Esercizi di Geometria 1, foglio 4 (ottobre 2018)

- 1. i) Siano $f,g:V\to W$ applicazioni lineari. Dimostrare che anche la somma $f+g:V\to W$ è lineare.
- ii) Siano $f:V\to W$ e $g:W\to U$ applicazioni lineari. Dimostrare che anche la composizione $g\circ f:V\to U$ è lineare.
- 2. Siano W_1 e W_2 sottospazi di uno spazio vettoriale V di dimensione finita, e sia $f: W_1 \times W_2 \to V$ l'applicazione $f(w_1, w_1) = w_1 + w_2$ (dove $W_1 \times W_2$ denota il prodotto di W_1 e W_2 definito in esercizio 2 del foglio 2).
- i) Dimostrare che f è lineare.
- ii) Descrivere il nucleo Ker(f) e l'immagine Im(f) di f: quale sono le loro dimensioni?
- iii) Applicare la formula di dimensione per applicazioni lineari per ottenere la formula di dimensione per sottospazi.
- 3. Per uno K-spazio vettoriale V, lo spazio vettoriale $V^* = \operatorname{Hom}(V, K)$ si chiama spazio duale di V, gli elementi di V^* (che sono applicazioni lineare $\phi: V \to K$) si chiamano $forme\ lineari\ di\ V$.
- i) Sia v_1, \ldots, v_n una base di V; per il teorema della determinazione di un'applicazione lineare su una base, esistono elementi v_1^*, \ldots, v_n^* di V^* tale che

$$v_i^*(v_j) = \delta_{ij}$$

(simbolo di Kronecker: 1 se i = j, 0 se $i \neq j$). Dimostrare che v_1^*, \ldots, v_n^* è una base di V^* (si chiama la base duale di v_1, \ldots, v_n).

ii) Dimostrare che, per ogni $v \in V$ e $\phi \in V^*$,

$$v = v_1^*(v)v_1 + \ldots + v_n^*(v)v_n,$$

$$\phi = \phi(v_1)v_1^* + \ldots + \phi(v_n)v_n^*.$$

- 4. Sia $(v_i)_{i\in I}$ una base di uno spazio vettoriale V, per un insieme di indici I arbitrario, e siano $v_i^* \in V^*$ tale che $v_i^*(v_j) = \delta_{ij}$ (simbolo di Kronecker).
- i) Dimostrare che i vettori v_i^* , $i \in I$, sono linearmente indipendenti.
- ii) Dimostrare che i vettori v_i^* , $i \in I$, generano V^* se e solo se V ha dimensione finita.