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Abstract

Usual error-correcting codes foil the stochastic noise of symmetric chan-
nels. In this paper we show that nothing like this holds for codes of DNA
word-design, as used for error-correction in biological computation; however,
such codes do foil a different form of non-stochastic noise based on similar-
ity/dissimilarity of structure between input and output strings, as definable
within the framework of possibilistic information theory, which is a belated
offshot of Shannon’s 1956 zero-error information theory.
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1. Introduction, with a reminder on distance-based codes

Think of strings of length n, e.g. binary strings, or quaternary strings
as are DNA strings, and assume that a “distance” is given which measures
the dissimilarity between each two of those strings. Error-correcting codes
(cf. e.g. [10, 13]) are constructed by fixing an integer threshold τ and tak-
ing as many strings as possible, with the constraint that each two strings
(codewords) must be at distance ≥ τ . While standard codes, as are those of
algebraic coding theory, are constructed by constraining the usual Hamming
distance dH(x, y), in DNA word design1 one resorts to “odd” string distances
of biological interest, as is dB(x, y) to be defined in (1).

Email addresses: luca@dmi.units.it (Luca Bortolussi), sgarro@units.it (Andrea
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1The codes of DNA word design are error-correcting codes used in biological computa-
tion, whose codewords are DNA strings; cf. e.g. [5].
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Below, we shall make the following convenient2 assumptions, which are
amply met by codes of interest:

• the space of input strings is (possibly weakly) included in the space of
output strings, and so an input string may be received unscathed

• the distance is a pseudo-metric on the output space (in practice: a met-
ric after “gluing” together strings which are at zero distance); without
real restriction3 we assume that the distances are consecutive integers.

An example, is the biological distance, used in DNA word-design when
the alphabet is quaternary (∧ denotes minimum, x and y are strings of length
n):

dB(x, y) = dH(x, y) ∧ dH(x, y∗)

= dH(x, y) ∧ dH(x, y∗) ∧ dH(x∗, y) ∧ dH(x∗, y∗) (1)

here y∗ is the reverse complement (complemented mirror-image) of y; in a
way, a string is at the same time itself and its reverse complement. We recall
that a complementation is a permutation of the letter alphabet with cycles
all of size 2, e.g. (A, T ), (C,G) in the DNA case on the alphabet {A,C,G, T}.
E.g. dB(ATTTA,GAGAT ) = dH(ATTTA,GAGAT )∧dH(ATTTA,ATCTC) =
5 ∧ 2 = 2. The metric distance dB can be defined on any alphabet of even
size endowed with a complement: it is precisely distance-codes based on such
a dB that are dealt with in this paper.

In the case of standard codes based on Hamming distances, sometimes a
stochastic matrix is put forward to explain why these codes can be used to
foil the corresponding stochastic noise: the matrix entries are the transition
probabilities from inputs to outputs which describe a memoryless stationary
symmetric channel, cf. e.g. [10, 13]. Decoding by maximum likelihood or by
minimum Hamming distance turns out to be the same, since the stochastic
matrix is equivalent to the distance matrix, in the sense that it is a strictly

2Actually, this framework might be readily enlarged, e.g. to include non-metric dis-
tances as is the “bad” distance hinted at in Section 3; cf. [11], [12]. To avoid trivial
specifications, we assume that the letter-alphabet has size at least 2, and that all our
matrices are not constant and have at least two rows.

3As will become apparent, only order matters, rather than actual values, and so, basi-
cally, our tools are defined only up to monotone transformations.
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monotone decreasing function thereof (a transition probability increases if
and only if the corresponding string distance decreases). The stochastic
matrix describing the symmetric channel, which is of course equivalent to
the matrix of Hamming-distances, is usually passed off as an exhaustive
description of the relevant noisy channel over which codewords are sent: in
a way, the stochastic matrix is the channel noise.

In Section 2 we readily show that no equivalent stochastic matrix exists
for the error-correcting codes of DNA word design based on constraining dB.
However, in Section 3 we show that this does not imply that one has to give
up the notion of channel noise as required in a full-fledged Shannon-theoretic
approach to coding, provided one is ready to relinquish stochastic noise in
favour of possibilistic noise, a form of noise, as explained below, Section 3,
based on the (dis)similarity of the strings involved. A short comment follows
in Section 4 on new approaches to information theory which are based on
structure and patterns rather than randomness.

2. The negative theorem

Equivalence as specified above is basically a problem of linear program-
ming, which it has been dealt with in [2]. In the sequel the following obvious
necessary condition for equivalence will do, whose proof is straightforward (a
vector strictly dominates another when in each position it has a larger entry,
and at least one inequality is strict):

Lemma 1. Take two rows of a distance matrix and re-arrange their respec-
tive entries in non-decreasing order. If one of them strictly dominates the
other, the two rows do not have any stochastic equivalent.

In the case of DNA word design, the input space is formed only by strings
constrained to have a degree of self-hybridisation dH(x, x∗) larger than a
specified threshold, and so is properly included in the output space of all
n-length strings.

Lemma 2. The maximal possible value achieved by the degree of self-hybridisation
is the string-length n.

Proof: For n even, take any x made up of two halves which are the mirror
image of each other; for n odd proceed in the same way, just insert any letter
at position (n+ 1)/2.
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Theorem 1. Take dB(x, y) as in (1), n ≥ 2. There are two strings x and y
with no equivalent couple of stochastic rows; x and y can be constrained to
have degree of self-hybridisation ≥ n− 2.

Proof: Say (a, t) is a cycle of the complementation. For n = 2 take x = aa
and y = at. One has dB(x, z) = 0, 1, 1, 0 and dB(y, z) = dH(y, z) = 1, 0, 2, 1
for z = aa, at, ta, tt. So, for n = 2 one may resort to Lemma 1. For n > 2
just take x = aua and y = aut, where u is any infix-sequence of maximal
degree of self-hybridisation n− 2 (use Lemma 2).

In practice, all of this means that we have to give up the Shannon-theoretic
notion of channel noise in the case of DNA word design, at least if we in-
sist that channel noise be constrained to have a stochastic nature. A few
additional comments are found in the provisos at the end of Section 3.

3. Possibilistic vs. probabilistic noise

Rather than giving up the Shannon-theoretic notion of channel noise in
the DNA case, we shall resort to an alternative non-stochastic approach to
coding, namely to a generalisation of Shannon’s zero-error information the-
ory, dubbed possibilistic information theory for reasons explained below. The
possibilistic approach is based on similarities/dissimilarities of structure be-
tween input and output strings, rather than transition probabilities.

The basic elements of possibilistic error-correcting codes follow below.
Preliminarily, observe that a distance d as in Section 1 serves two distinct
purposes: i) it is used in decoding, where one minimises input-output dis-
tances, and ii) it is also used in the construction of the codebook when one
selects input codewords which are distant enough from each other. At least
for the moment being, we will have to keep apart these two roles, and so,
to avoid confusion, we shall use the term dissimilarity for role i) and distin-
guishability for role ii). When discussing below the inverse problem, we shall
make it clear when and how these notions fall back to one, as is often the
case in practice. We use the letter d to denote dissimilarities, since these and
distances as in Section 1 are quite akin; the notational ambiguity will turn
out to be venial.

• The noisy channel, which is entirely specified by a dissimilarity matrix,
whose entries d(x, z) are dissimilarities between input strings x (row
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headings) and output strings z (column headings). We shall safely as-
sume that any string x can be received unscathed over the channel, and
that the dissimilarity between x and itself is zero; to no real restriction,
we shall assume that dissimilarities are consecutive integers.

• A codebook C, or simply a code, i.e. a non-void subset of input strings
called codewords.

• The distinguishability δ(x, y) between inputs x and y:

δ(x, y)
.
= min

z
max [d(x, z), d(y, z)] (2)

(the minimum is taken over all outputs z) and the the minimum dis-
tinguishability of the codebook C

δ(C) .
= min

x 6=y, x,y∈C
δ(x, y) (3)

The latter minimum singles out the most “critical” codeword couple in
C; as done in combinatorics, any minimising z as in (2) will be called
a centre of the set {x, y}.

• Optimal codes: once the integer threshold ρ is chosen, construct maximum-
size codes with guaranteed minimum distinguishability ρ, i.e. with
δ(C) ≥ ρ.
Equivalently, one might resort to the complementary notions of simi-
larities and confusabilities, rather than dissimilarities and distinguisha-
bilities, cf. [8], [12]. One soon proves the following reliability criterion,
cf. [12]:

• Reliability criterion. Once the output string z is received, decode to
an input codeword4 x which minimises the dissimilarity d(x, z) between
input and output: if the input string x was such that d(x, z) < δ(C) the
decoding is successful; instead, there is at least an input/output couple
with d(x, z) = δ(C) which brings about a decoding error.

The criterion will certainly look familiar to coding theorists, but we stress
that there is an important novelty with respect to distance-based codes as in

4In case of ties, one might decide to declare a detected error, instead; cf. Addendum 5.
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Section 1: codebooks are now constructed by checking the distinguishability
δ(x, y) between inputs, the latter having been computed from the dissimilar-
ities d(x, z) between inputs and outputs. If one takes binary dissimilarities,
0 = similar, 1 = dissimilar, one re-obtains Shannon’s zero-error codes as in
[8], where, as well-known, one has to carefully keep apart the two roles of
dissimilarities and distinguishabilities (analogously: of similarities and con-
fusabilities). In the original Shannon’s probabilistic approach an input is
similar to an output when the corresponding transition probability is posi-
tive, however small it may be.

When one wants to accommodate distance-based codes as in Section 1
into the possibilistic framework, the following inverse problem arises, since
one has to make sure that constraining distances or constraining distinguisha-
bilities amounts in practice to the same thing:

Inverse problem: When a codebook has been constructed using a generic
distance d as in Section 1, can this be interpreted to be a dissimilarity as in
this Section, i.e. can one provide a possibilistic noisy channel (a dissimilarity
matrix between inputs and outputs) such that the corresponding distinguisha-
bility function between inputs, which serves purpose ii), is that distance d, or
at least is a monotonic function thereof?

Solving the inverse problem amounts to understand whether one is dealing
with error-correcting codes such as to comply with the Reliability criterion;
if the solution is negative, the codebook is just a nice combinatorial object.

In DNA word design one decodes by minimising the distance dB(x, y);
taking this as our dissimilarity, the distinguishability δB(x, y) is soon com-
puted to be d1

2
dB(x, y)e, a friendly expression which is analogous to the one

for Hamming distances, δH(x, y) = d1
2
dH(x, y)e, and which largely trivialises

the distinction between distance, dissimilarity and distinguishability in stan-
dard coding and in DNA coding, at least a posteriori, after having computed
explicitly δ. By constraining the distance dB as in Section 1 or the distin-
guishability δB as in the possibilistic frame one obtains the same family of
error-correcting codebooks when τ is odd (just take ρ = d τ

2
e). Now, code-

books with dH(C) or dB(C) ≥ τ with τ even are not needed if one insists
on hard decoding, as done so far, when giving up decoding in critical situa-
tions is prohibited: the thresholds τ and τ + 1 give optimal codes with the
same error-correction capabilities, but the latter constraint on size is looser.
However, no distance-codebooks get lost if one takes into account also soft
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decoding, cf. Addendum 5.
In general, the distinguishability δ derived from an integer pseudo-metric

dissimilarity d over the output space is readily shown (cf. [12]) to belong5 to
the interval: ⌈d(x, y)

2

⌉
≤ δ(x, y) ≤ d(x, y) (4)

We stress once more that having a generic “distance” between strings
as in Section 1 is not enough to have a corresponding possibilistic noisy
channel, since the inverse problem might have no solution. In [1] we have
taken into account the “non-metric distance” dC(x, y) = dH(x, y∗) for x 6= y,
else 0, since it had been used6 in the literature on DNA word design: the
answer to the inverse problem is no in the case of these artificial codebooks
based on dC , which are so devoid of error-correcting capabilities. To avoid
misunderstandings, this is not due to the non-metric nature of dC : already in
Shannon’s zero-error theory one has examples galore of spotless possibilistic
channels based on distances/dissimilarities which are definitely unruly from
a metric point of view, and crassly violate the triangle inequality, cf. the case
of Shannon’s (and Lovász’) pentagon [8].

While the situation with the usual Hamming distance dH and the artifi-
cial non-metric distance dC is clear-cut (dH works, dC does not), the situation
with our dB is intriguing. The corresponding distance-based codes, as dealt
with in the literature on DNA word design, do not appear to admit of stochas-
tic noisy channels such as to support their use, but they perfectly fit into the
more “easy-going” possibilistic framework, and so foil possibilistic noise.

MV-logics versus probabilities.. Why choose the attribute “possibilistic”, rather
than, say, “[dis]similarity-based” or “multi-step”? Possibility theory is a
form of multi-valued (MV) logic, based on specifying degrees of possibility
of events, and it is considered an adequate way of dealing with incomplete
knowledge in several situations when the usual probabilistic tools appear to
miss the mark. The reader is referred to standard texts on possibility theory,
e.g. [7], while he is referred to [11] for possibilistic information theory. Even
if arisen only as a formal game where probabilistic tools are replaced by the

5The upper bound holds uniformly if the metric distance is a ultrametric, cf. [12]. Cf.
Section 4 for an unruly case.

6Even if, fair to say, for mere reasons of combinatorial bounding, since distance-codes
for dC are subsets of proper DNA distance-codes based on dB .
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corresponding ones as available in possibility theory, possibilistic informa-
tion theory has proven to properly accommodate all the relevant Shannon-
theoretic notions of source and channel coding, inclusive of (possibilistic)
source entropy and (possibilistic) channel capacity; reliability criteria as ours
above may be re-phrased in terms of error possibilities. Here we shall simply
recall that stochastic matrices of transition (conditional) probabilities from
an input string to an output string are replaced by possibility matrices of
transition possibilities. While in a stochastic matrix the sum of each row is
equal to 1, in a possibility transition matrix it is the maximum in each row
which is constrained to be 1. In practice, if one starts from dissimilarity
matrices as ours (in each row there is at least a 0), one soon constructs an
equivalent possibility matrix of normalised similarities, which specifies the
“possibilistic noise” of the channel. In our case one may resort to the tran-
sition possibilities from input x to output z (we are mimicking the notation
for conditional probabilities):

Poss{z|x} = 1 − 1

n
dB(x, z) (5)

The “degree of possibility” (5) specifies that the possibility of the transition
decreases as long as the dissimilarity between input and output (between
their corresponding “patterns”) increases.
Possibilistic information theory turns out to be just a multi-step generalisa-
tion of Shannon’s zero-error information theory, for which cf. [8]; the latter
admits of two steps only, 0 = the transition is impossible, 1 = the transi-
tion is possible, without intermediate degrees of possibility. All the relevant
notions of the enlarged theory, from codeword distinguishability (or, com-
plementarily, codeword confusability) to possibilistic capacity (a multi-step
generalisation of zero-error capacity) go back to Shannon; in Shannon’s two-
step case the distinguishability between two inputs is 0 if and only if there
is a common output accessible by both of them, else is 1: use formula (2).
Take e.g. the famous Shannon-Lovász pentagon [8] for n = 1: inputs and out-
puts are the vertices of a pentagon, transition possibilities between distinct
vertices are 1 or 0 according whether they are adjacent or not; the corre-
sponding dissimilarities are the 1-complements of the transition possibilities;
distinguishabilities are equal to dissimilarities, save that they are 0 when
two non-adjacent vertices have a third vertex adjacent to both of them. In
this time-honoured example both dissimilarities and distinguishabilities (the
two “competitors” for the role of distances as in Section 1) sorely violate the
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triangle inequality.

A few provisos.. Going back to Section 1, some might object that matrix
equivalence is too strict a requirement: actually, decoding by maximum like-
lihood or minimum distance (dH or dB, respectively) depends on each single
column of the stochastic matrix, or of the distance matrix, while comparisons
between entries in two distinct columns are not needed for decoding. Even
if the mathematical problem of understanding when such “weakly” equiva-
lent matrices exist is of interest, and might add further light to the problem
of stochastic noise, we deem that a mere column-wise equivalence would be
rather artificial, since it would not be robust with respect to alternative de-
coding rules which might be to the point e.g. when the channel output is
so damaged, so “poorly” observable, that one has to deal with several ob-
servable outputs at the same time. Instead, fully equivalent matrices always
return the same answer to each possible decoding rule which depends only
on the relative ordering between distances/dissimilarities.
Fair to say, already in the usual Hamming case what really matters is not
transition probabilities as such (who ever cares to estimate them?), but only
their strict monotonic dependence on Hamming distances; the symmetric
channel just serves to show that in principle a stochastic model for standard
Hamming-distance codes does exist.
Other distances, which are more complex and perhaps biologically more sig-
nificant, have been used in the code constructions of DNA word design; how-
ever, dB as here is complex enough, due to (complemented) mirror-imaging
as in definition (1), to exhibit strong domination as required to apply Lemma
1.

4. Conclusion

The expression for dissimilarities is not always so user-friendly as is the
case for dH and dB: cf. [6] for the case of an important string metric, called
Spearman footrule or rank distance, where the distinguishability takes its val-
ues in the whole interval (4), inclusive of its two extremes. This shows that
keeping apart the roles of distinguishabilities and distances/dissimilarities
may be of paramount importance also outside Shannon’s zero-error the-
ory: the multi-step possibilistic theory proves to be a very general Shannon-
theoretic frame for dealing with usual and unusual forms of coding.
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Quantification of structural information is one of the three great challenges
for half-century-old computer science, as was pointed out by Fr.P. Brooks
jr. in [3]. Possibilistic information theory, both source coding and channel
coding, based as it is on structures and patterns rather than probabilities,
which might be hard or impossible to estimate, or even meaningless, may
prove to be a small step towards this objective. The possibility degree (5)
simply expresses the fact that a transition is easier to occur when the input
and the output string are similar according to a criterion of structural simi-
larity considered to be adequate for DNA strings. The temptation to replace
“easier to occur” or “having a higher degree of possibility” by “more likely”
or even by “more probable” is strong, but then one would fall back into the
shackles of probability theory.

5. An addendum on detected errors

In this addendum, the decoder will declare a detected error in case of
ties (soft decoding); up to now, we had been dealing with undetected er-
rors only (hard decoding). Dealing with detected errors may be rather awk-
ward in Shannon’s zero-error theory (which actually does not mention error-
detection), and so it is a fortiori in the multi-step possibilistic theory, at least
in the absence of suitable metric assumptions.

Say δ(C) is the minimum distinguishability (3) of codebook C and go back
to the Reliability criterion of Section 3: if one adopts soft decoding, nothing
new happens with respect to hard decoding if the dissimilarity d(x, z) of the
observed output z from the actual input x is < δ(C). Now, assume that the
codebook C has the following property:
• whatever the codewords x and y with “critical” distinguishability δ(x, y) =
δ(C) and whatever their centre z as in (2) one has d(x, z) = d(y, z)[ = δ(C)]
If it is so, whenever d(x, z) = δ(C) the soft decoder declares a detected error.

In a metric, or pseudo-metric, space the triangular inequality soon implies
the following property:

Lemma 3. Given x and y in a pseudo-metric space, if a centre z as in (2)
is equidistant from x and y, so is any other centre.

In the topology based on the pseudo-metric dB a convenient property holds,
which is shared with Hamming distances dH :
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Proposition 1. Given x and y, their centres z are equidistant from x and
y if and only if dB(x, y) is an even integer.

Proof: For dB(x, y) even, assume without real restriction dB(x, y) =
dH(x, y) and take z centre of x and y with respect to dH : dH(x, y) being
even, z has the same Hamming distance 1

2
dH(x, y) from both x and y. Were

it not dB(x, z) = dH(x, z) and dB(z, y) = dH(z, y) one would violate the tri-
angular inequality for dB; recall that dB ≤ dH and that dB(x, y) = dH(x, y).
Proceed in a similar way for dB(x, y) odd to find a centre z which is not
equidistant. Use lemma 3.

In practice,7 when τ is an even integer, soft decoding allows to detect errors
of “weight” d(x, z) = τ/2 by constraining the minimum distance dB between
codewords to be ≤ τ , precisely as happens in the standard Hamming case.
This implies that no codebooks go lost, as happens if one insists on hard
decoding, cf. above footnote 5.
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