi as follows

ηi =
1√

2mω
(mωqi − ipi)

η†i =
1√

2mω
(mωqi + ipi) . (6)

and subject to the following relations

[ηi, ηj ] = 0[
η†i , η

†
j

]
= 0

[
ηi, η

†
j

]
= 1ij . (7)

2For sake of clarity we set h̄ = 1.
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Let’s suppose that the transformation law between those algebras is given by

ξi = ailηl + bilη
†
l

ξ†i = a†ilη
†
l + b†ilηl (8)

where a, b are N ×N transformation matrices, whose form is restricted by conditions they have to
satisfy i.e. by demanding that the commutation relations (3) and (7) be contemporary true. The
leads to the following conditions, written in matrix form

abT − baT = iT (9)
aTb− bTa = iT (10)
aa∗ − bb∗ = 1 + iS (11)

These equation determine the structure of the transformation law, which is established by fixing
the form of a and b.

As a specific model let’s choose noncommutative harmonic oscillator described by the Hamilto-
nian

H =
1
2

2∑

i=1

ω
(
ξ†i ξi + ξiξ

†
i

)
(12)

written in the so called ’abstract’ notation. Using eq.ns (3) one obtains

H = ω

(
1 +

2∑

i=1

ξ†i ξi

)
. (13)

Inserting (8) in the above Hamiltonian one finds its equivalent commutative form as

H = ω

[
1 +

∑

i

(
a†ilaijη

†
l ηj + b†ilaijηlηj + a†ilbijη

†
l η
†
j + b†ilbijηlη

†
j

)]
. (14)

Noncommutativity is responsible of the appearance of extra terms ηη, η†η† and ηη†. 2D represen-
tations for Θij and Bij are

Θij = θεij (15)
Bij = βεij (16)

so that T and S are

Tij = Tεij

Sij = Sεij (17)

with S, T , θ and β ordinary real numbers and εij the antisymmetric tensor. The number of elements
of the transformation matrices is eight while (9-11) furnishes six conditions; thus we are left with 2
unknown parameter;the simplest solution for the aformentioned equation is on the other hand and
it is necessary to impose the following form

ail =

(
a1 a2

a3 a4

)
(18)

bil =

(
0 b1
b2 0

)
(19)
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The solutions of the complete set of equations can be obtained putting

a11 = iα

a22 = −iα (20)

where α is a real number. Substituting back into (9-11) one is able to determine the complete set
of solutions

ail =

(
iα S/2α
S/2α −iα

)
(21)

bil =

(
0 T/2α

T/2α 0

)
(22)

with the condition on α
4α4 − 4α2 +

(
S2 − T 2

)
= 0. (23)

The Hamiltonian (12) can now be written in terms of commutative operators

H = ω

[(
1 +

T 2

2α2

)(
1 +

2∑

i=1

η†i ηi

)
+
ST

4α2

2∑

i=1

(
η2
i + η†i

2
)]

(24)

where H0 is formally the commutative counterpart of 12 (apart of an overall factor)

H0 = ω

(
1 +

T 2

2α2

)(
1 +

2∑

i=1

η†i ηi

)
(25)

while H1 is the perturbation due to the noncommutative structure of ξk’s

H1 =
ωST

4α

2∑

k=1

(
η2
k + η†k

2
)

(26)

The eigenvalues’ problem can be solved imposing the following relations

A =
1√
2

(η1 + iη2) (27)

B =
1√
2

(η1 − η2) . (28)

The new operators obey the same algebra as in (7), that is
[
A,A†

]
=
[
B,B†

]
= 1, (29)

all other commutators being zero. The Hamiltonian (24)in terms of A and B is

h = h0 + εh1 (30)

where the small letters are for the previous quantities divided by the factor
(
1 + T 2

2α2

)
and

h0 = ω + ω
(
A†A+B†B

)
(31)

h1 = 2ω
(
A†B† +AB

)
(32)
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with

ε =
ST

4α2

(
1 +

T 2

2α2

)−1

(33)

The eigenvalues of A†A and B†B are common nA, nB = 0, 1, 2 . . ., so that the eigenvalues of h0

are ω (nA + nB + 1), with eigenstates |nA, nB〉 belonging to Hilbert space. In the regime for which
T = S ' 0 we get from (23) that

α ' 1 (34)
ε � 1 (35)

and h1 can be properly called ’perturbation’. Such conditions for T and S can be obtained from
the supposed smallness of the minimal length λ i.e.

mωλ2θ � 1 (36)

and from the further condition
β

mωλ2
� 1. (37)

The latter can be relaxed, without loss of generality, in favor of a stronger one i.e.

β = 0 (38)

which leads to a commuting relations for the momenta yi. Having in mind the scalar field theory
it is well-known that one can achieve it from oscillators by means of the following substitution [9]

i −→ ki, (39)

where ki is the wave number vector component. Then the Hamiltonian (12) becomes the Hamilto-
nian of a scalar field

H =
∑

k

ω

(
1
2

+ ξ†kξk
)

(40)

where the sum now is intended as
∑

k

−→ (L/2π)(N−1)
∫
dN−1k (41)

with N is the space-time dimension Γ is the Euler function, L is the side of a space-like (N-1)-torus,
ω =

(
k2 +m2

)1/2, while the measure is defined onto the spatial components as follows

dN−1k =
N−1∏

i=1

dki. (42)

Noncommutativity generates ambiguity in the definition of the aforementioned measure and so the
condition (38) turns to be useful for a dual interpretation (oscillator/field) of the Hamiltonian (12).
In order to investigate the eigenspectrum of the transformed Hamiltonian (24), it is of advantage
to introduce [10]

φx =
1
2

(
A†B† +AB

)
(43)

φy =
1
2
i
(
A†B† −AB

)
(44)

φz =
1
2

(
A†A+BB†

)
. (45)
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and to define
φ0 ≡ 1

2

(
A†A−B†B

)
. (46)

Notice that

h0 = 2ωφz (47)
h1 = 4ωφx. (48)

The algebra of this spin-like operators is given by

[φx, φy] = iφz (49)
[φz, φy] = iφx (50)
[φx, φz] = iφy (51)

while
[φ0, φx] = [φ0, φy] = [φ0, φz] = 0. (52)

Be aware of the difference in sign in (50) and (51) with respect to the usual spin algebra. One
easily computes now that

φ2
z −

(
φ2
x + φ2

y

)
= φ2

0 −
1
4
. (53)

Of course φ2
0 commutes with φx, φy and φz. It is the only Casimir operator for the present algebra

(as the rank is unity). Further, let us conventionally introduce

j =
1
2

(nA − nB) , (54)

m =
1
2

(nA + nB) , (55)

and label the eigenstates of h0, φ0 and φz as

|jm〉 (56)

rather than |nA, nB〉. For the above relations one can see that these eigenstates are able to diago-
nalize the free Hamiltonian h0,

h0|jm〉 = 2ω
(
m+

1
2

)
|jm〉 (57)

E(0)
m ≡ 2ω

(
m+

1
2

)
(58)

while on the contrary do not coincide with the eigenvectors of h1, that can be studied only by
means of the perturbation theory. Therefore let assume

|jm〉 ≡ |ψ(0)
m 〉 (59)

for the unperturbed hamiltonian h0, while let |ψm〉 be the eigenstates for the full hamiltonian h

(h0 + εh1) |ψm〉 = Em|ψm〉. (60)
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Since h depends on ε, the eigenfunctions and eigenstates of h must also depend on ε. Thus |ψm〉
and Em can be expanded in power series with respect to ε

Em ≡ E(0)
m + εE(1)

m + ε2E(2)
m + . . . (61)

|ψm〉 = |ψ(0)
m 〉+ ε|ψ(1)

m 〉ε2|ψ(2)
m 〉+ . . . (62)

The following abbreviations were employed in the expansion.

E(k)
n ≡ 1

k!
∂kEn
∂λk

(63)

|ψkn〉 ≡
1
k!
∂k|ψn〉
∂λk

(64)

To obtain the energy En or wave function |ψn〉 of a system you merely sum the corrections. Ob-
viously the convergence of these power series becomes a key issue since the summations must be
truncated in practice.

In this paper we face the problem of formulating noncommutativity by means of coordinate
operator algebra deformation. We studied the consequence of this deformation on a simple but
crucial quantum system: the harmonic oscillator. We show, in the laguage of second quantization,
how the commutative free hamiltonian is perturbed by noncommutativity of the background space-
time manifold. Finally, we gave prescription for the study of noncommutative oscillator by means
od perturbation theory.
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