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Abstract. By means of suitable sequences of graphs, in a previous paper,
we have studied the reduced lexicographic Gröbner bases of a family of ho-
mogeneous toric ideals. In this paper, we deepen the analysis of those bases
and derive some geometric properties of the corresponding projective toric
varieties.

1. Introduction

Let K be any field and r be any integer ≥ 2. Let Πr×3×3 be the following map
between polynomial rings:

K[x] := K[xijk] → K[uij , vik, wjk]
xijk �→ uijvikwjk

with i ∈ r := {1, 2, . . . , r}, j, k ∈ 3 := {1, 2, 3}.
The prime homogeneous ideal

Ir×3×3 := Ker(Πr×3×3)

defines a projective toric variety Yr×3×3 in P
9r−1
K .

It is well known (cf. e.g. [St95, Chapter 4]) that a family of generators of
Ir×3×3 can be described as follows.

Let Ar×3×3 indicate the (6r + 9) × 9r matrix having columns

a
(ijk)

r×3×3 := eij ⊕ eik ⊕ e
′
jk , i ∈ r, j, k ∈ 3,

where {eij} = {eik} is the canonical basis of the Z-module of r×3 integer matrices
(denoted by Z

r×3) and {e′
jk} is the canonical basis of Z

3×3.
We think of Ar×3×3 as of the matrix of the Z-morphism

Z
r×3×3 → Z

r×3 ⊕ Z
r×3 ⊕ Z

3×3

u �→ Ar×3×3 u

where Z
r×3×3 denotes the Z-module of 3-dimensional integer matrices of format

r × 3 × 3.
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Notice that given any integer vector u , there is a unique way of writing it as
the difference of two vectors with non negative entries: u = u+ − u−.

Then one proves that the set:

Br×3×3 := {xu+ − xu− | u ∈ KerZ(Ar×3×3)}
is a set of generators of Ir×3×3. Moreover, if < is any term order on K[x], then
the reduced Gröbner basis of Ir×3×3 w.r.t. < consists of a suitable finite subset of
Br×3×3.

From now on, we write ΠAr×3×3 , IAr×3×3 and YAr×3×3 instead of Πr×3×3, Ir×3×3

and Yr×3×3, respectively.

We have proved in [BR01] that the elements of Br×3×3 are in one to one
correspondence with certain r-tuples of closed paths of a suitable graph Gr×3×3 to
be described later (cf. Section 2).

We use this result to find the dimension of YAr×3×3 in Corollary 2.3.

Let <Lex denote the pure lexicographic term order induced on K[x] by

xijk <Lex xi′j′k′ ⇔ (i, j, k) <lex (i′, j′, k′),

where (i, j, k) <lex (i′, j′, k′) if and only if the first nonzero component of the
difference vector is negative.

We have proved in [BR03], that the reduced lexicographic Gröbner basis of
IAr×3×3 for each r ≥ 6 only depends on the reduced lexicographic Gröbner bases
for r = 5, 4, 3, 2.

The proofs of [BR03] have not required a complete description of the bases for
r = 5, 4, 3, 2. It is the main purpose of this note to give such a complete description
(cf. Section 3) and derive from it some properties enjoyed by every variety YAr×3×3 ,
r ≥ 2 (cf. Section 4). The same complete description will be used in a forthcoming
paper investigating the Hilbert functions of the varieties YAr×3×3 .

One should remark that our complete description of the bases for r = 5, 4, 3, 2
is not the result of computer calculations. It is obtained by means of considerations
on the graphs which can occur. In fact our description

(1): makes it possible to discern a pattern in the thousands of polynomials
one finds in the outputs of computer calculations, and

(2): suggests the new algorithm of Remark 4.6, aimed at computing the
maximal simplices of the lexicographic triangulation of conv(Ar×3×3).

There are three cases, though, in degree 8, 9 and 10, respectively, where we
use [CoCoA] to scan the outputs and count how many binomials with certain
properties exist, in order to confirm the completeness of some lists of ours.

One should also remark that by a method first suggested by [CT], the descrip-
tion of the reduced lexicographic Gröbner basis of IAr×3×3 amounts to solving the
integer programming problem associated with the matrix Ar×3×3. Our investiga-
tion of such a problem (in [BR01] and [BR03]) has been the source of our interest
in the varieties YAr×3×3 .
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2. The graph Gr×3×3

We begin with some definitions and results contained in [BR01] and [BR03].
The graph Gr×3×3 mentioned in the Introduction is defined to be the bipartite

graph having V1 := r × 3 and V2 := r × 3 as vertex classes, and E := {eijk | i ∈ r ,
j ∈ 3 , k ∈ 3} as set of edges, where

eijk = {(i, j) ∈ V1, (i, k) ∈ V2}.
Gr×3×3 is the disjoint union of r copies of the complete bipartite graph K3,3;

we denote them by K
(1)
3,3 ,K

(2)
3,3 , . . . ,K

(r)
3,3 .

For every choice of i, i′ in r , j in 3 and k in 3 , we say that the edges eijk and
ei′jk are parallel.

An r−tuple S := (C1, C2, . . . , Cr) is called an admissible r−tuple of closed
paths of Gr×3×3 if the following properties hold:

(1): For every i ∈ r , either Ci = ∅ or Ci is a closed path of the subgraph
K

(i)
3,3 of Gr×3×3.

(2): For every edge e occurring in S, there are in S as many edges parallel
to e that occur in even position as edges parallel to e in odd position.

(3): For every i ∈ r such that Ci �= ∅, every edge of Ci either is always in
odd position (“odd edge”), or is always in even position (“even edge”).

The closed paths above have to be considered as cyclic structures, with no
definite starting point (but still with a division of edges into even and odd).

In [BR01] we have proved the following result, reformulated in this way in
[BR03, Theorem 1.4].

Theorem 2.1. Let us associate the variable xijk with the edge eijk of Gr×3×3,
and viceversa. With every admissible r−tuple S := (C1, . . . , Cr) of closed paths of
Gr×3×3, we can associate the binomial xu+ − xu−

, where the nonzero entries of u+

are given by the multiplicities of all odd edges of S, the nonzero entries of u− by
the multiplicities of all even edges, and the multiplicity of an edge e of Ci is the
number of times e occurs in Ci. It turns out that xu+ − xu− ∈ Br×3×3 and that the
application

{admissible r-tuples of closed paths of Gr×3×3} → Br×3×3

defined in this way is a bijection.

Example 2.2. Let us consider the graph G3×3×3 and the following admissible
triplet S := (C1, C2, C3) of closed paths of G3×3×3 (the dotted edges being in even
position):

V1 (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (i, j)

V2 (1, 1) (1, 2)

C1

(1, 3) (2, 1) (2, 2)

C2

(2, 3) (3, 1) (3, 2)

C3

(3, 3) (i, k)
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The binomial associated with S is

x
111

x2
123

x
131

x
211

x2
221

x3
232

x
312

x
313

x2
322

x2
331

x
333

− x
113

x2
121

x
133

x
212

x2
222

x3
231

x2
311

x2
323

x3
332

.

In the next section we shall see which admissible r−tuples of closed paths
correspond to the elements of the reduced lexicographic Gröbner basis of the ideal
IAr×3×3 .

Here we use the previous theorem for computing the dimension of the variety
YAr×3×3 .

Corollary 2.3. For every r ≥ 2, dim(YAr×3×3) = 5r + 3.

Proof. We have to prove that the Krull dimension of K[x]/IAr×3×3 is 5r + 4.
Consider the following subgraph, H, of Gr×3×3:

V1 (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) . . . (r, 1) (r, 2) (r, 3) (i, j)

V2 (1, 1) (1, 2)

K
(1)
3,3

(1, 3) (2, 1) (2, 2)

H2

(2, 3) . . . (r, 1) (r, 2)

Hr

(r, 3) (i, k)

Let y be the subset of x corresponding to H. Since IAr×3×3 is a prime ideal, it
is enough to prove that y is maximally independent modulo IAr×3×3 . Assume for
a contradiction that it is not independent. Then there exists f ∈ IAr×3×3 ∩ K[y],
f �= 0. Hence the reduced Gröbner basis (w.r.t. <Lex) of IAr×3×3 contains a
binomial g with in<Lex

(g) dividing in<Lex
(f). But g corresponds to an r−tuple

S := (C1, . . . , Cr) having its maximum edges (w.r.t. <Lex) occurring among the
edges of the subgraph H. (A maximum edge is just an edge corresponding to an
indeterminate occurring in the maximum monomial of g: cf. [BR01, Definition
4.1]). Let Cm be the rightmost nonempty path of S; 2 ≤ m ≤ r. Then the
maximum edges of Cm occur among the edges of Hm, in H. But this contradicts
the fact that Cm must contain at least two nonintersecting maximum edges (cf.
[BR01, Lemma 4.11]). This shows that y is independent; it remains to be proved
that it is maximally independent. Suppose not. If xijk is not in y, then 2 ≤ i ≤ r

and the corresponding eijk occurs in K
(i)
3,3, but does not belong to Hi. Hence

j, k ∈ {2, 3}, so that a contradiction arises from the existence in IAr×3×3 of the
following (nonzero) binomial:

x
ijk

x
i11

x
1j1

x
11k

− x
ij1

x
i1k

x
1jk

x
111

.

�
Remark 2.4. The dimension of YAr×3×3 can be also obtained as a special case

of a result recorded in the introduction of [SS03]. Namely, dim(YAr×3×3)+1 equals
the rank of the matrix A(r) and such a rank is 9r − (r − 1)(n − d), with n = 9 and
d = 5. In the above, A(r) (which turns out to coincide with our Ar×3×3, up to a
permutation of rows) stands for the r−th Lawrence lifting of A, and A is the 6× 9
matrix whose columns are

{ej ⊕ ek|j , k ∈ 3},
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{e1, e2, e3} being the canonical basis.

3. RG−sequences

By definition, an RG−sequence of Gr×3×3 w.r.t.<Lex is an admissible r−tuple
of closed paths, S, such that the bijection of Theorem 2.1 sends S to an element of
the reduced lexicographic Gröbner basis of the ideal IAr×3×3 .

The degree of an RG−sequence is the degree of the corresponding binomial.

[BR03, Theorem 6.1] says the following.

Theorem 3.1. Let r′ ∈ {2, 3, 4, 5} and S′ := (D1, . . . , Dr′) an RG−sequence of
Gr′×3×3 (w.r.t. <Lex) such that Di′ �= ∅ for every i′ ∈ r′. For every r ≥ 6 and for
every choice of indices i1, i2, . . . , ir′ such that 1 ≤ i1 < i2 < · · · < ir′ ≤ r, consider
the r−tuple S

i1 ,..., ir′ := (C1, . . . , Cr) such that

Ch :=

⎧⎨
⎩

Di′ if h = ii′

∅ else,

clearly an admissible r−tuple of closed paths of Gr×3×3. Then all and only the
RG−sequences of Gr×3×3 (w.r.t. <Lex) are obtained in this way, when r′ ranges
over {2, 3, 4, 5} and S′ ranges over the set of all the RG−sequences of Gr′×3×3 with
no empty path.

We are now going to describe all RG−sequences of Gr×3×3 (w.r.t. <Lex) having
formats 2 × 3 × 3, 3 × 3 × 3, 4 × 3 × 3, 5 × 3 × 3.

Consistently with [BR03, Section 4], a section in which the reader may want
to browse, we stipulate the following.

(a): n ∈ {1, . . . ,15} denotes one of the following fifteen cycles:

• • • • • • • • •

• • • • • • • • •

1 2 3

• • • • • • • • •

• • • • • • • • •

4 5 6

• • • • • • • • •

• • • • • • • • •

7 8 9
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• • • • • • • • •

• • • • • • • • •

10 11 12

• • • • • • • • •

• • • • • • • • •

13 14 15
(b): In the above list, the maximum edges w.r.t. <Lex are the continuous

ones, and are assumed to be odd.
(c): n̂ denotes the cycle obtained from n by turning odd (resp., even) edges

into even (resp., odd) ones. n̂ is called the anti-isomorphic cycle of n.
(d): Given two cycles n1 and n2, n1 + n2 denotes the closed path obtained

by patching together n1 and n2 and deleting the edges that in so doing
happen to be even and odd at the same time. Similarly for n1 + n̂2 and
n̂1 + n̂2. For instance:

• • • • • •
• • • • • •

2 + 6 6 + 9̂

We are going to list the RG−sequences occurring in the formats r × 3× 3, 2 ≤
r ≤ 5, according to their degrees. Moreover, whenever two different RG−sequences
only differ by some empty paths, we just describe the one with no empty paths.
For instance, the RG−sequence of format 2 × 3 × 3:

• • • • • •

• • • • • •

1̂ 1
will be described (in degree 4), while the RG−sequence of format 3 × 3 × 3:

• • • • • • • • •

• • • • • • • • •

1̂ ∅ 1
will not.

RG−sequences of degree 4
They first occur in format 2 × 3 × 3. As shown in [BR01], they consist of all

the pairs of anti-isomorphic cycles of length 4. In format 2 × 3 × 3 there are 9 of
them, one for each of the cycles 1, . . . ,9.
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RG−sequences of degree 6
As seen in [BR01], we have all the pairs of anti-isomorphic cycles of length 6

occurring in 2 × 3 × 3, and all the triplets of length 4 cycles occurring in 3 × 3 × 3
(cf. [BR01, Proposition 4.10]). The number of the above pairs is 6 (one for each
of the cycles 10, . . . ,15). As for the number of the above triplets, we deduce from
[BR01, Proposition 4.10] that, for every vertex of K3,3, one can construct 3! = 6
degree 6 RG−sequences, so that one finds in format 3 × 3 × 3 exactly 36 degree
6 RG−sequences (without empty paths).

RG−sequences of degree 7
As seen in [BR01], they first occur in format 3 × 3 × 3. They are all the non-

divisible triplets (non-divisible in the sense of [BR01, Definition 4.15]) consisting
of one length 6 cycle and two length 4 cycles, built starting from a length 6 “raw”
cycle plus one of its chords (cf. [BR01, Proposition 4.13 and Proposition 4.16]).
By a raw cycle we simply mean a cycle whose edges are not divided into two classes
of even and odd edges.

We list all the RG−sequences of degree 7 (28 of them altogether) divided into
six groups, according to the length 6 raw cycles involved. For simplicity, the three
upper vertices of K3,3 are denoted by a, b, c (left to right). The three lower vertices
by d, e, f (left to right).

(1): Length 6 cycle: the raw cycle supporting both 10 and 1̂0

(1.1) Chord {a, e}:
(6, 1̂0, 4̂).

(1.2) Chord {b, f}:
(3, 1̂0, 8̂).

(1.3) Chord {c, d}:
(10, 9̂,1) , (1̂0, 1̂,9).

(2): Length 6 cycle: the raw cycle supporting both 11 and 1̂1.

(2.1) Chord {a, e}:
(5, 1̂1,7).

(2.2) Chord {b, d}:
(1, 1̂1,3).

(2.3) Chord {c, f}:
Both triplets obtained by a permutation of the first two
cycles of

(8, 9̂,11).

(3): Length 6 cycle: the raw cycle supporting both 12 and 1̂2

(3.1) Chord {a, d}:
Both triplets obtained by a permutation of the first two
cycles of

(3, 7̂,12).



8 GIANDOMENICO BOFFI AND FABIO ROSSI

(3.2) Chord {b, e}:
(1̂2, 5̂,1) , (12, 1̂,5).

(3.3) Chord {c, f}:
Both triplets obtained by a permutation of the first two
cycles of

(6, 2̂,12).

(4): Length 6 cycle: the raw cycle supporting both 13 and 1̂3

(4.1) Chord {b, d}:
(2, 1̂3,4).

(4.2) Chord {c, e}:
(7, 1̂3,8).

(4.3) Chord {a, f}:
(13, 9̂,5) , (1̂3, 5̂,9).

(5): Length 6 cycle: the raw cycle supporting both 14 and 1̂4

(5.1) Chord {c, e}:
(1, 1̂4,6).

(5.2) Chord {b, f}:
(5, 1̂4,2).

(5.3) Chord {a, d}:
Both triplets obtained by a permutation of the first two
cycles of

(4, 9̂,14).

(6): Length 6 cycle: the raw cycle supporting both 15 and 1̂5

(6.1) Chord {a, f}:
(15, 6̂,3) , (1̂5, 3̂,6).

(6.2) Chord {b, e}:
Both triplets obtained by a permutation of the first two
cycles of

(4, 8̂,15).
(6.3) Chord {c, d}:

(1̂5, 7̂,2) , (15, 2̂,7).

RG−sequences of degree 8
By the results in [BR01], they can first occur in format 4 × 3 × 3, and each

one of them must consist of four length 4 cycles.
All the admissible 4−tuples of length 4 cycles constructed in [BR03, Proposi-

tion 3.1] are RG−sequences. We claim that there are no others.
Since, thanks to [BR03, Proposition 3.1], for every edge of K3,3 we can con-

struct 4! = 24 admissible 4−tuples of length 4 cycles not involving that edge, we
have in this way 9 · 24 = 216 RG−sequences of degree 8. But 216 is precisely the
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number given us by a computer, if we ask it to count how many degree 8 binomials
occur in the reduced lexicographic Gröbner basis of format 4 × 3 × 3.

RG−sequences of degree 9
One of them already occurs in format 3 × 3 × 3 (cf. [BR03, Remark 2.3]),

namely:
(3 + 6, 9̂,12).

Each RG−sequence first occurring in format 4× 3 × 3 must consist of a single
length 6 cycle and three length 4 cycles.

[BR03, Proposition 3.3] shows a way to construct admissible 4−tuples con-
sisting of a single length 6 cycle and three length 4 cycles, starting from a “raw”
length 6 cycle and a selected edge on it (as before, a raw cycle is simply a cycle
whose edges are not divided into two classes of even and odd edges). The admis-
sible sequences so obtained are not always RG−sequences, but the following 40
are. We list them divided into six groups, according to the length 6 raw cycles
involved. We have identified the listed 40 RG−sequences by means of a technique
close to that used in the proof of [BR03, Theorem 4.2]. One checks by computer
that there are no other RG−sequences of format 4 × 3 × 3 with no empty paths.
Such a check is performed by finding in the reduced lexicographic Gröbner basis
precisely 40 binomials which have at least one indeterminate xijk for every choice
of i in {1, 2, 3, 4}.

(1): Length 6 cycle: the raw cycle supporting both 10 and 1̂0

(1.1) Edge {a, d}:
Both 4−tuples obtained by a permutation of the second
and third cycles of

(10, 9̂, 4̂,7).

(1.2) Edge {b, d}:
(3, 1̂0, 1̂,2).

(1.3) Edge {c, e}:
(6, 1̂0, 1̂,7).

(1.4) Edge {c, f}:
Both 4−tuples obtained by a permutation of the second
and third cycles of

(10, 8̂, 9̂,2).

(2): Length 6 cycle: the raw cycle supporting both 11 and 1̂1

(2.1) Edge {a, d}:
Both 4−tuples obtained by a permutation of the second
and third cycles of

(11, 3̂, 7̂,4).

(2.2) Edge {b, e}:
Both 4−tuples obtained by a permutation of the first
and second cycles of

(1,5, 1̂1,4).
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(3): Length 6 cycle: the raw cycle supporting both 12 and 1̂2

(3.1) Edge {c, d}:
The six 4−tuples obtained by a permutation of the
first three cycles of

(2̂, 7̂,9,12).

(3.2) Edge {a, f}:
The six 4−tuples obtained by a permutation of the
first three cycles of

(3,6, 9̂,12).

(4): Length 6 cycle: the raw cycle supporting both 13 and 1̂3

(4.1) Edge {a, d}:
Both 4−tuples obtained by a permutation of the second
and third cycles of

(13, 9̂, 4̂,3).

(4.2) Edge {a, e}:
(7, 1̂3, 5̂,6).

(4.3) Edge {b, f}:
(2, 1̂3, 5̂,3).

(4.4) Edge {c, f}:
Both 4−tuples obtained by a permutation of the second
and third cycles of

(13, 8̂, 9̂,6).

(5): Length 6 cycle: the raw cycle supporting both 14 and 1̂4

(5.1) Edge {c, f}:
Both 4−tuples obtained by a permutation of the second
and third cycles of

(14, 2̂, 6̂,8).

(5.2) Edge {b, e}:
Both 4−tuples obtained by a permutation of the first
and second cycles of

(5,1, 1̂4,8).

(6): Length 6 cycle: the raw cycle supporting both 15 and 1̂5

(6.1) Edge {a, d}:
Both 4−tuples obtained by a permutation of the second
and third cycles of

(1̂5, 3̂, 7̂,9).

(6.2) Edge {a, e}:
(4,15, 6̂,5).
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(6.3) Edge {b, d}:
(4,15, 2̂,1).

(6.4) Edge {b, f}:
(8, 1̂5, 3̂,5).

(6.5) Edge {c, e}:
(8, 1̂5, 7̂,1).

(6.6) Edge {c, f}:
Both 4−tuples obtained by a permutation of the second
and third cycles of

(15, 2̂, 6̂,9).

RG−sequences of degree 10
Some of them first occur in format 4× 3× 3, some others first occur in format

5 × 3 × 3.

Format 4 × 3 × 3
The RG−sequences of degree 10 first occurring in format 4 × 3 × 3 consist

of three length 4 cycles and a length 8 closed path having one (and only one)
double edge among the minimum edges (= dotted = even). There are 20 such
RG−sequences and we list them according to the double edges occurring in them.

(1): Double edge {a, d}:
Both 4−tuples obtained by a permutation of the first
and second cycles of

(3,7, 4̂ + 9̂,8).

(2): Double edge {a, e}:

(5,4 + 6̂, 7̂,2).

(3): Double edge {a, f}:
Both 4−tuples obtained by a permutation of the second
and third cycles of

(3 + 6, 5̂, 9̂,1).

(4): Double edge {b, d}:

(1,4 + 2̂, 3̂,6).

(5): Double edge {b, e}:
(5.1) Both 4−tuples obtained by a permutation of the
second and third cycles of

(4̂ + 8̂, 1̂, 5̂,9).

(5.2) The six 4−tuples obtained by a permutation of the
first three cycles of

(4, 9̂,8,1 + 5).
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(6): Double edge {b, f}:

(5,8 + 3̂, 2̂,7).

(7): Double edge {c, d}:
Both 4−tuples obtained by a permutation of the second
and third cycles of

(2 + 7, 1̂, 9̂,5).

(8): Double edge {c, e}:

(1,8 + 7̂, 6̂,3).

(9): Double edge {c, f}:
Both 4−tuples obtained by a permutation of the first
and second cycles of

(2,6, 8̂ + 9̂,4).

Format 5 × 3 × 3

All the admissible 5−tuples of length 4 cycles (hence of degree 10) constructed
in [BR03, Proposition 3.5] are RG−sequences. We claim that there are no others.

Since, thanks to [BR03, Proposition 3.5], for every edge of K3,3 we can con-
struct 5! = 120 admissible 5−tuples of length 4 cycles, we have in this way 9 ·120 =
1080 RG−sequences of degree 10. But 1080 is precisely the number given us by
a computer, if we ask it to count how many degree 10 binomials occur in the re-
duced lexicographic Gröbner basis of format 5 × 3 × 3, which have at least one
indeterminate xijk for every choice of i in {1, 2, 3, 4, 5}.

This completes the description of all the RG−sequences of format r × 3 × 3,
2 ≤ r ≤ 5. For r ≥ 6, every RG−sequence is obtained from one of these by means
of a suitable insertion of empty paths.

4. Geometric consequences

In this section we derive some consequences of the material in Section 3.

Proposition 4.1. The initial ideal in<Lex
(IAr×3×3) is square-free for every

r ≥ 2. In particular, it is a radical ideal.

Proof. Close inspection of the description of all RG−sequences of format
r × 3 × 3, 2 ≤ r ≤ 5, shows that in<Lex

(g) is square-free for every g occurring in
the reduced lexicographic Gröbner basis of the corresponding ideal IAr×3×3 . Since,
for r ≥ 6, every RG−sequence is obtained from one of the previous RG−sequences
by means of a suitable insertion of empty paths, it follows that in<Lex

(g) is square-
free for every g occurring in the reduced lexicographic Gröbner basis of IAr×3×3 for
every r ≥ 2. �
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Remark 4.2. The square-freeness of the previous proposition may not extend
to other types of format. For instance, the reduced lexicographic Gröbner basis of
IA3×4×4 contains the following binomial:

x
111

x
134

x
142

x
212

x
213

x
224
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Following [St95, Chapter 8], we let ∆<Lex
(IAr×3×3) denote the initial complex

of the ideal IAr×3×3 w.r.t. <Lex : it is a simplicial complex on the vertex set
{(ijk) | i ∈ r, j , k ∈ 3} (whose Stanley-Reisner ideal is precisely the radical ideal
in<Lex

(IAr×3×3)).
Let QAr×3×3

:= conv(Ar×3×3) denote the polytope which is the convex hull of

the points of R
6r+9 corresponding to the columns a

(ijk)

r×3×3 of the matrix Ar×3×3.
We can consider ∆<Lex

(IAr×3×3) as a regular triangulation of QAr×3×3
(cf.

[St95, Theorem 8.3]), whose maximal simplices are the (5r + 3)−simplices. Such
a regular triangulation is called lexicographic triangulation.

[St95, Theorem 4.16] says that the degree of the variety YAr×3×3 is given by
the normalized volume of QAr×3×3

, hence by the sum of the normalized volumes
of the maximal simplices of its lexicographic triangulation.

Corollary 4.3. For every r ≥ 2, the lexicographic triangulation of the polytope
QAr×3×3

⊆ R
6r+9 is unimodular (= every maximal simplex has normalized volume

1). In particular, the degree of YAr×3×3 equals the number of the maximal simplices
of QAr×3×3

relative to the lexicographic triangulation.

Proof. All follows from Proposition 4.1, since [St95, Corollary 8.9] says that
the lexicographic triangulation is unimodular if and only if the lexicographic initial
ideal in<Lex

(IAr×3×3) is square-free. �

Remark 4.4. Again recalling [St95, Chapter 8], a subset σ of {(ijk) | i ∈
r, j , k ∈ 3} is a (5r + 3)−simplex of ∆<Lex

(IAr×3×3) if, and only if, |σ| = 5r + 4
and the reduced Gröbner basis of IAr×3×3 w.r.t. <Lex contains no polynomial having
initial term with support enclosed in σ. (Here the support of a monomial in the
indeterminates xijk is the set of triplets (ijk) associated with the indeterminates
actually occurring in that monomial.)

Since in<Lex
(IAr×3×3) is square-free, we can state in our language: σ is a

(5r + 3)−simplex if, and only if, |σ| = 5r + 4 and no RG−sequence of Gr×3×3

(w.r.t. <Lex) exists such that its maximum edges occur among the edges of the
subgraph {eijk | (ijk) ∈ σ} of Gr×3×3.

In principle, Remark 4.4 gives us a procedure to list all maximal simplices of
QAr×3×3

, thereby getting the degree of the variety YAr×3×3 . We illustrate this point
by the following example, dealing with format 2 × 3 × 3.

Example 4.5. We claim that YA2×3×3 has degree 81. I.e., there exist 81 13−sim-
plices of ∆<Lex

(IA2×3×3).
Let us identify every cardinality 14 subset σ of {(ijk) | i ∈ 2, j , k ∈ 3} with

the subgraph
(σ1, σ2) := {eijk | (ijk) ∈ σ}
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of G2×3×3. The notation stresses the fact that the written subgraph is the disjoint
union of σ1 and σ2, where σ1 ⊆ K

(1)
3,3 and σ2 ⊆ K

(2)
3,3 .

We want to show that exactly for 81 choices of (σ1, σ2), no RG−sequence exists
such that its maximum edges occur among the edges of (σ1, σ2).

Since |σ| = 14, all possible choices for (σ1, σ2) can be grouped into the following
five cases:

(1) σ1 = K
(1)
3,3 , |σ2| = 5

(2) |σ1| = 8 , |σ2| = 6
(3) |σ1| = 7 , |σ2| = 7
(4) |σ1| = 6 , |σ2| = 8

(5) |σ1| = 5 , σ2 = K
(2)
3,3

It turns out that case (1) yields 6 simplices, and so does case (5) which is dual
to (1). Case (2) yields 21 simplices, and so does case (4) which is dual to case (2).
Case (3) yields 27 simplices. Hence 81 simplices altogether, as claimed.

In order to be short, we discuss only case (1). The other cases are left to the
reader.

Assume that σ1 = K
(1)
3,3 and |σ2| = 5. Recalling the description of all degree 4

and degree 6 RG−sequences given in Section 3, if no RG−sequence has maximum
edges occurring among the edges of (σ1, σ2), then σ2 cannot have “non-intersecting”
edges. That is, σ2 must be one of the following subgraphs of K

(2)
3,3 :

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •
This proves that there are 6 simplices belonging to case (1). For instance, the

pair formed by σ1 = K
(1)
3,3 and σ2 =

• • •

• • •
corresponds to:

σ = {(111), (112), (113), (121), (122), (123),
(131), (132), (133), (211), (212), (213), (221), (231)}.

It is hard to use in general, even with the help of a computer, the procedure
for getting the degree of the variety YAr×3×3 illustrated by Example 4.5.

It is better to adopt the following point of view.

Remark 4.6. Notation as in Remark 4.4. The statement that σ is a (5r +
3)−simplex is further equivalent to saying that |σ| = 5r + 4 and

NF (
∏

(ijk)∈σ

xijk, in<Lex
(IAr×3×3)) �= 0,
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where the LHS of the previous inequality denotes the normal form of the mono-
mial

∏
(ijk)∈σ

xijk modulo the monomial ideal in<Lex
(IAr×3×3) (i.e., the uniquely de-

termined remainder on division of
∏

(ijk)∈σ

xijk by the (unique) minimal basis of

in<Lex
(IAr×3×3)).

This suggests a simple algorithm for computing the maximal simplices of the
regular triangulation ∆<Lex

(IA2×3×3). Presumably a very effective algorithm, if one
uses the reduced lexicographic Gröbner basis of IAr×3×3 as computed by the al-
gorithm indicated in [BR03, Remark 6.3] in order to find the minimal basis of
in<Lex

(IAr×3×3). The only drawback is that we need producing all (5r + 4)−subsets
of a set of cardinality 9r.

For the rest of this section, we assume that the field K is algebraically closed
and of characteristic zero. We get another consequence of Proposition 4.1

An irreducible projective variety embedded in projective space is called projec-
tively normal if its coordinate ring is integrally closed (in its field of fractions).

Corollary 4.7.

(a): For every r ≥ 2, the variety YAr×3×3 is projectively normal.
(b): Let HAr×3×3

(n) (resp., PAr×3×3
(t)) be the Hilbert function (resp., poly-

nomial) of the variety YAr×3×3 . For every r ≥ 2, one has:

HAr×3×3
(n) = PAr×3×3

(n)

for every n ∈ N. I.e., for every r ≥ 2, the index of regularity of IAr×3×3

is zero.

Proof.

(a): It follows from [St95, Proposition 13.5] that for K[x]/IAr×3×3 to be
integrally closed, it is enough to show that the semigroup NAr×3×3 is
equal to

ZAr×3×3 ∩ pos(Ar×3×3),

where pos(Ar×3×3) is given by all R+−linear combinations of the columns
a

(ijk)

r×3×3, and R+ denotes the set of nonnegative reals.
The stated equality follows from Proposition 4.1 in the way illustrated

in the proof of part (i) of [St95, Proposition 13.15].
(b): It follows from [St95, Chapter 4] that

HAr×3×3
(n) =

∣∣∣ NAr×3×3 ∩ n · QAr×3×3

∣∣∣
and that

EAr×3×3
(n) =

∣∣∣ ZAr×3×3 ∩ n · QAr×3×3

∣∣∣ ,

where EAr×3×3
(t) is the normalized Ehrhart polynomial of QAr×3×3

) (a
polynomial of degree dim(QAr×3×3

)). Hence it suffices to show that:

ZAr×3×3 ∩ n · QAr×3×3
⊆ NAr×3×3 ∩ n · QAr×3×3

.
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Let b ∈ ZAr×3×3 ∩ n · QAr×3×3
, say b = n · b′ with b′ ∈ QAr×3×3

. Then

b′ =
∑
(ijk)

λijk a
(ijk)

r×3×3,

where λijk ∈ R+ and
∑
(ijk)

λijk = 1. It follows that

b ∈ pos(Ar×3×3),

indeed
b ∈ ZAr×3×3 ∩ pos(Ar×3×3).

As in the proof of part (a), the latter intersection equals NAr×3×3, and
we are through.

�
One should notice that part (b) above implies PAr×3×3

(t) = EAr×3×3
(t), a known

characterization of the normality of YAr×3×3 (cf. [St95, Theorem 13.11]).
In a forthcoming paper we shall investigate HAr×3×3

(n) and PAr×3×3
(t), by

means of the description of all RG−sequences given in Section 3.
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