Prima prova scritta di Geometria 1, 7 febbraio 2019

- 1. Trovare le coordinate (o il vettore delle coordinate) del vettore (a,b,c) rispetto alla base $a^1=(1,1,1), a^2=(1,2,-1), a^3=(0,-1,1)$ di \mathbb{R}^3 . Trovare la matrice inversa della matrice A che ha a^1,a^2,a^3 come vettori colonna.
- 2. Sia V uno spazio vettoriale di dimensione finita, V^* lo spazio duale di V e $V^{**} = (V^*)^* = \text{Hom}(V^*, K)$ lo spazio biduale di V. Per $v \in V$, sia $\tau_v : V^* \to K$ definita da

$$\tau_v(\phi) = \phi(v),$$

per ogni $\phi: V \to K$ in V^* . Dimostrare che:

- i) $\tau_v: V^* \to K$ è lineare (e allora $\tau_v \in V^{**}$).
- ii) $\tau: V \to V^{**}$, definita da $\tau(v) = \tau_v$, è lineare.
- iii) $\tau: V \to V^{**}$ è un isomorfismo.
- 3. Sia $f: V \to U$ lineare, $W = \operatorname{Ker}(f)$ e $p: V \to V/W$ la proiezione p(v) = [v] sullo spazio quoziente V/W. Dimostrare che esiste esattamente un'applicazione $\bar{f}: V/W \to U$ tale che $f = \bar{f} \circ p$, e che \bar{f} è lineare e iniettiva.
- 4. Sia Vuno spazio vettoriale unitario di dimensione finita e $f:V\to V$ un endomorfismo anti-autoaggiunto, cioè

$$< v, f(w) > = - < f(v), w >,$$

per tutti $v, w \in V$. Dimostrare che:

- i) ogni autovalore di f è in $i\mathbb{R}$ (un numero immaginario puro o 0);
- ii) autovettori di autovalori distinti sono ortogonali;
- iii) la matrice di f rispetto a una base ortonormale di V è anti-hermitiana $(A = -^{t}\bar{A})$;
- iv) esiste una base ortonormale di autovettori di f.
- 5. Per la matrice ortogonale e unitaria

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix},$$

trovare una matrice unitaria S e la sua inversa tale che $S^{-1}AS$ sia diagonale (fare la verifica).

- 6. i) Siano $f, g: V \to V$ endomorfismi di uno spazio vettoriale V che commutano $(f \circ g = g \circ f)$. Sia $\operatorname{Aut}_f(\lambda)$ un autospazio di f. Dimostrare che $g(\operatorname{Aut}_f(\lambda)) \subset \operatorname{Aut}_f(\lambda)$.
- ii) Siano $f,g:V\to V$ automorfismi unitari di uno spazio unitario V di dimensione finita che commutano. Dimostrare che esiste una base ortonormale di V di autovettori comuni di f e g (cioè, f e g sono diagonalizzabili simultaneamente).

Seconda prova scritta di Geometria 1, 21 febbraio 2019

- 1. Sia $(v_i)_{i\in I}$ una base di uno spazio vettoriale V, per un insieme di indici I arbitrario, e siano $v_i^* \in V^*$ tali che $v_i^*(v_j) = \delta_{ij}$ (simbolo di Kronecker).
- i) Dimostrare che i vettori v_i^* , $i \in I$, sono linearmente indipendenti.
- ii) Dimostrare che i vettori v_i^* , $i \in I$, generano V^* se e solo se V ha dimensione finita.
- 2. i) Sia w_1, \ldots, w_m una base del sottospazio W di V e $w_1, \ldots, w_m, v_1, \ldots, v_r$ un prolungamento a una base di V. Dimostrare che $[v_1], \ldots, [v_r]$ è una base dello spazio quoziente V/W
- ii) Sia $f:V\to U$ lineare e $W=\mathrm{Ker}(f)$. Dimostrare che l'applicazione $\bar f:V/W\to U$, con $\bar f([v])=f(v)$, è ben definita, lineare e iniettiva.
- 3. i) Sia V uno spazio vettoriale di dimensione finita e $f: V \to W$ lineare. Dimostrare la formula di dimensione per applicazioni lineari: $\dim(V) = \dim(\operatorname{Ker} f) + \dim(\operatorname{Im} f)$.
- ii) Siano W_1 e W_2 sottospazi di V e $f: W_1 \times W_2 \to V$ l'applicazione definita da $f(w_1, w_2) = w_1 + w_2$. Dimostrare che f è lineare, poi determinare il nucleo e l'immagine di f e le loro dimensioni. Applicando la formula in i), cosa si ottiene?
- 4. Trovare se la matrice

$$A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- è diagonalizzabile o triangolarizzabile sui campi $K = \mathbb{R}$, \mathbb{C} , \mathbb{Z}_2 , \mathbb{Z}_7 e \mathbb{Z}_{13} . Se A è triangolarizzabile ma non diagonalizzabile, trovare la forma normale di Jordan di A.
- 5. Trovare la forma normale di Jordan della matrice A, in dipendenza dei parametri a,b e c, e una base di Jordan.

$$A = \begin{pmatrix} 1 & 1 & a & b \\ 0 & 1 & 1 & c \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- 6. i) Sia V uno spazio vettoriale sul campo K. Dimostrare che ogni funzione multilineare e alternante $D: V \times \ldots \times V = V^m \to K$ è banale se m > n = dim(V).
- ii) Sia v_1, \ldots, v_n una base di V. Dimostrare che una funzione determinante (multilineare, alternante) $D: V \times \ldots \times V = V^n \to K$, con $D(v_1, \ldots, v_n) = 1$, è unica (solo unicità: dedurre la formula di Leibniz).

Terza prova scritta di Geometria 1, 25 giugno 2019

- 1. Enunciare e dimostrare il teorema della determinazione di un'applicazione lineare su una base (unicità e esistenza).
- 2. i) Sia $f: V \to U$ un'applicazione lineare e $W = \mathrm{Ker}(f)$. Dimostrare che l'applicazione indotta $\bar{f}: V/W \to U$ definita da $\bar{f}([v]) = f(v)$ è ben definita, lineare e iniettiva.
- ii) Siano W_1 e W_2 sottospazi di uno spazio vettoriale V. Dimostrare che l'applicazione $f:W_1\to (W_1+W_2)/W_2$ definita da $f(w_1)=[w_1]$ è lineare e suriettiva, poi determinare il nucleo di f. Concludere che l'applicazione lineare indotta \bar{f} , definita come in i), è un isomorfismo tra $W_1/(W_1\cap W_2)$ e $(W_1+W_2)/W_2$.
- 3. Trovare la forma normale di Jordan della matrice A in dipendenza dei parametri a,b,c e d, trovando una base di Jordan e la matrice del cambiamento di base:

$$A = \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 1 & d \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- 4. i) Enunciare la disuguglianza di Cauchy-Schwarz per uno spazio unitario (complesso), poi dimostrare la disuguaglianza triangolare per la norma associata.
- ii) Dimostrare che le due diagonali di un parallelogramma equilatero (un rombo) in \mathbb{R}^2 sono ortogonali.
- 5. Dimostrare che

$$\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}: \mathrm{Hom}(V, W) \to \mathcal{M}(m \times n, K)$$

è un isomorfismo (lineare, iniettivo e suriettivo), dove $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}$ associa a un'applicazione lineare $f: V \to W$ la sua matrice $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(f)$ rispetto alle basi \mathcal{A} di V e \mathcal{B} di W.

Quarta prova scritta di Geometria 1, 9 luglio 2019

- 1. Sia v_1, \ldots, v_n una base di V, e siano $v_1^*, \ldots, v_n^* \in V^*$, con $v_i^*(v_j) = \delta_{ij}$.
- i) Dimostrare che v_1^*,\dots,v_n^* sono linearmente indipendenti.
- ii) Dimostrare che, per ogni $v \in V$, $v = v_1^*(v)v_1 + \ldots + v_n^*(v)v_n$.
- iii) Dimostrare che, per ogni $\phi \in V^*$, $\phi = \phi(v_1)v_1^* + \ldots + \phi(v_n)v_n^*$.
- 2. i) Sia $f: V \to W$ un'applicazione lineare di spazi vettoriali di dimensioni finite. Dimostrare che esistono basi \mathcal{A} di V e \mathcal{B} di W tali che la matrice $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(f)$ di f rispetto a queste basi è della forma $\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$.
- ii) Concludere che per ogni matrice A esistono matrici invertibili S e T tale che SAT è della forma in i).
- 3. Sia w_1, \ldots, w_m una base del sottospazio W di V e $w_1, \ldots, w_m, v_1, \ldots, v_r$ un prolungamento a una base di V. Dimostrare che $[v_1], \ldots, [v_r]$ è una base dello spazio quoziente V/W.
- 4. i) Determinare il numero di elementi (l'ordine) del gruppo generale lineare $GL(n, \mathbb{Z}_p)$ (le matrici invertibili $n \times n$ con coefficienti nel campo finito $K = \mathbb{Z}_p$, per un numero primo p). Poi elencare tutti gli elementi del gruppo $GL(2,\mathbb{Z}_2)$.
- ii) Elencare tutti gli elementi del gruppo simmetrico S_3 e del gruppo alternante A_4 (usare cicli per descrivere permutazioni).
- 5. Sia V uno spazio vettoriale unitario di dimensione finita e $f:V\to V$ un endomorfismo autoaggiunto. Dimostrare che:
- i) ogni autovalore di f è reale;
- ii) autovettori di autovalori distinti sono ortogonali;
- iii) la matrice di f rispetto a una base ortonormale di V è hermitiana;
- iv) esiste una base ortonormale di autovettori di f.

Quinta prova scritta di Geometria 1, 12 settembre 2019

- 1. i) Dato un elemento $\bar{a} \neq \bar{0}$ in \mathbb{Z}_p , per un numero primo p, dimostrare che l'applicazione $\phi : \mathbb{Z}_p \to \mathbb{Z}_p$, $\phi(\bar{x}) = \bar{a}\bar{x}$, è iniettiva.
- ii) Concludere che ogni elemento $\bar{a} \neq \bar{0}$ in \mathbb{Z}_p ha un elemento inverso rispetto al prodotto.
- iii) Trovare l'elemento inverso di $\bar{6}$ in \mathbb{Z}_{13} .
- iv) Trovare l'elemento inverso di 3+5i in \mathbb{C} .
- 2. i) Usando vettori e ortogonalità, dimostrare il teorema di Talete che l'angolo opposto al diametro di un triangolo iscritto in una semicirconferenza è un angolo retto.
- ii) Sia V uno spazio unitario (sul campo complesso \mathbb{C}). Utilizzando la disuguaglianza di Cauchy-Schwarz, dimostrare la disuguaglianza triangolare per la norma associata al prodotto scalare di V.
- 3. i) Sia v_1, \ldots, v_n una base ortonormale di uno spazio unitario V; dimostrare che, per ogni $v \in V$,

$$v = \langle v_1, v \rangle v_1 + \ldots + \langle v_n, v \rangle v_n.$$

- ii) Sia V uno spazio unitario di dimensione finita n. Dimostrare che V ha una base ortonormale (direttamente, senza usare il teorema di Gram-Schmidt).
- 4. i) Sia $f: K^n \to K^m$ un'applicazione lineare. Dimostrare che esiste una matrice $A = (a_{ij})$ (matrice $m \times n$) tale che $f = L(A): K^n \to K^m$ (l'applicazione lineare associata alla matrice A).
- ii) Sia A una matrice reale quadrata $n \times n$. Se esiste una base ortonormale \mathcal{B} di \mathbb{R}^n di autovettori di A, dimostrare che A è una matrice simmetrica.
- 5. i) Dimostrare che $m_g(\lambda) \leq m_a(\lambda)$, per ogni autovalore λ di un endomorfismo $f: V \to V$ di uno spazio vettoriale V di dimensione finita n.
- ii) Siano g, a e n numeri interi con $1 \le g \le a \le n$. Dimostrare che esiste una matrice quadrata $n \times n$ con un autovalore λ tale che $m_g(\lambda) = g$ e $m_a(\lambda) = a$.

Sesta prova scritta di Geometria 1, 26 settembre 2019

- 1. i) Dare la definizione della matrice $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(f) = (a_{ij})$ di un'applicazione lineare $f: V \to W$, rispetto a basi $\mathcal{A} = (v_1, \dots, v_n)$ di $V \in \mathcal{B} = (w_1, \dots, w_m)$ di W.
- ii) Dimostrare che

$$\mathcal{M}^{\mathcal{A}}_{\mathcal{B}}: \mathrm{Hom}(V,W) \to \mathcal{M}(m \times n,K)$$

è un isomorfismo (lineare, iniettivo e suriettivo), dove $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}$ associa a un'applicazione lineare $f: V \to W$ la sua matrice $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(f)$ rispetto alle basi \mathcal{A} di V e \mathcal{B} di W.

- 2. i) Dimostrare il teorema di Gram-Schmidt: Sia V uno spazio unitario di dimensione finita n, allora ogni base ortonormale v_1, \ldots, v_m di un sottospazio U di V si può prolungare ad una base ortonormale di V.
- ii) Dimostrare che $V=U\oplus U^\perp$ dove U^\perp denota il complemento ortogonale di U in V.
- 3. i) Sia $D: V \times \ldots \times V = V^n \to K$ un'applicazione multilineare e alternante; dimostrare che D è antisimmetrica.
- ii) Dimostrare che $D(v_{\sigma(1)},\ldots,v_{\sigma(n)})=\operatorname{segno}(\sigma)D(v_1,\ldots,v_n)$, per ogni permutazione $\sigma\in S_n$.
- 4. i) Sia v_1, \ldots, v_n una base di V. Dimostrare che un'applicazione lineare $f: V \to W$ è iniettiva se e solo se $f(v_1), \ldots, f(v_n)$ sono linearmente indipendenti.
- ii) Sia $f:V\to W$ un'applicazione lineare iniettiva di spazi vettoriali V e W di dimensioni finite. Dimostrare che esiste un'applicazione lineare $g:W\to V$ tale che $g\circ f=\mathrm{id}_V$.
- 5. i) Dimostrare che la molteplicità geometrica dell'autovalore λ di un blocco di Jordan associato a λ è uno.
- ii) Dati interi $n \ge m \ge 1$, dimostrare che esiste una matrice quadrata $n \times n$ che ha un unico autovalore λ di molteplicità algebrica n e di molteplicità geometrica m (dare un esempio esplicito di una tale matrice).