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Abstract. This paper illustrates some work in progress on 3-dimensional

transportation problems,of format r×s×t say. Following Conti and Traverso, a

suitable Gröbner basis is sought for, which is hard to be calculated by means of

Buchberger algorithm. A different approach involving graph theory makes the

calculation tractable when r = s = t = 3 (and in fact whenever 3 ∈ {r, s, t}).

Introduction
The aim of this paper is to illustrate some work in progress on 3-dimensional

transportation problems.
A typical problem of this kind goes as follows. Given r production facilities

F1 . . . Fr, let aik (i := 1 . . . r, k := 1 . . . t) denote the number of units of an indivisible
good produced by Fi during the k-th month of a fixed period of t months. Assume
that there are s outlets O1 . . . Os each one demanding a certain number of units per
month, say bjk (j := 1 . . . s, k := 1 . . . t). If cijk stands for the cost associated with
transporting one unit from Fi to Oj during the k-th month, one wishes to minimize
the total cost of transportation during the whole period of t months.

In mathematical terms, one wishes to solve the integer programming problem
associated with the matrix A whose columns are

{eij ⊕ e
′

ik ⊕ e
′′

jk | 1 ≤ i ≤ r, 1 ≤ j ≤ s, 1 ≤ k ≤ t},

where {eij} (resp., {e
′

ik} ; resp., {e
′′

jk} ) stands for the canonical basis of the Z-

module of r × s (resp., r × t ; resp., s × t) integer matrices.
For 3-dimensional transportation problems see e.g. [Vl] and [St, Chapter 14].
It is well known that integer programming problems as above can be solved by

a method first suggested by Conti and Traverso (cf. [CT]), which resorts to the
calculation of suitable Gröbner bases (for more information about this method we
refer the reader to the survey papers [HT] and [T]).

More precisely, if IA denotes the toric ideal canonically associated with the
matrix A described before, then one needs to find the reduced Gröbner basis of IA
relative to some appropriate term order.
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Since it would be hard to use Buchberger algorithm in order to compute such
a reduced Gröbner basis, we show in this paper how to perform a calculation along
a different route. It is a route involving the use of graph theory.

As for the specific results we obtain, we give a complete description in case
r = s = t = 3, which in turn outlines a strategy for every case such that 3 ∈ {r, s, t}.
We tend to believe that no essential change takes place when 3 /∈ {r, s, t}, but the
combinatorics looks much less manageable.

1. Preliminaries

In this section we collect some material on graphs, which is going to be used
later. (For basic definitions and notation cf. e.g. [B].)

Definition 1.1. Let G be a graph and C := v0v1 . . . vn be a path of G. If e is
an edge of C, we call parity of e relative to C the integer

pC(e) := d − p,

where d is the number of times e occurs in C in odd position, and p is the number
of times e occurs in C in even position.

Example 1.2. C := v0v1v2v3v0v1; e := {v0v1}; pC(e) = 2 − 0 = 2.

We often write p(e) instead of pC(e), when there is no ambiguity.

Proposition 1.3. Let G be a bipartite graph and C be a path of G. Then C
is closed if, and only if, for every vertex v of C one has

(1.1)
∑

e∈C,v∈e

p(e) = 0.

Proof. Assume that (1.1) holds. If C were not closed, then vo 6= vn (notation
as in Definition 1.1). It would follow

∑

e∈C,vn∈e p(e) 6= 0, for ei−1 in odd(even)

position in C implies ei in even(odd) position. Assume now that C is closed; since
G is bipartite, C has even length. Let v be a vertex of C, e and edge containing v.
If e is in odd position in C, v can be taken as the first vertex of C (i.e., v = v0),
and e as the first edge of C. As C has even length, it follows that the “last” edge
of C is in even position and contains v. A similar argument works if e is in even
position (“last edge of C”). Thus (1.1) holds. �

We denote by AG the incidence matrix of G. The rows of AG are indexed by
the vertices of G, its columns by the edges, and

av,e :=







1 if e contains v

0 otherwise.

Definition 1.4. Given a closed path C of G, for every edge e of G we set

Ce :=







0 if e /∈ C

p(e) if e ∈ C.

We say that (Ce)e∈E is the “sequence associated to C” (Here E stands for the
set of edges of G).
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Example 1.5. Let G := K3,2, whose edges we index by {1, 2, 3}×{1, 2}. Let C
be the closed path pictured bellow (the dotted edges being those in even position):

1 2 3

1 2

Figure 1

Then: C11 = 0, C12 = 0; C21 = 1, C22 = −1; C31 = −1, C32 = 1. That is,
(0, 0, 1,−1,−1, 1) is the sequence associated with C.

Proposition 1.6. Let G be a bipartite graph.

(a): If C is a closed path of G, then the sequence (Ce)e∈E associated with C
is an element of KerZ(AG).

(b): If (de)e∈E is in KerZ(AG), then there exists at least a closed path of
G, whose associated sequence is precisely (de)e∈E.

Proof.

(a): Let v ∈ V := V1 ∪ V2. By Proposition 1.3, one gets:
∑

e∈E

av,eCe =
∑

e∈E,v∈e

Ce =
∑

e∈C,v∈e

p(e) = 0.

(b): If (de)e∈E is zero, there is nothing to prove. Assume that there exists
e1 ∈ E such that de1

> 0; written e1 = {v, v′} (v ∈ V1, v′ ∈ V2), we set
v0 := v, v1 := v′ and think of e1 as of the first edge of the path. Since
(de)e∈E ∈ KerZ(AG), it follows that

∑

e∈E,v1∈e

de = 0.

Recalling de1
> 0, there must be some e2 6= e1 such that v1 ∈ e2 and

de2
< 0. Call v2(∈ V1) the further vertex of e2, and iterate the argument.
We notice that v4 may coincide with v0; in such a case, one can choose

e5 = e1 only if de1
≥ 2.

�

Example 1.7. Let G := K3,3, with V1 = {1, 2, 3} and V2 = {4, 5, 6}. KerZ(AG)
contains the sequence:

d14 := −2, d15 := 1, d16 := 1; d24 := 0, d25 := 2, d26 := −2; d34 := 2, d35 := −3, d36 := 1.

As in the proof of Proposition 1.6, one can build the path

C = 153416253625341.
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It is pictured right below (the dotted edges being in even position):

1 2 3

4 5 6

Figure 2

2. The graph Gr×s×t

In this section we define a special graph of particular importance for what
follows. Let r := {1, 2, . . . , r}, s := {1, 2, . . . , s}, t := {1, 2, . . . , t}, where r, s, and
t are positive integers. Consider the two disjoint sets

V1 := r × s and V2 := r × t.

We denote by Gr×s×t the graph having V := V1 ∪ V2 as set of vertices, and
E := {eijk|i ∈ r, j ∈ s, k ∈ t} as set of edges where

eijk = {(i, j) ∈ V1, (i, k) ∈ V2}.

Example 2.1. r := 3, s := 2, t := 3. Gr×s×t is the graph:

(1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2) V1

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) V2

Figure 3

Proposition 2.2. The following hold:

(a): Gr×s×t is a bipartite graph, with vertex classes V1 and V2.

(b): For every i ∈ r, the subgraph K
(i)
s,t of Gr×s×t induced by the set of

vertices
V ′ := Vi1 ∪ Vi2 ,

with Vi1 := {i} × s and Vi2 := {i} × t,

turns out to be isomorphic to the complete bipartite graph Ks,t.
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(c): Gr×s×t = rKs,t (disjoint union of r copies of Ks,t).

Proof. Obvious. �

Definition 2.3. For every choice of i, i′ in r, of j in s, k in t, we say that the
edges eijk and ei′jk are parallel.

We remark that ei′jk = ϕ(i,i′)(eijk), where

ϕ(i,i′) : K
(i)
s,t → K

(i′)
s,t

is the isomorphism defined by means of

ϕ(i,i′)(i, j) := (i′, j) ∀j ∈ s

and of

ϕ(i,i′)(i, k) := (i′, k) ∀k ∈ t.

3. Gr×s×t and 3-dimensional transportation problems

In this section we give a new approach to 3-dimensional transportation prob-
lems by means of the graph Gr×s×t. Let A be the matrix whose columns are

{eij ⊕ e
′

ik ⊕ e
′′

jk | i ∈ r, j ∈ s, k ∈ t},

where {eij} stands for the canonical basis of the Z-module of r × s integer matri-

ces (denoted by Z
r×s), {e

′

ij} stands for the canonical basis of Z
r×t (r × t integer

matrices), and {e
′′

jk} for the canonical basis of Z
s×t.

The integer programming problem associated with A is called “3-dimensional
transportation problem” (cf. e.g. [Vl], [St]). The corresponding toric ideal to be
studied is IA := Ker(ΠA), where:

ΠA : K[xijk] → K[uij , vik, wjk];

xijk 7→ uijvikwjk

here i ∈r, j ∈s, k ∈t, and K is any field.
Think of A as of the matrix of the morphism

Z
r×s×t → Z

r×s ⊕ Z
r×t ⊕ Z

s×t

u 7→ Au

where Z
r×s×t stands for the Z-module of 3-dimensional matrices of format r×s× t.

It is well known (cf. e.g. [St]) that if < is any term order on K[x] := K[xijk], then

In<(IA) = In<(B),

where B := {xu+

− xu−

|u ∈ KerZ(A)} ⊆ IA, and In<(B) stands for the ideal
generated by all initial terms In<(f) with f ranging in the (infinite) set B.

A finite set Gr ⊆ IA is a Gröbner basis for IA with respect to < if, and only if,
In<(f) ∈ In<(Gr) for every f ∈ B. Here below, we use Gr×s×t to give a description
of B which will prove helpful for the study of Gröbner bases in the next two sections.

Definition 3.1. Let S := (C1, C2, . . . , Cr) be an r-tuple satisfying the follow-
ing properties:
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(1): For every i = 1, . . . , r, either Ci = ∅ or Ci is a closed path of the

subgraph K
(i)
s,t of Gr×s×t.

(2): Whenever an edge e occurs in Ci in odd (resp., even) position, there
exists an edge e′ parallel to e occurring in even (resp., odd) position in
some Ci′ .

We call S an admissible r−tuple of closed paths of Gr×s×t.

Example 3.2. Consider G3×3×3. If C1, C2, C3 are like in the picture below,
(C1, C2, C3) is admissible (as usual, the dotted edges are in even position).

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) (1,2)

C1

(1,3) (2,1) (2,2)

C2

(2,3) (3,1) (3,2)

C3

(3,3)

Figure 4

Example 3.3. Again consider G3×3×3. If C1, C2, C3 are like in the picture
below, (C1, C2, C3) is NOT admissible. For instance, the edge e311 occurs twice in
C3 in even position, but there is just one edge parallel to it (namely, e211) occurring
in odd position (in C2). Other “bad” edges are e212, e221 and e222.

(1,1) (1,2) (1,3) (2,1)

e211

(2,2) (2,3) (3,1)

e311

(3,2) (3,3)

(1,1) (1,2)

C1

(1,3) (2,1) (2,2)

C2

(2,3) (3,1) (3,2)

C3

(3,3)

Figure 5
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Remark 3.4. Although any closed path can be obtained by “patching cycles
together”(and this remark suggests another proof of Proposition 1.6 (a)),it is not
true that an admissible r-tuple of closed paths can always be written as a “sum” of
admissible r-tuple of cycles. This following picture provides an example.

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) (1,2)

C1

(1,3) (2,1) (2,2)

C2

(2,3) (3,1) (3,2)

C3

(3,3)

Figure 6

Definition 3.5. Let S := (C1, C2, . . . , Cr) be an admissible r-tuple of closed
paths of Gr×s×t. For every (i, j, k) ∈ r × s × t, we set

aijk :=







0 if eijk does not occur in Ci

p(eijk) if eijk occurs in Ci,

where p(eijk) stands for the parity of p(eijk) relative to Ci.
We say that (aijk) is the sequence associated with S.

Remark 3.6. Since eijk occurs in K
(i)
s,t , eijk can only occur in Ci.

The following theorem links Gr×s×t to KerZ(A), where A is the matrix of the
3-dimensional transportation problem introduced at the beginning of this section.

Theorem 3.7. The following hold:

(a): Let S := (C1, C2, . . . , Cr) be an admissible r-tuple of closed paths of
Gr×s×t, and let a:= (aijk) be its associated sequence. Then a∈ KerZ(A).

(b): If b:= (bijk) is in KerZ(A), then there exists at least one admissible
r−tuple of closed paths of Gr×s×t, whose associated sequence coincides
with b.

Proof.

(a): Let A
K

(i)
s,t

be the incidence matrix of the subgraph K
(i)
s,t . We index

the columns of A
K

(i)
s,t

by all pairs (j, k) ∈ s×t, and its rows by all pairs
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(i, j) ∈ {i}×s and (i, k) ∈ {i}×t. It is clear that a′
i

:= (a′
ijk

)(j,k)∈s×t

belongs to KerZ(A
K

(i)
s,t

) if, and only if, one gets:

(3.1)











∑t

k=1 a′
ijk

= 0 for every j = 1, . . . , s

∑s

j=1 a′
ijk

= 0 for every k = 1, . . . , t.

For if α(i,j)(j′,k) is the generic entry of row (i, j) in A
K

(i)
s,t

, i.e.

α(i,j)(j′,k) :=







0 if j′ 6= j

1 if j′ = j ,

then

∑

(j′k)∈s×t

α(i,j)(j′,k)a
′
ij′k

=

t
∑

k=1

a′
ijk

.

And if α(i,k)(j,k′) is the generic entry of row (i, k) in A
K

(i)
s,t

, then

∑

(j,k′)∈s×t

α(i,k)(j,k′)α
′
ij′k′

=

s
∑

k=1

a′
ijk

.

Let us consider now the sequence a associated with S. For every i
such that Ci 6= ∅, the subsequence ai := (aijk)(j,k)∈s×t is associated with
Ci in the sense of Definition 1.4. Hence Proposition 1.6(a) says that
ai ∈ KerZ(A

K
(i)
s,t

), and (3.1) holds. Since for every i such that Ci = ∅, 3.1

holds, too, we have shown that the sequence a associated with S satisfies
the following:

(3.2)







∑t

k=1 aijk = 0 for every i = 1, . . . , r and every j = 1, . . . , s

∑s

j=1 aijk = 0 for every i = 1, . . . , r and every k = 1, . . . , t.

In order to complete the proof of (a), it remains to show that:

(3.3)
r

∑

i=1

aijk = 0 for every j = 1, . . . , s and every k = 1, . . . , t.

Let j, k be such that there exist i verifying aijk 6= 0; then, by def-

inition, Ci 6= ∅ and eijk occurs in Ci with parity aijk. Without loss of
generality, we may assume that aijk > 0, i.e., eijk occurs in Ci in odd
position at least aijk times. Since S is admissible, whenever eijk occurs in
Ci in odd position, there is some ei′jk occurring in Ci′ in even position;

hence
∑r

i=1 aijk = 0, and (3.3) follows. This completes the proof of part

(a).
(b): Thanks to what we have seen at the beginning of the proof of part (a),

if b∈ KerZ(A), then the subsequence bi := (bijk)(j,k)∈s×t ∈ KerZ(A
K

(i)
s,t

)
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for every i. For b∈ KerZ(A) implies that for every i,

t
∑

k=1

bijk = 0 for every j = 1, . . . , s

s
∑

j=1

bijk = 0 for every k = 1, . . . , t.

Applying Proposition 1.6(b) to A
K

(i)
s,t

, it follows that for every i, there is

a closed path Ci of K
(i)
s,t such that bi is its associated sequence. If bi =0,

we set Ci = ∅.
It remains to show that the r−tuple S := (C1, . . . , Cr) is admissible.

Without loss of generality, we may assume that eijk occurs in Ci in odd
position; by the construction of Ci (recall the proof of Proposition 1.6), it
follows that bijk > 0, and bijk is precisely the number of times eijk occurs
in Ci in odd position. Since b∈ KerZ(A), we also have that

∑r

i=1 bijk = 0,
hence, whenever eijk occurs in Ci in odd position, there is some ei′jk (i′ 6=
i) occurring in Ci′ in even position (-bi′jk times, since bi′jk is negative).

�

Remark 3.8. The r−tuple S = (C1, . . . , Cr) constructed in the proof of The-
orem 3.7(b) has the property that every edge of Ci either is always in odd position
(“odd edge”), or is always in even position (“even edge”). Hence, from now on, we
always assume that our admissible r−tuples have such a property.

Example 3.9.

(1): The sequence associated with (C1, C2, C3) of Example 3.2 looks like this
(write ijk instead of aijk):

111 is 1 211 is 1 311 is -2
112 0 212 -1 312 1
113 -1 213 0 313 1
121 -2 221 2 321 0
122 0 222 -2 322 2
123 2 223 0 323 -2
131 1 231 -3 331 2
132 0 232 3 332 -3
133 -1 233 0 333 1

It is easy to check that it belongs to KerZ(A).

(2): r=s=t=3; take the following element of KerZ(A):
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111 is 1 211 is -2 311 is 1
112 0 212 0 312 0
113 -1 213 2 313 -1
121 0 221 1 321 -1
122 -1 222 0 322 1
123 1 223 -1 323 0
131 -1 231 1 331 0
132 1 232 0 332 -1
133 0 233 -1 333 1

The corresponding admissible (C1, C2, C3) constructed in Theorem 3.7(b) is:

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) (1,2)

C1

(1,3) (2,1) (2,2)

C2

(2,3) (3,1) (3,2)

C3

(3,3)

Figure 7

Theorem 3.7 and Remark 3.8 should have clarified by now the relationship

between Gr×s×t and B = {xu+

− xu−

|u ∈ KerZ(A)}, which is summarized in the
following (obvious) corollary.

Corollary 3.10. Let us associate the variable xijk with the edge eijk of

Gr×s×t, and viceversa. Then, given xu+

− xu−

∈ B, there exists an admissible
r−tuple S := (C1, . . . , Cr) of closed paths of Gr×s×t such that every edge of Ci is
always in odd (even) position, and such that u+ is given by the parities of all odd
edges of S, u− by the parities of all even edges. Conversely, given an admissible

r−tuple, a binomial xu+

− xu−

∈ B is obtained defining u+ and u− as above.

Definition 3.11. Let S := (C1, . . . , Cr) be an admissible r−tuple of closed
paths of Gr×s×t. Two paths Ci and Ci′ (i 6= i′) are called anti-isomorphic if they
only contain parallel edges with opposite parities.

Example 3.12. The following paths of G3×3×3 are anti-isomorphic.
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(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) (1,2)

C1

(1,3) (2,1) (2,2)

C2

(2,3) (3,1) (3,2)

C3

(3,3)

Figure 8

Proposition 3.13. Let S := (C1, . . . , Cr) be an admissible r−tuple of closed
paths of Gr×s×t.

(a): Either Ci = ∅ for every i, or there are at least two nonempty paths.
(b): If there are exactly two nonempty paths, then they are anti-isomorphic.

Proof.

(a): If Ci 6= ∅, then there is an edge eijk of positive parity. The admissibility
of S implies that there is at least an edge ei′jk (i 6= i′) of negative parity.
Hence Ci′ 6= ∅, too.

(b): Obvious.

�

Notice that if S := (C1, . . . , Cr) is an r−tuple of closed paths of Gr×s×t, and
for every nonempty path Ci there is a path Ci′ (i 6= i′) such that Ci and Ci′ are
anti-isomorphic , then S is admissible.

Let us now introduce in the set r × s × t the lexicographic order <lexdefined
by:

(i, j, k) <lex (i′, j′, k′)

if and only if the first non-zero component of the difference vector is negative.
Then K[xijk] is endowed with the pure lexicographic term order <Lexsuch that:

xijk <Lex xi′j′k′ ⇔ (i, j, k) <lex (i′, j′, k′).

As a first application of the material above, we show how to get in a different
way a result by Sturmfels (cf. [St, Chapter 14]).

Proposition 3.14. Let r = 2, and s, t any integers ≥ 2. The binomials asso-
ciated with pairs of anti-isomorphic cycles of G2×s×t form a reduced Gröbner basis
of IA relative to <Lex.

Proof. Let Gr be the set of all binomials associated with pairs of anti-isomorphic
cycles. Clearly, Gr ⊆ B (cf. remark after Proposition 3.13). As mentioned at the

beginning of this section, it suffices to show that In<Lex
(xu+

− xu−

) ∈ In<Lex
(Gr)

for every xu+

− xu−

∈ B.
It follows from Corollary 3.10 and Proposition 3.13 that we need only consider

all pairs of anti-isomorphic closed paths of G2×s×t. Let S := (C1, C2) be such a pair.
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We order the edges of C2 according to the order of the corresponding variables. Let
e be the maximum edge occurring in C2. Starting with e, we can move along at
least one cycle D2 whose edges are also edges of C2. Since C1 and C2 are anti-
isomorphic, C1 must contain a cycle D1 anti-isomorphic to D2. And Corollary 3.10
ends the proof. �

Example 3.15. Let S be the following pair of anti-isomorphic closed paths of
G2×3×3:

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3)

e

(1,1) (1,2)

C1

(1,3) (2,1) (2,2)

C2

(2,3)

Figure 9

where the edges in odd position (the ones which are not dotted) determine In<Lex

of the associated binomial xu+

− xu−

.
A corresponding pair (D1, D2) is:

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3)

e

(1,1) (1,2)

D1

(1,3) (2,1) (2,2)

D2

(2,3)

Figure 10

Going back to the statement of Proposition 3.14, we point out that, since
r = 2 implies A of Lawrence type (cf. [St, Proposition 14.11]), it follows from [St,
Theorem 7.1] that the set of all binomials associated to pairs of anti-isomorphic
cycles of G2×s×t also provides the universal Gröbner basis of IA, as well as the
Graver basis of A, and a minimal set of generators of IA (cf. [St, Corollary 14.12]).
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We end this section by observing that what we have done in it for rKs,t works
equally well from sKr,t and tKr,s. Hence, for instance, Proposition 3.14 holds for
every Gr×s×t such that 2 ∈ {r, s, t}.

4. r-tuples of cycles

The description of the set B given in Section 3 by means of the graph Gr×s×t

allows us to tackle the study of the reduced Gröbner basis of IA relative to the
term order <Lex.

In fact we are going to give a complete description of that basis in the case
r = s = t = 3, but it will be obvious from the proof that the same strategy applies
whenever 3 ∈ {r, s, t}. We suspect that also when 3 /∈ {r, s, t}, no essential change
takes place, but the combinatorics involved looks harder.

We are going to proceed in the following way: we describe the basis elements
in this section; we show that they are indeed a basis in Section 5. As expected, our
basis in the case 3×3×3 turns out to be a subset of the universal basis obtained by
Sturmfels by means of “a brute force computation in MACAULAY” ([St, Theorem
14.13]).

Definition 4.1. Let < be a term order in K[x], and S := (C1, . . . , Cr) an
admissible r-tuple of (not all empty) closed paths of Gr×s×t. We call maximum edge
of S (relative to <) every edge eijk of Gr×s×t such that xijk occurs in the maximum
term of the binomial associated with S.

If we index V1(Ks,t) by elements of s, and V2(Ks,t) by those of t, then for every
i ∈ r, an isomorphism

ϕi : K
(i)
s,t → Ks,t

is defined by means of

ϕi(i, j) := j for every j ∈ s

ϕi(i, k) := k for every k ∈ t.

Definition 4.2. Let < be a term order in K[x], and S := (C1, . . . , Cr) an
admissible r-tuple of (not all empty) closed paths of Gr×s×t.

We call associated configuration of S relative to <, written AC<(S), the mul-
tiweighted subgraph of Ks,t described as follows:

(1): an edge of Ks,t belongs to AC<(S) if it coincides with ϕi(eijk) for some
i and some maximum edge eijk.

(2): the multiweight associated with an edge e of AC<(S) is the set of all
indices i such that ϕi(eijk) = e for some maximum edge eijk.

We say that an edge e of AC<(S) weighs i in order to indicate that i occurs in
the multiweight of e.

Proposition 4.3. The followings hold:

(a): If v is a vertex of AC<(S), then there are at least two edges incident
on v.

(b): If e is an edge of AC<(S), and its multiweight has cardinality h, then
1 ≤ h ≤ r − 1.
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Proof. Let xu+

− xu−

be the binomial associated with S; without loss of

generality we may assume that In<(xu+

− xu−

) = xu+

. Then the maximum edges
of S are those in odd positions (recall Corollary 3.10).

From now on, we identify with their images all vertices and edges transformed
by isomorphisms ϕi.

(a): Let e be an edge incident on v. If e weighs ı, e is an edge of Cı in odd
position. Since Cı is closed and Remark 3.8 holds, there is an even edge
e′ 6= e of Cı which is incident on v. Since S is admissible, it follows that
exists an edge e′′ parallel to e′ and occurring in odd position in some Ci′

with i′ 6= ı. This means that e′′ is an edge of AC<(S) incident on v and
different from e.

(b): h cannot be r since otherwise e would be odd in every Ci.

�

Example 4.4. Recall the admissible (C1, C2, C3) described in Example 3.2. Its
associated configuration relative to <Lex is as follows:

•

{1,2}
{3}

{3}

•

{2}
{3}

{1}

•

{1,3}
{3}{2}

• • •

Figure 11

(As in the proof of Proposition 4.3, we assume that the maximum edges are
those in odd positions.)

Definition 4.5. An admissible r-tuple of (not all empty) closed paths of
Gr×s×t, S := (C1, . . . , Cr), is called an r-tuple of cycles if every nonempty Ci turns

out to be a cycle of K
(i)
s,t .

Proposition 4.6. Let < be a term order in K[x], and S an r-tuple of cycles.

(a): If v is a vertex of AC<(S), and two edges e and e′ are incident on v,
then the multiweight of e has an empty intersection with the multiweight
of e′.

(b): If r = 3, every edge of AC<(S) has multiweight of cardinality 1.
Proof.

(a): If both e and e′ weighed i, then Ci would contain two different edges
incident of v, either both even or both odd. But this is impossible, for Ci

is a cycle of a bipartite graph.
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(b): It follows from Proposition 4.3(b) that every edge as multiweight of
cardinality at most 2. Suppose that e is an edge with multiweight of
cardinality exactly 2; {1, 2}, say. Assuming that the maximum edges are
odd, there must exist in C3 and edge e′, parallel to e, which occurs twice
in even position; hence C3 (6= ∅) cannot be a cycle: contradiction.

�

In the remaining part of this section, we assume r = s = t = 3 and, for
the triplets of cycles of G3×3×3, characterize all possible associated configurations
relative to <Lex that will be needed in Section 5, when dealing with the reduced
Gröbner basis of IA.

Given a triplet of cycles of G3×3×3, say S, the underlying graph of AC<Lex
(S) is

a subgraph of K3,3. We assume V1(K3,3) = {v1, v2, v3} and V2(K3,3) = {v4, v5, v6}.
If v is a vertex of AC<Lex

(S), we say that its weight is the sum of the weights
of all edges incident on v (recall Proposition 4.6(b)).

Corollary 4.7. Let v be a vertex of AC<Lex
(S).

(a): There are either two or three edges incident on v.
(b): If there are three edges incident on v, the weight of v is 6. If there are

two edges incident on v, the weight of v can be 3, 4, 5.
Proof.

(a): Obvious.
(b): Proposition 4.6 implies that three edges incident on v have weights

given by a permutation of 1, 2, 3, while two edges incident on v can have
weights 1, 2 or 1, 3 or 2, 3.

�

Proposition 4.8. Let S := (C1, C2, C3) be a triplet of cycles of G3×3×3 such
that Ci = ∅ for some i.

(a): The two cycles other that Ci are nonempty and anti-isomorphic, of
length either 4 or 6.

(b): AC<Lex
(S) has underlying graph a cycle of K3,3 of length either 4 or

6, whose vertices all weigh either 3, or 4, or 5.
(c): Conversely, if C is a cycle of K3,3 of length either 4 or 6, whose vertices

all weigh either 3, or 4, or 5, there exists a unique triplet of cycles, S :=
(C1, C2, C3), such that Ci = ∅ for some i and AC<Lex

(S) = C. The latter
equality assigns a precise weight to every edge of C.

Proof.

(a): It follows from Proposition 3.13 that the two cycles other that Ci

are nonempty and anti-isomorphic. In particular, they must have equal
lengths. But a cycle of K3,3 can just have length either 4 or 6.

(b): We only prove the case below (all the other cases being similar):
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(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

e

(1,1) (1,2)

C1

(1,3) (2,1) (2,2)

C2

(2,3) (3,1) (3,2)

C3

(3,3)

Figure 12

According to our conventions, e is a maximum edge, hence the non-
dotted edges are those belonging to the maximum monomial. It follows
that AC<Lex

(S) looks like this:

v1 v2

{2}{3}

v3

{2} {3}

v4 v5 v6

Figure 13

The vertices v2, v3, v4 and v5 all weigh 5.
(c): We only prove the case below (all the other cases being similar):

v1

4
v2

4
v3

4

4
v4

4
v5

4
v6

Figure 14

In the triplet S := (C1, C2, C3) we wish to construct (if it exist), the edge v3v5

must necessarily be a maximum edge relative to <Lex, belonging to the nonempty
Ci with maximum index (since the two nonempty cycles must be antiisomorphic).
It follows that v3v5 has weight 3. But then v3v4 has weight 1 and the weights of
the remaining edges are automatically prescribed:
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v1

{3}
{1}

v2

{1}
{3}

v3

{1}
{3}

v4 v5 v6

Figure 15

S looks like this:

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) (1,2)

C1

(1,3) (2,1) (2,2)

C2

(2,3) (3,1) (3,2)

C3

(3,3)

Figure 16

�

From now on, given a triplet of cycles, the degree of its associated binomial
will also be called the degree of the triplet.

Remark 4.9. Proposition 4.8 completely characterizes the degree 4 triplets of
cycles, as well as those of degree 6 containing an empty cycle. The complete de-
scription of the remaining cases of degree 6 requires the following result.

Proposition 4.10.

(a): Let S := (C1, C2, C3) be a degree 6 triplet of cycles, with Ci 6= ∅ for
every i. Then the underlying graph of AC<Lex

(S) is the subgraph of
K3,3 induced by V1 ∪ V2 − {va} for some a ∈ {1, . . . , 6}. Moreover, if
va ∈ V1(resp., V2), the remaining two vertices of V1(resp., V2) weigh 6 in
AC<Lex

(S), while those of V2(resp., V1) weigh a permutation of {3, 4, 5}.
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(b): Conversely, if AC is the subgraph of K3,3 induced by V1 ∪ V2 − {va},
a ∈ {1, . . . , 6}, further endowed in its vertices with weights observing the
same rules given in (a), then there exists a unique degree 6 triplet of cycles,
say S := (C1, C2, C3), such that Ci 6= ∅ for every i, and AC<Lex

(S) = AC
(the latter equality assigning a precise weight to every edge of AC).

The proof of Proposition 4.10 requires the following Lemma, of a more general
nature.

Lemma 4.11. Let S := (C1, . . . , Cr) be an admissible r-tuple of (not all empty)
closed paths of Gr×s×t. Let m := max{i ∈ r|Ci 6= ∅}.

(a): If e is the maximum edge (relative to <Lex) occurring in Cm, e is also
a maximum edge of S (relative to <Lex).

(b): Cm contains another maximum edge of S (relative to<Lex) which does
not intersect e.

Proof.

(a): Clearly, e is the lexicographically maximum edge occurring in all Ci.
Without loss of generality, we may assume that e is in odd position in

Cm. Then In<Lex
(xu+

− xu−

) = xu+

and the variable associated with e

must occur in xu+

; hence e is a maximum edge of S.
(b): Assume that e = {(m, j), (m, k)} is odd (cf. Figure 17 below). An even

edge must be incident on (m, j), say emjk′ with k′ < k (if k′ > k, then
emjk′ >Lex e, contradiction). But then an odd edge, say e′,must be inci-
dent on (m, k′); e′ is a maximum edge of S and, if e′ = {(m, j′), (m, k′)},
then j′ < j (for otherwise e′ >Lex e).

(m, j′)

e′

(m, j)

emjk′

e

(m, k′) (m, k)

Figure 17

�

Proof of Proposition 4.10.

(a): Since S has degree 6 and Ci 6= ∅ for every i, every Ci must have length 4.
Admissibility then implies that the graph underlying AC<Lex

(S) has to be
one of the six complete bipartite graphs obtained from K3,3 as subgraphs
induced by V1 ∪ V2 − {va}, a ∈ {1, . . . , 6}.

We continue the proof for one of these cases, pictured below, all the
others being similar:
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v1 v2 v3

v4 v5 v6

Figure 18

Corollary 4.7 (b) says that v4 and v5 weigh 6; let us see what are the
weights of the remaining vertices, and of all the edges.

Up to a permutation of the cycles, S must look like this:

• • • • • • • • •

• • • • • • • • •

Figure 19

The corresponding AC<Lex
(S) turns out to be:

4

{3} {1}

5

{3}
{2}

3

{1} {2}

6 6 •

Figure 20

which is of the required type.
Also for every permutation of the cycles in Figure 19, the conditions

listed in (a) are satisfied.

(b): Without loss of generality, we may assume that AC is:
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v1

5
v2

3
v3

4

6
v4

6
v5

•
v6

Figure 21

Lemma 4.11 says that the maximum edge (relative to <Lex) occurring
in C3 can be either v3v5 or v2v5. But v2v5 is ruled out, since v2 weighs 3;
hence it must be v3v5.

Lemma 4.11 also says that C3 contains another maximum edge, which
does not intersect v3v5. It can be either v2v4 or v1v4. Since v2v4 cannot
weigh 3, it turns out to be v1v4.

The fact that v3v5 and v1v4 weigh 3 automatically prescribes the
weights of the remaining edges (recall Proposition 4.6):

5

{3} {2}

3

{1}
{2}

4

{1} {3}

6 6 •

Figure 22

In the end, the required S (with the usual conventions) is the follow-
ing:

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) (1,2)

C1

(1,3) (2,1) (2,2)

C2

(2,3) (3,1) (3,2)

C3

(3,3)

Figure 23
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�

Remark 4.12. Lemma 4.11 can be seen as a Corollary of [St, Theorem 9.1].

We now turn to the degree 7 triplets of cycles.

Proposition 4.13.

(a): If S := (C1, C2, C3) is a degree 7 triplet of cycles, then:
(i): Ci 6= ∅ for every i; one of cycles has length 6, the others have length

4;
(ii): the underlying graph of AC<Lex(S) is a subgraph of K3,3 consisting

of a cycle of length 6 (isomorphic to the unique Ci of length 6) plus
one of its chords; such a subgraph has two vertices of degree 3 (one
in V1, the other in V2), and four vertices of degree 2;

(iii): both the vertices of degree 3 weigh 6; the four vertices of degree 2
form two pairs of adjacent vertices; both the vertices belonging to one
pair have weight a ∈ {3, 4, 5}; both the vertices belonging to the other
pair have weight b ∈ {3, 4, 5}, with b 6= a.

(b): If AC is a subgraph of K3,3 consisting of a cycle of length 6 plus one
of its chords, and is further endowed in its vertices with weights observing
the same rules given in (iii), then there exists a unique degree 7 triplet
of cycles, say S := (C1, C2, C3), such that AC<Lex(S) = AC (the latter
equality assigning a precise weight to every edge of AC).

Proof.

(a): (i) and (ii) follow immediately from the fact that the only possible
cycles have length either 6 or 4; notice that the vertices of degree 3 are
those incident on the chord.

(iii) Without loss of generality, we may assume that the underlying
graph of AC<Lex(S) is:

v1 v2 v3

v4 v5 v6

Figure 24

Clearly, both v3 and v6 weigh 6. It follows that, up to a permutation
of the cycles, S must look like this:
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• • • • • • • • •

• • • • • • • • •

Figure 25

The corresponding AC<Lex(S) turns out to be:

4

{3} {1}

3

{1} {2}

6

{2}

{1}

{3}

3 4 6

Figure 26

which is of the required type.

(b): without loss of generality, we may assume that AC is:

v1

5
v2

4
v3

6

4
v4

5
v5

6
v6

Figure 27

The components of S are those in Figure 25. Notice that the cycle of
length 6 is obtained by erasing the chord, while the two cycles of length
4 are the only ones containing the chord.
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We call A the cycle of length 6, B the cycle of length 4 which is in the middle
of Figure 25, and C the other cycle of length 4.

Also thanks to Lemma 4.11, weight 3 can be attributed to either v3v6 or v3v5.
Assume first that v3v6 weighs 3; then both v1v5 and v2v4 can have weight 3.

If v2v4 weighs 3, then C3 must be B, and no further edge can weigh 3; but the
choices just made automatically force v1v5 to have weight 3: a contradiction. If
v1v5 weighs 3, another contradiction arises. Hence v3v6 cannot weigh 3, and v3v5

must have weight 3.
The fact that v3v5 weighs 3 implies that C3 = A. Then the weights of all the

edges are automatically prescribed:

5

{2} {3}

4

{3} {1}

6

{1}

{3}

{2}

4 5 6

Figure 28

It follows that C2 = C and C1 = B. This completes the proof of (b). �

Proposition 4.14. Let AC<Lex(S) be the associated configuration of a degree
7 triplet of cycles. If c is the chord of the cycle having length 6, there exists a
unique edge of AC<Lex(S), say c′, such that wt(c) = wt(c′); moreover, c and c′ are
not adjacent. If C denotes the cycle of length 4 determined by c and c′ (a cycle of
AC<Lex(S), that is), the non-intersecting edges of C have the same weight, say h;
and also the intersecting edges of C have the same weight, say h′, with h′ 6= h.

Definition 4.15. S is called divisible if h > h′.

Proof of Proposition 4.14. We know that the chord is the only edge shared
by the two length 4 cycles of S; if c weighs ı, then Cı is a cycle of length 4, and
c′ is the other maximum edge of Cı. It follows from Proposition 4.6 that c and
c′ are not adjacent. Proposition 4.13 then implies that the end-vertices of c′ have
the same weight a ∈ {3, 4, 5}. Hence the other two edges of Cı weigh a − ı (which
cannot equal a). �

The following Proposition explains Definition 4.15.
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Proposition 4.16. Let S := (C1, C2, C3) be a degree 7 triplet of cycles, and
M the maximum term (relative to <Lex) of the binomial associated with S.

M is not divisible by any maximum term of a binomial associated with a degree
6 triplet of cycles.

M is divisible by the maximum term of a binomial associated with a degree 4
triplet of cycles if, and only if, S is divisible.

Proof. Let S′ be another triplet of cycles. The maximum term of the binomial
associated with S′ divides M if, and only if, every edge of AC<Lex

(S′) is also an
edge of AC<Lex

(S), with the same weight in both the configurations.
Proposition 4.13 says that AC<Lex

(S) has two vertices of weight 6, one in V1

and the other in V2; it follows from Proposition 4.10 that M cannot be divisible by
the maximum term of the binomial associated with any S ′ of degree 6 consisting of
three nonempty cycles.

If S′ is of degree 6 consisting of two nonempty antiisomorphic cycles, again
M cannot be divisible by the maximum term of the binomial associated with S ′,
thanks to Propositions 4.8 and 4.14

This completes the proof of the first part of the statement.
As for the part related to the triplets of degree 4, it readily follows from Propo-

sitions 4.8, 4.13, and 4.14.
�

Example 4.17. Figure 28 above shows the configuration associated with a
non-divisible S (since 3 = h′ > h = 2), while Figure 26 shows the configuration
associated with a divisible S (since 1 = h′ < h = 3). In the latter case, the triplet
of degree 4 “dividing S” looks like this:

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) (1,2)

C1

(1,3) (2,1) (2,2)

C2

(2,3) (3,1) (3,2)

C3

(3,3)

Figure 29

Its associated configuration is:
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4

{3} {1}

• 4

{3}{1}

• 4 4

Figure 30

We end this section by pointing out that, if S := (C1, C2, C3) is a degree 6
triplet of cycles, then the maximum term of the binomial associated with S cannot
be divided by the maximum term of the binomial associated with any degree 4
triplet.

5. A Gröbner basis

In this section we prove the following result.

Theorem 5.1. Let r = s = t = 3, let S0 := (C1, C2, C3) be the following
admissible triplet of closed paths of G3×3×3:

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) (1,2)

C1

(1,3) (2,1) (2,2)

C2

(2,3) (3,1) (3,2)

C3

(3,3)

and set the following:

S1 : = {all degree 4 triplets of cycles of G3×3×3},

S2 : = {all degree 6 triplets of cycles of G3×3×3},

S3 : = {all non-divisible degree 7 triplets of cycles of G3×3×3},

S : = S1 ∪ S2 ∪ S3 ∪ {S0},

Gr : = {all binomial associated with the elements of S}.

Then Gr is the reduced Gröbner basis of IA with respect to <Lex.
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Proof. In view of the previous sections, it suffices to show that, if S ′ :=
(C1, C2, C3) is an admissible triplet of (not all empty) closed paths of G3×3×3, and
for every i, each edge of Ci either always occurs in even position, or always occurs
in odd position, then there exists S ∈ S such that

AC<Lex
(S) ⊆ AC<Lex

(S′).

Here ⊆ means that, if e is an edge of AC<Lex
(S) weighing h, then e is also an

edge of AC<Lex
(S′) weighing h.

In case one (and then only one) of the paths Ci is empty, the above statement
is an obvious corollary of Propositions 3.13 and 3.14. Hence we assume that Ci 6= ∅
for every i.

In the remainder of this proof, we resort to a technique of “graph chasing”.

Let K3,3 be the underlying graph of AC<Lex
(S′). Assume for instance that

v3v6 is maximum (w.r.t. <Lex) among the edges of AC<Lex
(S′) weighing 3.

By Lemma 4.11, there exists at least an edge of AC<Lex
(S′) weighing 3 and

not intersecting v3v6; we take the minimum such edge (w.r.t. <Lex), say v1v5.
By assumption, v3v5 is an edge of AC<Lex

(S′); let us suppose that v3v5 weighs
3. Then C3 contains v1v5, v3v5 and v3v6 as maximum edges.

It is not restrictive to assume that the maximum edges of S ′ are odd; hence
the closedness of C3 forces v3v4 and v2v5 to be even in C3; so that v3v4 and v2v5

cannot weigh 3 in AC<Lex
(S′).

Hence, with the usual conventions, the following edges are contained in C3:

v1 v2 v3

v4 v5 v6

Figure 31

An odd (maximum) edge must be incident on v4 in C3: it can only be v2v4, given
the assumption on v1v5. If v2v5 and v3v4 have a weight l in common (necessarily,
l is either 1 or 2), then Proposition 4.8 says that there exists a degree 4 triplet of
cycles, S say, such that AC<Lex

(S) ⊆ AC<Lex
(S′). For instance, if l = 2, then S is

shown in Figure 12 and AC<Lex
(S) occurs in Figure 13.

From now on we suppose that v3v4 has multiweight {1} and v2v5 has multi-
weight {2}.

Let us assume that v1v6 weighs 3. As in the above, it follows that v2v6 and v1v4

are edges of C3, but cannot weigh 3. If v2v6 weighs 1, since v3v4 weighs 1 as well,



GRÖBNER BASES RELATED TO 3-DIMENSIONAL TRANSPORTATION PROBLEMS 27

there exists a degree 4 triplet of cycles, S say, such that AC<Lex
(S) ⊆ AC<Lex

(S′).
For AC<Lex

(S′) turns out to contain the configuration below:

v1

•
v2

4

{3} {1}

v3

4
{1}

{3}

4
v4

•
v5

4
v6

Figure 32

And by Proposition 4.8, it is associated with the triplet:

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

Figure 33

If v2v6 has multiweight {2}, the previous argument does not apply. But since
both v2v5 and v2v6 weigh 2, the edge v2v4 must be even in C2. Hence an odd (max-
imum) edge is incident on v4 in C2. It can only be v1v4, for v3v4 has multiweight
{1}, and can only occur in C2 in even position. Since v1v4 is odd in C2, v1v4 weighs
2 in AC<Lex

(S′). We then turn to C1.
We know that v3v4 is odd in C1 (its multiweight is {1}), so that an even edge is

incident on v4. It can only be v1v4, for if it were v2v4, then an odd edge should be
incident on v2 in C1; and this is absurd, since both v2v5 and v2v6 have multiweight
{2}. Thus an odd edge is incident on v1 in C1: either v1v5 or v1v6.

If it is v1v5, then v1v5 weighs 1, and AC<Lex
(S′) turns out to contain:
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v1

3

{2} {1}

v2

5

{2}{3}

v3

4

{1}
{3}

6
v4

6
v5

•
v6

Figure 34

By Proposition 4.10, Figure 34 is the configuration associated with a degree 6
triplet of cycles, and we are done. If the odd edge incident on v1 in C1 is v1v6, then

AC<Lex
(S′) contains:

v1

3

{2}
{1}

v2

5

{2}{3}

v3

4
{1}

{3}

6
v4

•
v5

6
v6

Figure 35

Again, this is the configuration associated with a degree 6 triplet of cycles, and
we are through.

The previous analysis proves the statement whenever v3v6,v1v5,v3v5 and v1v6

weigh 3 in AC<Lex
(S′).

Using the notion of admissibility, the same technique also works in all possible
cases. In particular, if v3v6,v1v5 and v1v6 weigh 3, but v3v5 does not weighs 3, then
AC<Lex

(S′), in some cases, happens to contain the configuration associated with a
non-divisible degree 7 triplet of cycles.

Moreover, if v3v5 is maximum (w.r.t. <Lex) among the edges of AC<Lex
(S′)

weighing 3, and v2v4 is minimum (w.r.t. <Lex)among the edges weighing 3 and
not intersecting v3v5, then AC<Lex

(S′), in some cases, happens to contain the
configuration associated with S0.

Clearly, our graph chasing is simpler when the graph underlying AC<Lex
(S′)

is a proper subgraph of K3,3, because there are fewer possibilities to be taken into
account.

We end by pointing out that the results obtained in Section 4 immediately
imply that Gr is reduced. �
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