Grobner bases related to 3-dimensional transportation
problems
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ABSTRACT. This paper illustrates some work in progress on 3-dimensional
transportation problems,of format r x s Xt say. Following Conti and Traverso, a
suitable Grobner basis is sought for, which is hard to be calculated by means of
Buchberger algorithm. A different approach involving graph theory makes the
calculation tractable when r = s =t = 3 (and in fact whenever 3 € {r, s, t}).

Introduction

The aim of this paper is to illustrate some work in progress on 3-dimensional
transportation problems.

A typical problem of this kind goes as follows. Given r production facilities
Fy...F. letay (i:=1...r,k:=1...t) denote the number of units of an indivisible
good produced by F; during the k-th month of a fixed period of ¢ months. Assume
that there are s outlets O ... O, each one demanding a certain number of units per
month, say b, (j:=1...s,k:=1...t). If ¢;;5 stands for the cost associated with
transporting one unit from F; to O; during the k-th month, one wishes to minimize
the total cost of transportation during the whole period of ¢ months.

In mathematical terms, one wishes to solve the integer programming problem
associated with the matrix .4 whose columns are

{e;@en@ey |1<i<r,1<j<s 1<k<t},

where {e;;} (resp., {e:n} ; resp., {g;-lk} ) stands for the canonical basis of the Z-
module of r X s (resp., r X t ; resp., s X t) integer matrices.

For 3-dimensional transportation problems see e.g. [V1] and [St, Chapter 14].

It is well known that integer programming problems as above can be solved by
a method first suggested by Conti and Traverso (cf. [CT]), which resorts to the
calculation of suitable Grobner bases (for more information about this method we
refer the reader to the survey papers [HT] and [T]).

More precisely, if 14 denotes the toric ideal canonically associated with the
matrix A described before, then one needs to find the reduced Grobner basis of I 4
relative to some appropriate term order.
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2 GIANDOMENICO BOFFI AND FABIO ROSSI

Since it would be hard to use Buchberger algorithm in order to compute such
a reduced Grobner basis, we show in this paper how to perform a calculation along
a different route. It is a route involving the use of graph theory.

As for the specific results we obtain, we give a complete description in case
r = s =t = 3, which in turn outlines a strategy for every case such that 3 € {r, s,t}.
We tend to believe that no essential change takes place when 3 ¢ {r, s, t}, but the
combinatorics looks much less manageable.

1. Preliminaries

In this section we collect some material on graphs, which is going to be used
later. (For basic definitions and notation cf. e.g. [B].)

DEeFINITION 1.1. Let G be a graph and C' := vgvy ... v, be a path of G. If e is
an edge of C, we call parity of e relative to C' the integer

pc(e) :=d—p,
where d is the number of times e occurs in C' in odd position, and p is the number
of times e occurs in C in even position.

EXAMPLE 1.2. C := vguivav3v9v1; € := {vov1 }; po(e) =2 —0=2.
We often write p(e) instead of pc(e), when there is no ambiguity.

PROPOSITION 1.3. Let G be a bipartite graph and C be a path of G. Then C
is closed if, and only if, for every vertex v of C' one has

(1.1) > ple)=0.

ecCvee

PROOF. Assume that (1.1) holds. If C were not closed, then v, # v,, (notation
as in Definition 1.1). It would follow > ., .. p(e) # 0, for e;—1 in odd(even)
position in C implies e; in even(odd) position. Assume now that C is closed; since
G is bipartite, C has even length. Let v be a vertex of C', e and edge containing v.
If e is in odd position in C, v can be taken as the first vertex of C' (i.e., v = vg),
and e as the first edge of C. As C has even length, it follows that the “last” edge
of C is in even position and contains v. A similar argument works if e is in even
position (“last edge of C”). Thus (1.1) holds. O

We denote by Ag the incidence matrix of G. The rows of Ag are indexed by
the vertices of G, its columns by the edges, and

1 if e contains v

Ay,e =
0 otherwise.

DEFINITION 1.4. Given a closed path C of G, for every edge e of G we set
0 ife¢C
C. =
ple) ifeeC.
We say that (C.)ccr is the “sequence associated to C” (Here E stands for the
set of edges of G).
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EXAMPLE 1.5. Let G := K3 2, whose edges we index by {1,2,3} x{1,2}. Let C
be the closed path pictured bellow (the dotted edges being those in even position):

2

FIGURE 1

Then: Cll = 0, ClZ = 0, 021 = 1, C22 = —1; 031 = —].7 032 = 1. That iS,
(0,0,1,—1,—1,1) is the sequence associated with C.
PROPOSITION 1.6. Let G be a bipartite graph.

(a): If C is a closed path of G, then the sequence (Ce)ecp associated with C
is an element of Kery(Ag).

(b): If (de)eck is in Kerz(Ag), then there exists at least a closed path of
G, whose associated sequence is precisely (de)eck-

PROOF.
(a): Let v € V :=V; UV, By Proposition 1.3, one gets:
Sulim Y Gm Y -0
ecE ecE,vce ecC,vee

(b): If (de)eck is zero, there is nothing to prove. Assume that there exists
e1 € F such that d., > 0; written e; = {v,v'} (v € V1, v € V2), we set
vg := v, v; := v’ and think of e; as of the first edge of the path. Since
(de)ecr € Kerg(Ag), it follows that

> de=0.
e€E,v|E€e

Recalling d., > 0, there must be some ey # e; such that v; € ez and
de, < 0. Call va(€ V1) the further vertex of es, and iterate the argument.
We notice that v4 may coincide with vg; in such a case, one can choose

es = ey only if d., > 2.
O

EXAMPLE 1.7. Let G := K3,3, with V] = {1, 2,3} and Vo = {4, 5,6}. Kerz(Ag)
contains the sequence:

d14 = —27d15 = 1,d16 = 1;d24 = 0,d25 = 2,d26 = —2;d34 = 2,d35 = —3,d36 =1.
As in the proof of Proposition 1.6, one can build the path
C = 153416253625341.
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It is pictured right below (the dotted edges being in even position):
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FIGURE 2

2. The graph G, x:

In this section we define a special graph of particular importance for what
follows. Let r:={1,2,...,r}, s:={1,2,...,s}, t :={1,2,...,t}, where r, s, and
t are positive integers. Consider the two disjoint sets

Vii=rxs and Vy:=rxt.

We denote by G,xsx¢ the graph having V := V; U V5 as set of vertices, and

E:={ejili €r, j€s, k et} asset of edges where
Cijk = {(17]) € V17 (ka) S ‘/2}

EXAMPLE 2.1. r:=3, 5:= 2, :=3. Grxsx¢ is the graph:

(1,1) (1,2) (2,1) (2,2 (3,1) (3,2 Vi
(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Va
FIGURE 3

PROPOSITION 2.2. The following hold:
(a): Grxsxt is a bipartite graph, with vertex classes Vi and Va.

(b): For every i € r, the subgraph KS(Z,Z of Grxsxt induced by the set of

vertices
V=V, UV,
with Vi, ={i} xs and V,, :={i} xt,
turns out to be isomorphic to the complete bipartite graph K ;.
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(¢): Grxsxt =TKsy (disjoint union of v copies of Ks).

PrRoOOF. Obvious. O

DEFINITION 2.3. For every choice of 7, ' in r, of j in s, k in £, we say that the
edges e;;1 and ey i, are parallel.

We remark that e; ;;, = go(i’i/)(eijk)7 where
o) K — KLY
is the isomorphism defined by means of
e, 5) = (' 5)  Vies

and of
(p(i,i )(i, k) := (i, k) Vk € t.

3. Grxsxt and 3-dimensional transportation problems

In this section we give a new approach to 3-dimensional transportation prob-
lems by means of the graph G,xsx+. Let A be the matrix whose columns are

{ei; @Q;k ®Q;,k licr, jeEs, ket},
where {g;;} stands for the canonical basis of the Z-module of r x s integer matri-

ces (denoted by Zr*%), {g;j} stands for the canonical basis of ZZ*t (r x t integer
matrices), and {g;-/k} for the canonical basis of Z&*t.

The integer programming problem associated with A is called “3-dimensional
transportation problem” (cf. e.g. [VI], [St]). The corresponding toric ideal to be
studied is T4 := Ker(Il4), where:

Wa s Klzige] — Kluwij, vik, wikl;
Tijk 7 Ui Vik Wik
here i €r, j €s, k €t, and K is any field.
Think of A as of the matrix of the morphism
JLXsXt _, rXs & grxt &) 75Xt
u— Au
where Z%2*t stands for the Z-module of 3-dimensional matrices of format r x s x t.
It is well known (cf. e.g. [St]) that if < is any term order on K|z] := K[x;ji], then

Inc(Ia) = In<(B),

where B := {z%" — z% |u € Kerz(A)} C I4, and In.(B) stands for the ideal
generated by all initial terms In.(f) with f ranging in the (infinite) set 5.

A finite set Gr C I 4 is a Grobner basis for I 4 with respect to < if, and only if,
In.(f) € Inc(Gr) for every f € B. Here below, we use G,y sx+ to give a description
of B which will prove helpful for the study of Grobner bases in the next two sections.

DEFINITION 3.1. Let S := (C1,Cs,...,C,) be an r-tuple satisfying the follow-
ing properties:
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(1): For every i = 1,...,r, either C; = 0 or C; is a closed path of the
subgraph ngt of Gryxsxt-

(2): Whenever an edge e occurs in C; in odd (resp., even) position, there
exists an edge ¢’ parallel to e occurring in even (resp., odd) position in
some Cjr.

We call S an admissible 7—tuple of closed paths of G,ysx:.

EXAMPLE 3.2. Consider G3x3x3. If C1,C2,Cs are like in the picture below,
(C1,C5,C3) is admissible (as usual, the dotted edges are in even position).

11 (12)  (13) (2,1)

(2.2)  (23) (3,1

FIGURE 4

EXAMPLE 3.3. Again consider Gsx3x3. If C1,Ca,Cs are like in the picture
below, (C,Cq,C3) is NOT admissible. For instance, the edge es;; occurs twice in
(5 in even position, but there is just one edge parallel to it (namely, e211) occurring
in odd position (in C3). Other “bad” edges are ea12, €221 and eaas.

(L, (1,2) (1,3) (2,1)  (2,2) (2,3) (3.1 (32) (33)

€211 €311

1,2) ""(1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3

4 Cs Cs

FIGURE 5
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REMARK 3.4. Although any closed path can be obtained by “patching cycles
together” (and this remark suggests another proof of Proposition 1.6 (a)),it is not
true that an admissible r-tuple of closed paths can always be written as a “sum” of
admissible r-tuple of cycles. This following picture provides an example.

(L1) (1.2) (13)  (21) (22) (23) (3.1) (3.2) (3,3)

a1 (12 w8 @1 22 (9 (3.1 (5.2 (33
Cl CV2 03

FIGURE 6

DEFINITION 3.5. Let S := (C1,Cq,...,C,) be an admissible r-tuple of closed
paths of G, xsx¢. For every (i,j,k) € r x s X t, we set

0 if e;;, does not occur in C;
Aijk =
pleijx) if €51, occurs in Cj,
where p(e;jx) stands for the parity of p(e;;i) relative to C;.
We say that (a;;1) is the sequence associated with S.

REMARK 3.6. Since e;j, occurs in Ks(lz, eijk can only occur in Cj.

The following theorem links G,y sx; to Kerz(A), where A is the matrix of the
3-dimensional transportation problem introduced at the beginning of this section.
THEOREM 3.7. The following hold:

(a): Let S := (C1,Cq,...,C}) be an admissible r-tuple of closed paths of
Grxsxt, and let a:= (a;;1,) be its associated sequence. Then ac Kerz(A).

(b): If bi= (biji) is in Kerg(A), then there exists at least one admissible
r—tuple of closed paths of Grxsxt, whose associated sequence coincides
with b.

PRroor.
(a): Let A, ) be the incidence matrix of the subgraph Kilt) We index
s,t I
the columns of A, by all pairs (j, k) € sxt, and its rows by all pairs
s,t
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(3.3)
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(i,7) € {i}xs and (i,k) € {i}xt. It is clear that a; := (a%jk)(j,k)€§><§

belongs to Kerz(A if, and only if, one gets:

k)
t r S
Y oke1 T =0 foreveryj=1,...,s

Py a%jk =0 forevery k=1,...,t.

For if .5 (k) 18 the generic entry of row (i, ) in AKQZ’ ie.

0 ifj' #j
Q@i Gk o
1 ifj' =3,

then

t
_ / _ /
Q)0 Bk = D g
(4'k)Esxt k=1

And if o 1y ) 18 the generic entry of row (i,k) in A then

K
S

N
Z QG k) Gk Yk = Z 7k

(k") Esxt k=1

Let us consider now the sequence a associated with S. For every i
such that C; # (), the subsequence a; := (aijk)(j,k)esxt 15 associated with
C; in the sense of Definition 1.4. Hence Proposition 1.6(a) says that
a; € KerZ(AK‘iiz), and (3.1) holds. Since for every ¢ such that C; =), 3.1

holds, too, we have shown that the sequence a associated with S satisfies
the following:

ZzzlaijkzO for every i =1,...,r and every j = 1,...,s

di—1air =0 foreveryi=1,...,r and every k=1,...,t.

In order to complete the proof of (a), it remains to show that:

-
Zaijk =0 forevery j=1,...,sandevery k=1,...,t.
i=1
Let 7,k be such that there exist 7 verifying ag # 0; then, by def-
inition, C7 # 0 and ez75 occurs in C7 with parity a75- Without loss of
generality, we may assume that agr > 0, Le., ez occurs in C7 in odd
position at least U% times. Since S is admissible, whenever e occurs in
C7 in odd position, there is some e, 75 occurring in C; in even position;
hence Y ;_; a;z =0, and (3.3) follows. This completes the proof of part

(a).

(b): Thanks to what we have seen at the beginning of the proof of part (a),

if be Kerz(A), then the subsequence b; := (bijx)(jk)esxt € Kerz(Ap )
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for every i. For be Kerz(A) implies that for every i,

t
Zbijkzo forevery j=1,...,s
k=1

Zbijkzo for every k=1,...,t.
j=1

Applying Proposition 1.6(b) to A it follows that for every 4, there is

K
a closed path C; of K St) such that b; is its associated sequence. If b; =0,
we set C; = 0.

It remains to show that the r—tuple S := (C4,...,C,) is admissible.
Without loss of generality, we may assume that e;j; occurs in C; in odd
position; by the construction of C; (recall the proof of Proposition 1.6), it
follows that b;;;, > 0, and b;;;, is precisely the number of times e;;, occurs
in C; in odd position. Since be Kerz(A), we also have that Y., by =0,
hence, whenever e;;;, occurs in C; in odd position, there is some e i, (i #£
i) occurring in Cj/ in even position (—blvjk times, since by i, is negative).

O

REMARK 3.8. The r—tuple S = (C4,...,C}) constructed in the proof of The-
orem 8.7(b) has the property that every edge of C; either is always in odd position
(“odd edge”), or is always in even position (“even edge”). Hence, from now on, we
always assume that our admissible r—tuples have such a property.

ExamMPLE 3.9.

(1): The sequence associated with (C7, C2, C3) of Example 3.2 looks like this
(write ¢jk instead of a;jx):

111 is 1 211 is 1 311 is -2
112 0 212 -1 312 1
113 -1 213 0 313 1
121 -2 221 2 321

122 0 222 -2 322 2
123 2 223 0 323 -2
131 1 231 -3 331 2
132 0 232 3 332 -3
133 -1 233 0 333 1

It is easy to check that it belongs to Kerz(A).

(2): r=s=t=3; take the following element of Kerz(A):
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111 is 1 211 s -2 311 is 1
112 0 212 0 312 0
113 -1 213 2 313 -1
121 0 221 1 321 -1
122 -1 222 0 322

123 1 223 -1 323 0
131 -1 231 1 331 0
132 1 232 0 332 -1
133 0 233 -1 333

The corresponding admissible (C1, Ca, C3) constructed in Theorem 3.7(b) is:

23)  (3,1) (32) (33)

(1,1) (1,2) (1,3) (2,1

1,1) (1,2) ,_(173) 2.1) (2.2)

23)  (3.1) (32) (33)
4 Cs Cs

FIGURE 7

Theorem 3.7 and Remark 3.8 should have clarified by now the relationship
between G,y sx; and B = {zv" — 2% |u € Kerz(A)}, which is summarized in the
following (obvious) corollary.

COROLLARY 3.10. Let us associate the variable x;;, with the edge e;jr of
Grxsxt, and viceversa. Then, given gﬁ+ — % € B, there exists an admissible
r—tuple S := (Ch,...,C,) of closed paths of Grxsxt such that every edge of C; is
always in odd (even) position, and such that u™ is given by the parities of all odd
edges of S, u™ by the parities of all even edges. Conversely, given an admissible
r—tuple, a binomial Qf — 2% € B is obtained defining ut and v~ as above.

DEFINITION 3.11. Let S := (C4,...,C,) be an admissible r—tuple of closed
paths of G,xsx¢. Two paths C; and Cy (i # ') are called anti-isomorphic if they
only contain parallel edges with opposite parities.

ExXAMPLE 3.12. The following paths of Gsyx3x3 are anti-isomorphic.
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(1L, (1,2) (1,3)  (2,1) (2,2) (2,3)  (3,1) (3,2) (3,3)

Wby 13 @b ek @3 61 62 63

& Cs Cs
FIGURE 8

PROPOSITION 3.13. Let S := (Ch,...,C,) be an admissible r—tuple of closed
paths of Gryxsxt-
(a): Either C; =0 for every i, or there are at least two nonempty paths.
(b): If there are exactly two nonempty paths, then they are anti-isomorphic.

PRroor.

(a): If C; # 0, then there is an edge e;;;, of positive parity. The admissibility
of S implies that there is at least an edge e;/;, (¢ # ') of negative parity.
Hence Cy # 0, too.

(b): Obvious.

([l

Notice that if S := (C1,...,C,) is an r—tuple of closed paths of G, xsx;, and
for every nonempty path C; there is a path Cy (i # i) such that C; and C;/ are
anti-isomorphic , then S is admissible.

Let us now introduce in the set r x s x t the lexicographic order <;.,defined
by:
(i’j7 k) <lex (i/’jlv k/)
if and only if the first non-zero component of the difference vector is negative.
Then K [z;;x] is endowed with the pure lexicographic term order <p.zsuch that:

Tijk <Lex X ' k! < (iaja k) <lex (i/ajlak/)'

As a first application of the material above, we show how to get in a different
way a result by Sturmfels (cf. [St, Chapter 14]).

PROPOSITION 3.14. Let r =2, and s,t any integers > 2. The binomials asso-
ciated with pairs of anti-isomorphic cycles of Gaxsxt form a reduced Grobner basis
of 14 relative to <peq-

PrOOF. Let G be the set of all binomials associated with pairs of anti-isomorphic
cycles. Clearly, Gr C B (cf. remark after Proposition 3.13). As mentioned at the
beginning of this section, it suffices to show that In.,, (z% —z% )€ In.,. (Gr)
for every 2% — 2% € B.

It follows from Corollary 3.10 and Proposition 3.13 that we need only consider
all pairs of anti-isomorphic closed paths of Gaxsx;. Let S := (C1, C2) be such a pair.
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We order the edges of C; according to the order of the corresponding variables. Let
e be the maximum edge occurring in Cy. Starting with e, we can move along at
least one cycle Dy whose edges are also edges of C. Since C; and Cy are anti-
isomorphic, C; must contain a cycle D; anti-isomorphic to Dy. And Corollary 3.10
ends the proof. O

EXAMPLE 3.15. Let S be the following pair of anti-isomorphic closed paths of
Gaxgxa:

)12 (13 e @) (23

13 (2
FIGURE 9

where the edges in odd position (the ones which are not dotted) determine In.,
of the associated binomial gﬂ+ — .
A corresponding pair (Dq, D) is:

Ly 12 (13 =D (22) (23

(1,1) (1,2 1,3) (2,1) (2,2) (2,3)
D1 D2

FIGURE 10

Going back to the statement of Proposition 3.14, we point out that, since
r = 2 implies A of Lawrence type (cf. [St, Proposition 14.11]), it follows from [St,
Theorem 7.1] that the set of all binomials associated to pairs of anti-isomorphic
cycles of Goxsxt also provides the universal Grobner basis of I4, as well as the
Graver basis of A, and a minimal set of generators of I 4 (cf. [St, Corollary 14.12]).
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We end this section by observing that what we have done in it for 7K, ; works
equally well from sK,.; and tK, ;. Hence, for instance, Proposition 3.14 holds for
every Grxsx: such that 2 € {r,s,t}.

4. r-tuples of cycles

The description of the set B given in Section 3 by means of the graph G,y sx+
allows us to tackle the study of the reduced Grobner basis of I 4 relative to the
term order <pe;.

In fact we are going to give a complete description of that basis in the case
r =s =1t =3, but it will be obvious from the proof that the same strategy applies
whenever 3 € {r,s,t}. We suspect that also when 3 ¢ {r, s, t}, no essential change
takes place, but the combinatorics involved looks harder.

We are going to proceed in the following way: we describe the basis elements
in this section; we show that they are indeed a basis in Section 5. As expected, our
basis in the case 3x3 x 3 turns out to be a subset of the universal basis obtained by
Sturmfels by means of “a brute force computation in MACAULAY” ([St, Theorem
14.13]).

DEFINITION 4.1. Let < be a term order in K[z], and S := (C4,...,C;) an
admissible r-tuple of (not all empty) closed paths of G, xsx;. We call maximum edge
of S (relative to <) every edge e;jx of Grxsx¢ such that x;;; occurs in the maximum
term of the binomial associated with S.

If we index V1 (K +) by elements of s, and Va(K, ;) by those of ¢, then for every
1 € r, an isomorphism
0 : K9 Kk
7 . s,t s,t

is defined by means of

pili,j)==j  foreveryjes

wili, k) =k for every k € t.

DEFINITION 4.2. Let < be a term order in K[z], and S := (C4,...,C,) an
admissible r-tuple of (not all empty) closed paths of G,y sx¢.

We call associated configuration of S relative to <, written AC(S), the mul-
tiweighted subgraph of K ; described as follows:

(1): an edge of K, ; belongs to AC.(95) if it coincides with ¢;(e;;x) for some
7 and some maximum edge e;;.

(2): the multiweight associated with an edge e of AC.(S) is the set of all
indices ¢ such that ¢;(e;jx) = e for some maximum edge e;jy.

We say that an edge e of AC-(S) weighs i in order to indicate that i occurs in
the multiweight of e.

PRrROPOSITION 4.3. The followings hold:

(a): If v is a vertex of AC(S), then there are at least two edges incident
on v.

(b): If e is an edge of AC(S), and its multiweight has cardinality h, then
1<h<r-—1.
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PROOF. Let §ﬂ+ — 2% be the binomial associated with S; without loss of
generality we may assume that I n<(gﬂ+ —a¥ ) = §E+. Then the maximum edges
of S are those in odd positions (recall Corollary 3.10).

From now on, we identify with their images all vertices and edges transformed
by isomorphisms ;.

(a): Let e be an edge incident on v. If e weighs 7, e is an edge of C; in odd
position. Since Cf is closed and Remark 3.8 holds, there is an even edge
e’ # e of C7 which is incident on v. Since S is admissible, it follows that
exists an edge ¢ parallel to ¢’ and occurring in odd position in some Cj/
with ¢’ # 7. This means that e” is an edge of AC(S) incident on v and
different from e.

(b): h cannot be r since otherwise e would be odd in every C;.

EXAMPLE 4.4. Recall the admissible (Cy, Cy, C3) described in Example 3.2. Tts
associated configuration relative to <y, is as follows:

FIGURE 11

(As in the proof of Proposition 4.3, we assume that the maximum edges are
those in odd positions.)

DEFINITION 4.5. An admissible r-tuple of (not all empty) closed paths of
Grxsxts S = (Cy,...,C,), is called an r-tuple of cycles if every nonempty C; turns

out to be a cycle of Ks(lt)

PROPOSITION 4.6. Let < be a term order in K[z], and S an r-tuple of cycles.

(a): If v is a vertex of AC(S), and two edges e and e’ are incident on v,
then the multiweight of e has an empty intersection with the multiweight
of €.

(b): If r =3, every edge of AC.(S) has multiweight of cardinality 1.

PRrOOF.

(a): If both e and e’ weighed ¢, then C; would contain two different edges
incident of v, either both even or both odd. But this is impossible, for C;
is a cycle of a bipartite graph.
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(b): Tt follows from Proposition 4.3(b) that every edge as multiweight of
cardinality at most 2. Suppose that e is an edge with multiweight of
cardinality exactly 2; {1,2}, say. Assuming that the maximum edges are
odd, there must exist in C3 and edge €', parallel to e, which occurs twice
in even position; hence C3 (# (}) cannot be a cycle: contradiction.

O

In the remaining part of this section, we assume r = s = t = 3 and, for
the triplets of cycles of Gs3x3x3, characterize all possible associated configurations
relative to <p., that will be needed in Section 5, when dealing with the reduced
Grébner basis of 1 4.

Given a triplet of cycles of Gax3x3, say S, the underlying graph of AC.,_ (S) is
a subgraph of K3 3. We assume V(K3 3) = {v1, v2,v3} and V(K3 3) = {va,v5,v6}.

If v is a vertex of AC.,__(S), we say that its weight is the sum of the weights
of all edges incident on v (recall Proposition 4.6(b)).

COROLLARY 4.7. Let v be a vertex of AC., ,(S).

(a): There are either two or three edges incident on v.
(b): If there are three edges incident on v, the weight of v is 6. If there are
two edges incident on v, the weight of v can be 3, 4, 5.
PROOF.

(a): Obvious.

(b): Proposition 4.6 implies that three edges incident on v have weights
given by a permutation of 1, 2, 3, while two edges incident on v can have
weights 1, 2 or 1, 3 or 2, 3.

O

PROPOSITION 4.8. Let S := (C1,C2,Cs) be a triplet of cycles of Gaxzxz such
that C; =0 for some i.

(a): The two cycles other that C; are nonempty and anti-isomorphic, of
length either 4 or 6.

(b): AC.,,.(S) has underlying graph a cycle of K33 of length either 4 or
6, whose vertices all weigh either 3, or 4, or 5.

(c): Conversely, if C is a cycle of K3 3 of length either 4 or 6, whose vertices
all weigh either 3, or 4, or 5, there exists a unique triplet of cycles, S :=
(C1,C4,C3), such that C; =0 for some i and AC,. (S) =C. The latter
equality assigns a precise weight to every edge of C.

PROOF.

(a): It follows from Proposition 3.13 that the two cycles other that C;
are nonempty and anti-isomorphic. In particular, they must have equal
lengths. But a cycle of K33 can just have length either 4 or 6.

(b): We only prove the case below (all the other cases being similar):
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(1,1) (1,2) (1,3)  (2,1) (2,2)

23)  (31) (32) (3.3)

(L) (12) (1,3) (1) (22) 23) (1) (3.2) (33)

& Cs Cs
FIGURE 12

According to our conventions, e is a maximum edge, hence the non-
dotted edges are those belonging to the maximum monomial. It follows
that AC., .. (S) looks like this:

(% V2 V3
/3/ {£} {2}4}/
(0 Vs Ve
FIGURE 13

The vertices v, v3, v4 and v all weigh 5.
(c): We only prove the case below (all the other cases being similar):

FIGURE 14

In the triplet S := (C1, Cs, C3) we wish to construct (if it exist), the edge vzvs
must necessarily be a maximum edge relative to <r.,, belonging to the nonempty
C; with maximum index (since the two nonempty cycles must be antiisomorphic).
It follows that vsvs has weight 3. But then vsv,; has weight 1 and the weights of
the remaining edges are automatically prescribed:
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FIGURE 15

S looks like this:

13)  (21) (22) 23)  (31) (3:2) (33)

(1.1) (1.2)

(1,3)  (2.1) (2,2) (2.3)  (3.1) (3.2) (3,3)
c Cs Cs
FIGURE 16

]

From now on, given a triplet of cycles, the degree of its associated binomial
will also be called the degree of the triplet.

REMARK 4.9. Proposition 4.8 completely characterizes the degree 4 triplets of
cycles, as well as those of degree 6 containing an empty cycle. The complete de-
scription of the remaining cases of degree 6 requires the following result.

PRropPOSITION 4.10.

(a): Let S := (C1,Cq,C3) be a degree 6 triplet of cycles, with C; # 0 for
every i. Then the underlying graph of AC.,, (S) is the subgraph of
K33 induced by V1 U Vy — {v,} for some a € {1,...,6}. Moreover, if
vg € Vi(resp.,Va), the remaining two vertices of Vi(resp.,Va) weigh 6 in
AC., .. (S), while those of Va(resp., Vi) weigh a permutation of {3,4,5}.



18 GIANDOMENICO BOFFI AND FABIO ROSSI

(b): Conversely, if AC is the subgraph of Ks 3 induced by V4 U Vo — {v,},
a € {1,...,6}, further endowed in its vertices with weights observing the
same rules given in (a), then there exists a unique degree 6 triplet of cycles,
say S := (C1,Ca, C3), such that C; # 0 for every i, and AC.,_ (S) = AC
(the latter equality assigning a precise weight to every edge of AC).

The proof of Proposition 4.10 requires the following Lemma, of a more general
nature.

LEMMA 4.11. Let S := (C4,...,C,) be an admissible r-tuple of (not all empty)
closed paths of Gyxsxt. Let m := max{i € r|C; # 0}.
(a): If e is the mazimum edge (relative to <pey) occurring in Cp,, e is also
a mazimum edge of S (relative to <pe;).
(b): Cy, contains another mazimum edge of S (relative to< pey) which does
not ntersect e.
PROOF.

(a): Clearly, e is the lexicographically maximum edge occurring in all C;.
Without loss of generality, we may assume that e is in odd position in
Cp,. Then In.,, (gfr —z¢ ) = gﬂJr and the variable associated with e
must occur in £E+; hence e is a maximum edge of S.

(b): Assume that e = {(m, j), (m, k)} is odd (cf. Figure 17 below). An even
edge must be incident on (m,j), say em;r with k' < k (if " > k, then
€mjk’ >Lex €, contradiction). But then an odd edge, say e’ must be inci-
dent on (m, k’); €’ is a maximum edge of S and, if e/ = {(m, j'), (m, k") },
then j/ < j (for otherwise €’ >p.; €).

mk) (k)

FIGURE 17

PRrROOF OF PROPOSITION 4.10.

(a): Since S has degree 6 and C; # @ for every 7, every C; must have length 4.
Admissibility then implies that the graph underlying AC, __(S) has to be
one of the six complete bipartite graphs obtained from K3 3 as subgraphs
induced by V1 UV, — {v,}, a € {1,...,6}.

We continue the proof for one of these cases, pictured below, all the
others being similar:
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U1 V2 U3
Vg Us V6
FIGURE 18

Corollary 4.7 (b) says that v4 and vs weigh 6; let us see what are the
weights of the remaining vertices, and of all the edges.

Up to a permutation of the cycles, S must look like this:

i A |

The corresponding AC., .. (S) turns out to be:

4 5 3
6 6 °

FiGURE 20

which is of the required type.
Also for every permutation of the cycles in Figure 19, the conditions
listed in (a) are satisfied.

(b): Without loss of generality, we may assume that AC is:
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FIGURE 21

Lemma 4.11 says that the maximum edge (relative to <) occurring
in C3 can be either v3zvs or vovs. But vavs is ruled out, since vy weighs 3;
hence it must be vsvs.

Lemma 4.11 also says that C3 contains another maximum edge, which
does not intersect vsvs. It can be either vovy or vivs. Since vovs cannot
weigh 3, it turns out to be vivy4.

The fact that vsvs and vivy weigh 3 automatically prescribes the
weights of the remaining edges (recall Proposition 4.6):

5 3 4
6 6 (]

FIGURE 22

In the end, the required S (with the usual conventions) is the follow-
ing:

(LY (1,2) (13)  (2,1) (2,2) (23)  (3,1) (3.2) (3.3)

(1,1) (1,2’) 1,3)  (21) (22) 2.3)  (31) (3,2) (3,3)
01 02 03

FIGURE 23



GROBNER BASES RELATED TO 3-DIMENSIONAL TRANSPORTATION PROBLEMS 21

O

REMARK 4.12. Lemma 4.11 can be seen as a Corollary of [St, Theorem 9.1].
We now turn to the degree 7 triplets of cycles.

ProprosITION 4.13.

(a): If S :=(C1,C4,C3) is a degree 7 triplet of cycles, then:

(1): C; # 0 for every i; one of cycles has length 6, the others have length
45

(ii): the underlying graph of AC< 1,e4(S) is a subgraph of K3 3 consisting
of a cycle of length 6 (isomorphic to the unique C; of length 6) plus
one of its chords; such a subgraph has two vertices of degree 3 (one
in Vi, the other in Va), and four vertices of degree 2;

(iii): both the vertices of degree 3 weigh 6; the four vertices of degree 2
form two pairs of adjacent vertices; both the vertices belonging to one
pair have weight a € {3,4,5}; both the vertices belonging to the other
pair have weight b € {3,4,5}, with b # a.

(b): If AC is a subgraph of K33 consisting of a cycle of length 6 plus one
of its chords, and is further endowed in its vertices with weights observing
the same rules given in (iii), then there exists a unique degree 7 triplet
of cycles, say S := (C1,Cq,Cs), such that AC<re.(S) = AC (the latter
equality assigning a precise weight to every edge of AC).

PRrOOF.
(a): (i) and (i¢) follow immediately from the fact that the only possible
cycles have length either 6 or 4; notice that the vertices of degree 3 are
those incident on the chord.

(#4i) Without loss of generality, we may assume that the underlying
graph of AC 1. (95) is:

U1 V2 U3
V4 Us V6
FIGURE 24

Clearly, both v3 and vg weigh 6. It follows that, up to a permutation
of the cycles, S must look like this:
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[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
FIGURE 25

The corresponding AC< 1., (S) turns out to be:

4 3 6

%{1} e {2}/{3}

3 4 6

FIGURE 26

which is of the required type.

(b): without loss of generality, we may assume that AC is:

FIGURE 27

The components of S are those in Figure 25. Notice that the cycle of
length 6 is obtained by erasing the chord, while the two cycles of length
4 are the only ones containing the chord.
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We call A the cycle of length 6, B the cycle of length 4 which is in the middle
of Figure 25, and C' the other cycle of length 4.

Also thanks to Lemma 4.11, weight 3 can be attributed to either vzvg or vzvs.

Assume first that vzvg weighs 3; then both vivs and vavy can have weight 3.
If vovy weighs 3, then C'5 must be B, and no further edge can weigh 3; but the
choices just made automatically force vivs to have weight 3: a contradiction. If
vivs weighs 3, another contradiction arises. Hence vsvg cannot weigh 3, and vsvs
must have weight 3.

The fact that vsvs weighs 3 implies that C's = A. Then the weights of all the
edges are automatically prescribed:

FIGURE 28

It follows that Cy = C' and C; = B. This completes the proof of (b). O

PROPOSITION 4.14. Let AC< 1.(S) be the associated configuration of a degree
7 triplet of cycles. If ¢ is the chord of the cycle having length 6, there exists a
unique edge of AC< pe.(S), say ¢, such that wt(c) = wt(c"); moreover, ¢ and ¢’ are
not adjacent. If C denotes the cycle of length J determined by ¢ and ¢’ (a cycle of
AC< ez (S), that is), the non-intersecting edges of C' have the same weight, say h;
and also the intersecting edges of C have the same weight, say h', with h’ # h.

DEFINITION 4.15. S is called divisible if h > h'.

PROOF OF PROPOSITION 4.14. We know that the chord is the only edge shared
by the two length 4 cycles of S; if ¢ weighs 7, then C7 is a cycle of length 4, and
¢ is the other maximum edge of C;. It follows from Proposition 4.6 that ¢ and
¢ are not adjacent. Proposition 4.13 then implies that the end-vertices of ¢’ have
the same weight a € {3,4,5}. Hence the other two edges of C; weigh a — 7 (which
cannot equal a). O

The following Proposition explains Definition 4.15.
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PROPOSITION 4.16. Let S := (Cy,C4,C3) be a degree 7 triplet of cycles, and
M the mazimum term (relative to <r..) of the binomial associated with S.

M is not divisible by any mazimum term of a binomial associated with a degree
6 triplet of cycles.

M is divisible by the mazximum term of a binomial associated with a degree 4
triplet of cycles if, and only if, S is divisible.

ProOF. Let S’ be another triplet of cycles. The maximum term of the binomial
associated with S divides M if, and only if, every edge of AC.,  (S’) is also an
edge of AC.,_ (S5), with the same weight in both the configurations.

Proposition 4.13 says that AC.,__(S) has two vertices of weight 6, one in V;
and the other in V5; it follows from Proposition 4.10 that M cannot be divisible by
the maximum term of the binomial associated with any S’ of degree 6 consisting of
three nonempty cycles.

If S is of degree 6 consisting of two nonempty antiisomorphic cycles, again
M cannot be divisible by the maximum term of the binomial associated with S’,
thanks to Propositions 4.8 and 4.14

This completes the proof of the first part of the statement.

As for the part related to the triplets of degree 4, it readily follows from Propo-
sitions 4.8, 4.13, and 4.14.

O

ExXAMPLE 4.17. Figure 28 above shows the configuration associated with a
non-divisible S (since 3 = b’ > h = 2), while Figure 26 shows the configuration
associated with a divisible S (since 1 = b’ < h = 3). In the latter case, the triplet
of degree 4 “dividing S” looks like this:

(1,2) (1,3)  (2,1) (2,2) (2,3)  (3,1) (3,2) (3.3)

(LD (12) (13)  (21) 22) (23) (31) (32) (33)
& Cs Cs

FIGURE 29

Its associated configuration is:
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4 . 4

\l\{l} 1/{1‘”}

° 4 4

FIGUuRrE 30

25

We end this section by pointing out that, if S := (Cy,C3,C3) is a degree 6
triplet of cycles, then the maximum term of the binomial associated with .S cannot
be divided by the maximum term of the binomial associated with any degree 4

triplet.

5. A Grobner basis

In this section we prove the following result.

THEOREM b5.1. Let r = s =t = 3, let Sy := (C1,Cs,C3) be the following

admissible triplet of closed paths of Gsx3x3:

(1,1) (1,2) (1,3) (2.1) (2,2) (2.3) (3.1) (3.2) (3,3)

(1,1:) (z,é) (1,3) (2.1 (2,2) (2,3) (3,1)"(3,2) (33)
(& Cy Cs

and set the following:

S1 = {all degree 4 triplets of cycles of Gaxaxs},

Sy = ={all degree 6 triplets of cycles of Gsxsxs},

S3 = {all non-divisible degree 7 triplets of cycles of Gsxsxs},
S : =5 USUS3U{Sp},

Gr : ={all binomial associated with the elements of S}.

Then Gr is the reduced Grébner basis of 14 with respect to <pes-
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PRrROOF. In view of the previous sections, it suffices to show that, if S’ =
(Cy,C4,Cs) is an admissible triplet of (not all empty) closed paths of G3x3x3, and
for every i, each edge of C; either always occurs in even position, or always occurs
in odd position, then there exists S € S such that

AC<L&:E (S) g AC<LCI (S/)

Here C means that, if e is an edge of AC.,_, (S) weighing h, then e is also an
edge of AC,_ (S’) weighing h.

In case one (and then only one) of the paths C; is empty, the above statement
is an obvious corollary of Propositions 3.13 and 3.14. Hence we assume that C; # ()
for every 1.

In the remainder of this proof, we resort to a technique of “graph chasing”.

Let K33 be the underlying graph of AC.,  (S’). Assume for instance that
v3vg I8 maximum (w.r.t. <p.,) among the edges of AC.,_ (S’) weighing 3.

By Lemma 4.11, there exists at least an edge of AC.,__ (S’) weighing 3 and
not intersecting vsvg; we take the minimum such edge (w.r.t. <), say v1vs.

By assumption, vzvs is an edge of AC., . (S’); let us suppose that vzvs weighs
3. Then C'5 contains v1vs, v3vs and v3vg as maximum edges.

It is not restrictive to assume that the maximum edges of S’ are odd; hence
the closedness of C3 forces vsvy and vavs to be even in C3; so that vzvs and vavs
cannot weigh 3 in AC.,__(S5").

Hence, with the usual conventions, the following edges are contained in Cs:

U2

Vs

FIGURE 31

An odd (maximum) edge must be incident on vy in Cs: it can only be vavy, given
the assumption on vivs. If vovs and vsvy have a weight I in common (necessarily,
[ is either 1 or 2), then Proposition 4.8 says that there exists a degree 4 triplet of
cycles, S say, such that AC.,_ (S) C AC., .. (S’). For instance, if [ = 2, then S is
shown in Figure 12 and AC.,__(S) occurs in Figure 13.

From now on we suppose that vsvy has multiweight {1} and vovs has multi-
weight {2}.

Let us assume that vivg weighs 3. As in the above, it follows that vovg and viv4
are edges of C3, but cannot weigh 3. If vovg weighs 1, since vzvy weighs 1 as well,
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there exists a degree 4 triplet of cycles, S say, such that AC., . (S) C AC.,.. (5).
For AC.,,.(S") turns out to contain the configuration below:

FIGURE 32

And by Proposition 4.8, it is associated with the triplet:

LY (1,2 (1,3) 1) (2,2) (23) G ,2) (3,3)

(L'l}) (1,2) (1,3) (21 (22) (23) B G2 (3

FIGURE 33

If vovg has multiweight {2}, the previous argument does not apply. But since
both vavs and vevg weigh 2, the edge vovy must be even in Cy. Hence an odd (max-
imum) edge is incident on v4 in Co. It can only be vivy, for vzv, has multiweight
{1}, and can only occur in Cy in even position. Since vyvy4 is odd in Csq, v1v4 weighs
2in AC.,, (S"). We then turn to Ci.

We know that vsvy is odd in C; (its multiweight is {1}), so that an even edge is
incident on vy. It can only be vyvy, for if it were vovy, then an odd edge should be
incident on v in C; and this is absurd, since both vyvs and vovg have multiweight
{2}. Thus an odd edge is incident on vy in Ci: either v1vs or vivg.

If it is vyvs, then vivs weighs 1, and AC.,__(S’) turns out to contain:
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w

FIGURE 34

By Proposition 4.10, Figure 34 is the configuration associated with a degree 6
triplet of cycles, and we are done. If the odd edge incident on v; in C is v1vg, then

AC., .. (S") contains:

FIGURE 35

Again, this is the configuration associated with a degree 6 triplet of cycles, and
we are through.

The previous analysis proves the statement whenever vsvg,v1v5,v3v5 and v1vg
weigh 3 in AC.,_ (9).

Using the notion of admissibility, the same technique also works in all possible
cases. In particular, if v3vg,v1v5 and vivg weigh 3, but v3vs does not weighs 3, then
AC., .. (5), in some cases, happens to contain the configuration associated with a
non-divisible degree 7 triplet of cycles.

Moreover, if v3us is maximum (w.r.t. <r.,) among the edges of AC., . (S")
weighing 3, and wvavs is minimum (w.r.t. <p.,)among the edges weighing 3 and
not intersecting vsvs, then AC., (S’), in some cases, happens to contain the
configuration associated with Sj.

Clearly, our graph chasing is simpler when the graph underlying AC., . (5’)
is a proper subgraph of K3 3, because there are fewer possibilities to be taken into
account.

We end by pointing out that the results obtained in Section 4 immediately
imply that Gr is reduced. O
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