Esercizi Geometria 1, foglio 1 (ottobre 2018)

- 1. i) Sia V uno spazio vettoriale sul campo K e siano u, v e w tre vettori linearmente indipendenti in V. Dimostrare che anche $u+v, \ v-w$ e u+2w sono linearmente indipendenti.
- ii) Per quali $t \in \mathbb{R}$ i tre vettori (1,3,4), (3,t,11) e (-1,-4,0) sono linearmente indipendenti in \mathbb{R}^3 ?
- iii) Dimostrare che due vettori (a,b) e (c,d) in K^2 sono linearmente indipendenti se e solo se $ad bc \neq 0$.
- iv) Nello spazio vettoriale \mathbb{R} sul campo \mathbb{Q} , dimostrare che i vettori (numeri reali) 1 e $\sqrt{2}$ sono linearmente indipendenti, e anche $\sqrt{2}$ e $\sqrt{3}$.
- 2. Sia X un insieme, V un K-spazio vettoriale e Appl(X,V) l'insieme di tutte le applicazioni $f:X\to V$. Allora anche Appl(X,V) è uno spazio vettoriale, con la seguente somma e molteplicazione scalare:

$$(f+g)(x) = f(x) + g(x), (\lambda f)(x) = \lambda f(x),$$

 $f,g \in \operatorname{Appl}(X,V), \lambda \in K$. Considerando lo spazio vettoriale $\operatorname{Appl}(\mathbb{R},\mathbb{R})$ delle funzioni reali $f:\mathbb{R} \to \mathbb{R}, x \to f(x)$, dimostrare che ognuna delle seguenti famiglie di funzioni è linearmente indipendente in $\operatorname{Appl}(\mathbb{R},\mathbb{R})$:

$$(\cos(x), \sin(x));$$
 $(e^x, e^{2x});$ $(\cos(x), \sin(x), e^x),$ $(1, x, x^2, \dots, x^n).$

- 3. Sia V uno spazio vettoriale sul campo K e W un sottospazio di V. Si dice che due vettori v_1 e v_2 in V sono equivalenti modulo W, $v_1 \sim v_2$ se $v_1 v_2 \in W$.
- i) Dimostrare che questo definisce una relazione di equivalenza su V.
- ii) Se $[v] = \{u \in V : u \sim v\}$ denota la classe di equivalenza di v, dimostrare che [v] = v + W, dove $v + V = \{v + w : w \in W\}$.
- iii) Si denota con $V/W=\{[v]:v\in V\}$ l'insieme delle classi di equivalenza. Si definisce una somma e una molteplicazione scalare in V/W nel seguente modo:

$$[v_1] + [v_2] = [v_1 + v_2]; \quad \lambda[v] = [\lambda v].$$

Dimostrare che questa somma e molteplicazione scalare in V/W sono ben definite, ovvero non dipendono dalle scelte dei rappresentanti delle classi di equivalenza.

Osservazione. Con questa somma e molteplicazione scalare V/W diventa uno spazio vettoriale su K che si chiama lo spazio quoziente V mod W, oppure V su W.

- 4. i) Trovare gli elementi inversi, rispetto al prodotto, di tutti gli elementi non zero in \mathbb{Z}_{13} (questo gruppo ha 12 elementi, e si ottiene una versione del gruppo ciclico (\mathbb{Z}_{12} , +): perché?)
- ii) Trovare tutti gli elementi in \mathbb{Z}_{12} che hanno un inverso rispetto al prodotto. Questi elementi formano un gruppo con quattro elementi (rispetto al prodotto): costruire la tavola di molteplicazione di questo gruppo; perché non si trova una versione del gruppo ciclico (\mathbb{Z}_4 , +) con quattro elementi? (Invece si trova il prodotto $\mathbb{Z}_2 \times \mathbb{Z}_2$.)