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Abstract

By means of suitable sequences of graphs, we describe the reduced lexico-
graphic Gröbner basis of the toric ideal associated with the 3−dimensional
transportation problem of format r× 3× 3 (r any integer > 1). In partic-
ular, we prove that the bases for r = 2, 3, 4, 5 determine all others.

Introduction

In this article we continue the study, begun with [4] (and its larger version
[3], available on line), of the reduced lexicographic Gröbner bases related to
3−dimensional transportation problems (for an introduction to these problems,
cf. e.g. [10, Chapter 14]).

The new idea introduced in [3] and [4] was the use of sequences of graphs in
order to describe the binomials occurring in the mentioned lexicographic Gröbner
bases. The same idea is employed here.

The goal of this paper is to give a description of the reduced lexicographic
Gröbner basis of the toric ideal associated with the 3−dimensional transporta-
tion problem of format r × 3 × 3 (r any integer > 1). In particular, it turns out
that the general case is completely determined by the knowledge of the cases of
format r′ × 3× 3, with r′ ranging in {2, 3, 4, 5}; i.e., there is a stability property
of the reduced Gröbner basis, starting from r = 5.

∗The hospitality of the Dipartimento di Scienze, Università “G. d’Annunzio” is gratefully
acknowledged by the second author. This work has been partially supported by MIUR.
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A forthcoming paper will illustrate some geometric applications relative to
triangulations of polytopes, computations of Hilbert functions, etc.

As for the Gröbner bases related to transportation problems of format r×s×t,
with fixed s and t but not necessarily 3, we believe that our approach can be
profitably used as well, but we are unable to be more specific at this moment.

It is necessary to indicate the relationship between the stability property of
our Gröbner bases and the articles [1] and [9] (published after we had completed
this paper). Since Markov bases are minimal generating sets of the toric ideal (cf.
e.g. the introduction of [9]), Theorem 6.1 below does in fact imply the stability
property proved for Markov bases in [1]. Instead one cannot obtain our results
from those of [1]. Indeed studying Gröbner bases and studying Markov bases are
two different strategies, as explained for example in the introduction of [2]. As
for the stability results contained in [9], they apply to Graver bases associated
with all formats r×s×t for fixed s and t. Hence they do imply, in particular, the
stability property of the reduced Gröbner bases with respect to any term order.
More specifically, [9] works out the case r× 3× 3 as an example and proves that
the Graver bases (hence all reduced Gröbner bases) stabilize at r = 9.

We sincerely thank the referees for some helpful comments.
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1. Recollections

For the convenience of the reader, we recall the approach to 3-dimensional trans-
portation problems introduced in [4]. We restrict to format r × 3 × 3.

Let Ar×3×3 indicate the matrix having columns

{eij ⊕ eik ⊕ e
′
jk | i ∈ r, j ∈ 3, k ∈ 3},

where r is an integer ≥ 2,

r := {1, 2, . . . , r}, 3 := {1, 2, 3},
{eij} = {eik} is the canonical basis of the Z-module of r × 3 integer matrices

(denoted by Zr×3) and {e′
jk} is the canonical basis of Z3×3.

The integer programming problem associated with Ar×3×3 (“a transportation
problem of format r × 3 × 3”) can be solved by studying the toric ideal

IAr×3×3 := Ker(ΠAr×3×3),

where ΠAr×3×3 is the following map between polynomial rings:

K[xijk] → K[uij, vik, wjk],

xijk �→ uijvikwjk

with i ∈ r , j ∈ 3 , k ∈ 3 , and K is any field. We denote the domain of
ΠAr×3×3 by K[x].

We think of Ar×3×3 as of the matrix of the Z-morphism

Zr×3×3 → Zr×3 ⊕ Zr×3 ⊕ Z3×3

u �→ Ar×3×3 u

where Zr×3×3 denotes the Z-module of 3-dimensional integer matrices of format
r × 3 × 3.

Given any integer vector u , there is a unique way of writing it as the difference
of two vectors with non negative entries: u = u+ − u−. With this notation in
mind, let

Br×3×3 := {xu+ − xu− | u ∈ KerZ(Ar×3×3)},
a subset of IAr×3×3 .

It is a well known fact (cf. e.g. [10]) that if < is any term order on K[x], then
the reduced Gröbner basis of IAr×3×3 w.r.t. < consists of a suitable finite subset
of Br×3×3. As in [4], we are going to use graphs in order to describe Br×3×3 and
study reduced Gröbner bases.

Let Gr×3×3 be the bipartite graph having V1 := r× 3 and V2 := r× 3 as vertex
classes, and E := {eijk | i ∈ r , j ∈ 3 , k ∈ 3} as set of edges, where

eijk = {(i, j) ∈ V1, (i, k) ∈ V2}.
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Example 1.1: G3×3×3 is the graph:

V1 (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (i, j)

V2 (1, 1) (1, 2)

K
(1)
3,3

(1, 3) (2, 1) (2, 2)

K
(2)
3,3

(2, 3) (3, 1) (3, 2)

K
(3)
3,3

(3, 3) (i, k)

It is clear that Gr×3×3 is the disjoint union of r copies of the complete bipartite

graph K3,3; we denote them by K
(1)
3,3 , K

(2)
3,3 , . . . , K

(r)
3,3 .

For every choice of i, i′ in r , j in 3 and k in 3 , we say that the edges eijk and
ei′jk are parallel (cf. [4, Definition 2.2]).

Definition 1.2: Let S := (C1, C2, . . . , Cr) be an r-tuple satisfying the following
properties:

(1) For every i ∈ r , either Ci = ∅ or Ci is a closed path of the subgraph K
(i)
3,3

of Gr×3×3.

(2) For every edge e occurring in S, there are in S as many edges parallel to e
that occur in even position as edges parallel to e in odd position.

(3) For every i ∈ r such that Ci �= ∅, every edge of Ci either is always in odd
position (“odd edge”), or is always in even position (“even edge”).

We call S an admissible r−tuple of closed paths of Gr×3×3.

An example of admissible r−tuple of closed paths is in [4, Example 3.2].
Another interesting example is in [4, Remark 3.3].

Remark 1.3: (1) The definition of admissible r−tuple of closed paths given
above combines together [4, Definition 3.1] and [4, Remark 3.7].

(2) Closed paths have to be considered as cyclic structures, with no definite start-
ing point (but still with a division of edges into even and odd).

The following theorem summarizes the results of [4, Section 3].

Theorem 1.4: Let us associate the variable xijk with the edge eijk of Gr×3×3,
and viceversa. With every admissible r−tuple S := (C1, . . . , Cr) of closed paths
of Gr×3×3, we can associate the binomial xu+ − xu−

, where the nonzero entries
of u+ are given by the multiplicities of all odd edges of S, the nonzero entries of
u− by the multiplicities of all even edges, and the multiplicity of an edge e of Ci

is the number of times e occurs in Ci. It turns out that xu+ − xu− ∈ Br×3×3 and
that the application

{admissible r-tuples of closed paths of Gr×3×3} → Br×3×3

defined in this way is a bijection.
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Remark 1.5: (1) In [3] and [4], the word parity is used, instead of multiplicity.

(2) If xu+ − xu− ∈ Br×3×3 , then also xu− − xu+ ∈ Br×3×3 , and if S :=

(C1, . . . , Cr) is the r−tuple associated with xu+ − xu−
, then xu− − xu+

is
associated with the r−tuple obtained from S by simply exchanging the roles
of even and odd edges.

Example 1.6: Let us consider the graph G3×3×3 and the following admissible
triplet S := (C1, C2, C3) of closed paths of G3×3×3 (the dotted edges being in even
position):

V1 (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (i, j)

V2 (1, 1) (1, 2)

C1

(1, 3) (2, 1) (2, 2)

C2

(2, 3) (3, 1) (3, 2)

C3

(3, 3) (i, k)

The binomial associated with S is

x
111

x2

123
x131x211

x2
221

x3
232

x
312

x
313

x2
322

x2
331

x
333

− x
113

x2
121

x
133

x
212

x2
222

x3
231

x2
311

x2
323

x3
332

.

The corresponding 3-dimensional Z-matrix u := u+ − u− is described by the
following table:

u111 is 1 u211 is 1 u311 is -2
u112 0 u212 -1 u312 1
u113 -1 u213 0 u313 1
u121 -2 u221 2 u321 0
u122 0 u222 -2 u322 2
u123 2 u223 0 u323 -2
u131 1 u231 -3 u331 2
u132 0 u232 3 u332 -3
u133 -1 u233 0 u333 1

One checks that u ∈ KerZ(A3×3×3).

An example of the inverse bijection can be found in [4, Example 3.8].

2. RG-sequences

Definition 2.1: Let < be any term order on K[x]. An admissible r−tuple of
closed paths of Gr×3×3 is called an RG-sequence of Gr×3×3 w.r.t. < if the corre-
sponding element of Br×3×3 (in the bijection of Theorem 1.4) turns out to belong
to the reduced Gröbner basis of IAr×3×3 w.r.t. <.
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Let <Lex denote the pure lexicographic term order induced on K[x] by

xijk <Lex xi′j′k′ ⇔ (i, j, k) <lex (i′, j′, k′),

where (i, j, k) <lex (i′, j′, k′) if and only if the first nonzero component of the
difference vector is negative.

Example 2.2: Let r = 3 and choose <Lex on K[x]. Then the following triplet
(C1, C2, C3)

V1 (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (i, j)

V2 (1, 1) (1, 2)

C1

(1, 3) (2, 1) (2, 2)

C2

(2, 3) (3, 1) (3, 2)

C3

(3, 3) (i, k)

is an RG−sequence of G3×3×3 w.r.t. <Lex .
The edges which are not dotted determine the maximum term (w.r.t. <Lex) of

the binomial associated with (C1, C2, C3).

Remark 2.3: We point out to the reader that, due to an oversight, the triplet
described in Example 2.2 (which is (4.5) of [6]) does not appear in the statement
of [4, Theorem 5.1] (the only omission in there), but is correctly recorded in [3,
Theorem 5.1].

If < is any term order on K[x] and S := (C1, C2, . . . , Cr) is an admissible
r−tuple of (not all empty) closed paths of Gr×3×3, then we call maximum edge
of S (w.r.t. <) every edge eijk of Gr×3×3 such that xijk occurs in the maximum
term (w.r.t. <) of the binomial associated with S. (Cf. [4, Definition 4.1].)

Every edge eijk of Gr×3×3 such that xijk occurs in the minimum term (w.r.t.
<) of the above binomial will be called minimum edge of S.

Definition 2.4: Let < any term order on K[x] and S := (C1, C2, . . . , Cr)
be an admissible r−tuple of closed path of Gr×3×3. Let 2 ≤ r′ < r and S ′ :=
(D1, D2, . . . , Dr′) an admissible r′−tuple of closed path of Gr′×3×3. We say that
the maximum edges of S ′ (w.r.t. <) are among the maximum (resp., minimum)
edges of S, if there exist r′ indices 1 ≤ i1 < i2 < · · · < ir′ ≤ r such that, after

embedding every Di′ into the corresponding graph K
(ii′ )
3,3 , it turns out that every

maximum edge of Di′ is a maximum (resp., minimum) edge of Cii′ , with at least
the same multiplicity.
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Remark 2.5: If g ∈ IAr×3×3 and g′ ∈ IAr′×3×3
are the binomials associated with

S and S ′, respectively, then - up to an obvious change of the first indices of all
the variables occurring in g′ - the maximum edges of S ′ are among the maximum
(resp., minimum) edges of S if and only if in<(g′) divides in<(g) (resp., the
minimum monomial of g).

Example 2.6: Let r = 3 and choose the term order <Lex on K[x]. Let S :=
(C1, C2, C3) be the following admissible triplet of closed paths of G3×3×3:

V1 (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (i, j)

V2 (1, 1) (1, 2)

C1

(1, 3) (2, 1) (2, 2)

C2

(2, 3) (3, 1) (3, 2)

C3

(3, 3) (i, k)

Let S ′ := (D1, D2) the following admissible pair of closed paths of G2×3×3:

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3)

(1, 1) (1, 2)

D1

(1, 3) (2, 1) (2, 2)

D2

(2, 3)

In both cases, the dotted edges are minimum edges w.r.t. <Lex . Hence the
maximum edges of S ′ are among the maximum edges of S (just take i1 = 1 and
i2 = 3).

Again let 2 ≤ r′ < r and S ′ := (D1, D2, . . . , Dr′) an admissible r′−tuple of
closed paths of Gr′×3×3. For every choice of r′ indices ii′ such that 1 ≤ i1 < i2 <
· · · < ir′ ≤ r, consider the r−tuple S

i1
,..., ir′ := (C1, . . . , Cr) such that

Ch :=

⎧⎨
⎩

Di′ if h = ii′

∅ else.

Clearly, S
i1

,..., ir′ is an admissible r−tuple of closed paths of Gr×3×3.

Let < be any term order on K[xijk], i ∈ r , j ∈ 3 , k ∈ 3 . Let < also denote
the obvious term order induced on K[xijk], i ∈ r′ , j ∈ 3 , k ∈ 3 .
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Proposition 2.7: In the above conditions, if S ′ is an RG−sequence of Gr′×3×3

(w.r.t. <), then S
i1

,..., ir′ is an RG−sequence of Gr×3×3 (w.r.t. <).

Proof: Let g′ ∈ IAr′×3×3
be the binomial associated with S ′ and g

i1
,..., ir′ the bi-

nomial associated with S
i1

,..., ir′ . As observed in Remark 2.5, g
i1

,..., ir′ is obtained
from g′ by suitably changing the first indices of all variables occurring in g′.

The reduced Gröbner basis of IAr×3×3 , Ḡ say, contains a binomial ḡ such that
the initial monomial in<(ḡ) divides in<(g

i1
,..., ir′ ). If S̄ := (C̄1, C̄2, . . . , C̄r) stands

for the RG−sequence of Gr×3×3 associated with ḡ, then the maximum edges of
S̄ are among the maximum edges of S

i1
,..., ir′ . It follows that C̄h = ∅ whenever

h /∈ {i1, . . . , ir′}. Hence, up to a suitable change of the first indices of all variables
involved, we can think of ḡ as of an element of IAr′×3×3

, and in<(ḡ) divides

in<(g′). But then in<(ḡ) = in<(g′), since g′ belongs to the reduced Gröbner
basis of IAr′×3×3

.

Replacing ḡ by g
i1

,..., ir′ in Ḡ, we find another Gröbner basis, G, of IAr×3×3 . We

claim that G is reduced, so that G = Ḡ, and ultimately ḡ = g
i1

,..., ir′ .
If G were not reduced, the minimum monomial of g

i1
,..., ir′ should be divisible

by some in<(g), with g ∈ Ḡ and g �= g
i1

,..., ir′ . As above, we could think of g as
of an element of IAr′×3×3

and there would be a contradiction with g′ being an
element of the reduced Gröbner basis of IAr′×3×3

. �

Example 2.8: Let r = 4 and choose the term order <Lex on K[x]. Consider
the following four admissible 4−tuples of closed paths of the graph G4×3×3 (the
dotted edges being the minimum edges):
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(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (4, 1) (4, 2) (4, 3)

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (4, 1) (4, 2) (4, 3)

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (4, 1) (4, 2) (4, 3)

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (4, 1) (4, 2) (4, 3)

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (4, 1) (4, 2) (4, 3)

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (4, 1) (4, 2) (4, 3)

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (4, 1) (4, 2) (4, 3)

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (4, 1) (4, 2) (4, 3)

Each of them is an RG−sequence w.r.t. <Lex , because the triplet described in
Example 2.2 is an RG−sequence of G3×3×3 w.r.t. <Lex .

Proposition 2.7 implies that, if we are given an RG−sequence (D1, D2, . . . , Dr′)
of Gr′×3×3 with Di′ �= ∅ for every i′ ∈ r′, then for every r > r′, we can construct(

r
r−r′

)
RG−sequences of Gr×3×3 by inserting (in all possible ways) r− r′ empty

paths among the given D1, D2, . . . , Dr′ .
The main result of this paper (to be proven in Section 6, under the assumption

that <Lex is the chosen term order on K[x]) is that whenever r ≥ 6, every
RG−sequence of Gr×3×3 is obtained by inserting some empty paths in a suitable
RG−sequence of Gr′×3×3, where r′ ∈ {2, 3, 4, 5}.

Sections 3, 4 and 5 contain all the ingredients needed to prove our claim,
always working with <Lex .



G. Boffi, F. Rossi: Lex Gröbner bases of format r × 3 × 3 10

3. Description of some admissible r−tuples of cycles, r =
4, 5

From now on, we always assume that our term order on K[x] is the term order
<Lex .

Proposition 3.1: Let v1 ∈ V1 and v2 ∈ V2 be two vertices of K3,3. Call Kv1
v2

the
subgraph of K3,3 obtained by removing the edge {v1, v2}. Let C1 and C2 be the
only two length 4 cycles of Kv1

v2
having v1 as first and last vertex. Let C3 and C4

be the only two length 4 cycles of Kv1
v2

having v2 as first and last vertex. Then, for
every permutation (Ci1 , Ci2 , Ci3 , Ci4) of (C1, C2, C3, C4), there exists exactly one
way of turning (Ci1 , Ci2 , Ci3 , Ci4) into an admissible 4−tuple of cycles of G4×3×3,
such that its odd edges are its maximum edges w.r.t. <Lex .

Proof: For every j ∈ {1, 2, 3, 4}, define the map

pij : E(Cij) → {C1, C2, C3, C4} \ {Cij}

which sends each h ∈ E(Cij) to the unique Cik (�= Cij) containing some edge
parallel to h. It is surjective, and pij(h) = pij(h

′) implies that h and h′ are
incident.

Let l be the edge of Ci4 ⊆ K
(4)
3,3 corresponding to the maximum variable w.r.t.

<Lex ( the farthest edge to the right) and choose it to be odd. Then the parities
of all other edges of Ci4 are automatically determined.

But thanks to the surjectivity of pi4 , also the parities of all other edges of
(Ci1 , Ci2 , Ci3 , Ci4) are forced by the admissibility condition. �

Example 3.2: As usual, we stipulate that the even edges be indicated by dotted
lines. Let Kv1

v2
be the following:

• v1 •

• • v2 Kv1
v2

The corresponding four cycles are:

• • • • • • • • • • • •
• • • • • • • • • • • •

C1 C2 C3 C4

We consider the 4−tuple (C3, C4, C1, C2). In particular:
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• •
o

m

•

n
l

• • • C2

If l is chosen to be odd, the parities of the edges of C2 are:

• • •

• • •
But now p2(l) = C4, p2(n) = C3, p2(m) = p2(o) = C1. Hence:

• • • • • • • • •
• • • • • • • • •

C3 C4 C1

Proposition 3.3: Let C be a length 6 cycle of K3,3 and l one of its edges.
Call C̄ the subgraph of K3,3 obtained by drawing the only two chords of C which
contain one of the ends of l. Let C1 and C2 be the two length 4 cycles of C̄
containing l and just one of the two chords. Let C3 be the only length 4 cycle of
C̄ containing l and both chords. Then, for every permutation (Ci1 , Ci2 , Ci3 , Ci4) of
(C1, C2, C3, C), there exists exactly one way of turning (Ci1 , Ci2 , Ci3 , Ci4) into an
admissible 4−tuple of cycles of G4×3×3, such that its odd edges are its maximum
edges w.r.t. <Lex .

Proof: For every j ∈ {1, 2, 3, 4}, define the map

pij : E(Cij) \ {l} → {C1, C2, C3, C} \ {Cij}

which sends each h ∈ E(Cij) \ {l} to the unique Cik (�= Cij) containing some
edge parallel to h.

pij(h) = pij(h
′) implies that h and h′ are incident. Moreover, if Cij �= C, then

C ∈ Im(pij); if Cij = C, then pij is surjective.
Let m be the edge of Ci4 corresponding to the maximum variable w.r.t. <Lex

(the farthest edge to the right) and choose it to be odd. Then the parities of all
other edges of Ci4 are automatically determined.

If Ci4 = C, then the surjectivity of pi4 and the admissibility condition deter-
mine the parities of all other edges of (Ci1 , Ci2 , Ci3 , Ci4) as well.

If Ci4 �= C, then C ∈ Im(pi4) says that the parities of the edges of C are
determined by those of Ci4 . But then, as in the previous case, the parities of all
other edges of (Ci1 , Ci2 , Ci3 , Ci4) are determined. �
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Example 3.4: As usual, we stipulate that the even edges be indicated by dotted
lines. Let C and l be as in the following picture:

• •

l

•

• • • C

Then C̄ looks like:

• •

l

•

• • • C̄

where the two chords are dashed. Hence C1, C2 and C3 are:

• • • • • • • • •
• • • • • • • • •

C1 C2 C3

We consider the 4−tuple (C2, C, C3, C1). If m is chosen to be odd, the parities
of the edges of C1 are:

• •
a

l

•

b
m

• • •
One has p1(a) = p1(m) = C and p1(b) = C3. Then the parities of the edges of

C are:

• • •

• • •
and it follows that the parities of the edges of C2 and C3 are:

• • • • • •

• • • • • •
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Proposition 3.5: Let l be an edge of K3,3. Let C1, C2, C3 and C4 be the four
length 4 cycles of K3,3 containing l. For every Ci, there exists exactly one edge,
li, different from l and not contained in any other Cj, j �= i. The edges l1, l2, l3
and l4 form a length 4 cycle, C5. For every permutation (Ci1 , Ci2 , Ci3 , Ci4 , Ci5) of
(C1, C2, C3, C4, C5), there exists exactly one way of turning (Ci1 , Ci2 , Ci3 , Ci4 , Ci5)
into an admissible 5−tuple of cycles of G5×3×3, such that its odd edges are its
maximum edges w.r.t. <Lex .

Proof: Similar to the proof of Proposition 3.3. Let m be the edge of Ci5 corre-
sponding to the maximum variable w.r.t. <Lex , and choose it to be odd. Then
the parities of all other edges of Ci5 are determined.

If Ci5 = C5, then the parity of li determines the parities of all edges of Ci (i =
1, 2, 3, 4).

If Ci5 �= C5, then the parity of li5 determines the parities of all edges of C5,
and we are done as in the previous case. �

Example 3.6: As usual, we stipulate that the even edges be indicated by dotted
lines. Let l be as follows:

• •
l

•

• • •
Then C1, C2, C3 and C4 are:

• • •
l1

•
l2

• • •
l3

• • • • •
l4

• • • • • • • • • • • •

C1 C2 C3 C4

Hence C5 looks like:

• • •

• • • C5

We consider the 5−tuple (C1, C2, C3, C4, C5). If m is chosen to be odd, the
parities of the edges of C5 are:

• • •
m

• • •
It follows that the parities of the edges of C1, C2, C3 and C4 are:

• • • • • • • • • • • •
• • • • • • • • • • • •
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4. Reducibility of admissible r−tuples of cycles of Gr×3×3

Let V1 := {a, b, c} and V2 := {d, e, f} be the vertex classes of the bipartite
graph K3,3. Let σ denote any permutation of a, b, c, d, e, f which belongs to the
symmetry group of K3,3. σ acts on the edges of K3,3 by means of:

σ({v1, v2}) = {σ(v1), σ(v2)}.

Given a cycle C of K3,3, the action of σ on the edges of K3,3 turns C into
another cycle of K3,3, which we denote by σ(C).

We stipulate that if {v1, v2} is an even (=dotted) (resp. odd (= continuous))
edge of C, then {σ(v1), σ(v2)} is even (resp. odd).

Proposition 4.1: If S := (C1, . . . , Cr) is an admissible r−tuple of cycles of
Gr×3×3, then σ(S) := (σ(C1), . . . , σ(Cr)) is an admissible r−tuple of cycles of
Gr×3×3.

Proof: It suffices to show that for every edge which occurs in σ(S), there are as
many edges parallel to it in even position as edges parallel to it in odd position.
But this is true because σ acts bijectively on the edges of each K3,3, and S is
admissible. �

Theorem 4.2: Let S := (C1, . . . , Cr) be an admissible r−tuple of cycles of
Gr×3×3. There exists an admissible r′−tuple S ′ of cycles of Gr′×3×3, 2 ≤ r′ ≤ 5,
such that its maximum edges w.r.t. <Lex are among the maximum edges w.r.t.
<Lex of S, in the sense of Definition 2.4.

Proof: Consistently with [4, Definition 3.10], we say that two distinct cycles C

and Ĉ of S are anti-isomorphic if they are equal as subgraphs of K3,3, but parallel

edges always have opposite parities (i.e. the odd edges of Ĉ are precisely the even
edges of C).

Without loss of generality, we may assume the following.

(A) No pair (Ĉ, C) of anti-isomorphic cycles occurs in S, for otherwise we may
erase all pairs of this kind and work with the remaining shorter admissible
sequence.

(B) There exists no (admissible) pair of cycles S ′ := (Ĉ, C) such that the max-
imum edges of S ′ w.r.t. <Lex are among the maximum edges of S, and the
maximum edges of C w.r.t. <Lex are among the maximum edges of the
cycle Cr (the rightmost cycle of S). Otherwise we are done.

The cycle Cr must be one of the following fifteen cycles, whose maximum
edges w.r.t. <Lex are the continuous ones, and are assumed to be odd, as usual:
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• • • • • • • • •
• • • • • • • • •

1 2 3

• • • • • • • • •
• • • • • • • • •

4 5 6

• • • • • • • • •
• • • • • • • • •

7 8 9

• • • • • • • • •
• • • • • • • • •

10 11 12

• • • • • • • • •
• • • • • • • • •

13 14 15

Remark that each cycle in the list above has been given a number and will be
denoted by that number in the rest of the proof. Also remark that, if n is one of
the cycles 1,2, . . . ,15, n̂ denotes the only possible cycle anti-isomorphic to it.

The proof of this theorem is case by case: one case for each one of the possible
rightmost cycles 1,2, . . . ,15 of S. In fact we are going to show that the cases 1
and 12 determine all others.

Case Cr= cycle 1.

We are given any sequence S := (C1, . . . , Cr) such that Cr = 1 and conditions
(A), (B) above are satisfied. We look for a sequence S ′ as described in the
statement. In fact we shall find S ′ with the property that its rightmost cycle is
precisely 1.

Since S is admissible, the edge {c, e}, which occurs in Cr = 1 in odd position,
must also occur in even position in some other cycle Ci of S, i ≤ r − 1. A
priori, there are eight possibilities for Ci : 1̂,6, 7̂,8,10, 1̂1, 1̂2,15 (four cases

of length 4, four cases of length 6). Since condition (B) holds for S, 1̂ and 1̂1
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are impossible. Hence we are left with: 6, 7̂,8,10, 1̂2,15. In order to save space,
we discuss the subcase Ci = 6 completely and leave the reader 7̂,8,10, 1̂2,15
which are very similar, as we have checked working them out.

• Subcase Ci = 6.

The edge {c, d}, which occur in Cr = 1 in even position, must occur in odd
position in some other cycle Cj of S, j ≤ r − 1. Again thanks to (B), Cj can

only be 2̂, 7̂, 9̂, 1̂2 and 1̂3.
Hence subcase Ci = 6 split into the following five sub-subcases: (α), (β), (γ), (δ)

and (ε).

(α) Ci = 6, Cj = 2̂. Since the edge {b, e}, occurring in Cr = 1 in even position,
must occur in odd position in some further Ck of S, k ≤ r − 1, and Ck can
only be 4, 5̂,8,10 and 13, we are led to the following analysis.

When Ci = 6, Cj = 2̂, Ck = 5̂, we see by Proposition 3.1 that, for a suitable
permutation τ on three letters, the 4−tuple S ′ = (Cτ(i), Cτ(j), Cτ(k),1) does
the job.

When Ci = 6, Cj = 2̂, Ck = 8, we see by [4, Proposition 4.10] that, for a
suitable permutation τ on two letters, the triplet S ′ = (Cτ(j), Cτ(k),1) does
the job.

When Ci = 6, Cj = 2̂, Ck = 10 or Ck = 13, again we are done by the
previous sentence, because the odd edges of 8 are two of the three odd edges
of both 10 and 13.

We are left with Ci = 6, Cj = 2̂, Ck = 4. Since the edge {a, f}, occurring
in Ci = 6 in even position, must occur in odd position in some further Cl

of S, and, thanks to the previous sentences and both conditions (A) and

(B), Cl can only be 3̂, 9̂, 1̂0,12, we make the following observations.

When Cl = 3̂, the 5−tuple S ′ = (Cτ(i), Cτ(j), Cτ(k), Cτ(l),1) does the job for
a suitable permutation τ on four letters (by Proposition 3.5).

When Cl = 1̂0 or Cl = 12, again we are done by the previous sentence,
because the odd edges of 3̂ are two of the three odd edges of both 1̂0 and
12.

When Cl = 9̂, the 4−tuple S ′ = (Cτ(i), Cτ(k), Cτ(l),1) does the job for a
suitable permutation τ on three letters (by Proposition 3.1).

This completes the sub-subcase (α). We now turn to the other four sub-
subcases, adopting lighter notation and skipping some details already illus-
trated in (α).

(β) Ci = 6, Cj = 7̂. Due to edge {b, e}, S must also contain Ck ∈ {4, 5̂,8,10,13}.
When Ck = 4, 10, 13, then S ′ = (4, 7̂,1) works, where 4, 7̂ means {4, 7̂}
up to a permutation.

When Ck = 5̂, S must contain Cl ∈ {2̂,3,4,10, 1̂2, 1̂5}, due to edge {b, d}.
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If Cl = 2̂, 1̂2, then S ′ = (6, 5̂, 2̂,1) works (obvious meaning for 6, 5̂, 2̂).

If Cl = 3, 1̂5, then S ′ = (7̂, 5̂,3,1) works.

If Cl = 4,10, then S ′ = (7̂,4,1) works.

When Ck = 8, S must still contain Cl ∈ {2̂,3,4,10, 1̂2, 1̂5}, due to edge
{b, d}.
If Cl = 2̂, 1̂2, then S ′ = (8, 2̂,1) works.

If Cl = 4,10, then S ′ = (7̂,4,1) works.

If Cl = 1̂5, then S ′ = (7̂,8, 1̂5,1) works (by Proposition 3.3).

If Cl = 3, S must contain a further Cm ∈ {2̂, 9̂, 1̂0, 1̂3, 1̂5}, due to edge
{c, f}.
Cycles 2̂, 1̂3 are dealt with by means of S ′ = (8, 2̂,1).

Cycle 9̂ by means of S ′ = (8,3, 9̂,1).

Cycle 1̂0 by means of S ′ = (7̂,8,3, 6̂,1) (obvious meaning for 7̂,8,3, 6̂).

Finally, cycle 1̂5 by means of S ′ = (7̂,8, 1̂5,1).

This completes the sub-subcase (β).

(γ) Ci = 6, Cj = 9̂. Due to edge {b, e}, S must also contain Ck ∈ {4, 5̂,8,10,13}.
When Ck = 4, 10, 13, then S ′ = (6, 9̂,4,1) works.

When Ck = 5̂, S must also contain Cl ∈ {2̂,3,4,10, 1̂2, 1̂5}, due to edge
{b, d}.
If Cl = 2̂, 1̂2, then S ′ = (6, 5̂, 2̂,1) works.

If Cl = 3, 1̂5, then S ′ = (6, 9̂, 5̂,3,1) works.

If Cl = 4,10, then S ′ = (6, 9̂,4,1) works.

When Ck = 8̂, S must still contain Cl ∈ {2̂,3,4,10, 1̂2, 1̂5}, due to edge
{b, d}.
If Cl = 2̂, 1̂2, then S ′ = (8, 2̂,1) works.

If Cl = 3, 1̂5, then S ′ = (9̂,8,3,1) works.

If Cl = 4,10, then S ′ = (6, 9̂,4,1) works.

This completes the sub-subcase (γ).

(δ) Ci = 6, Cj = 1̂2. Due to edge {b, e}, S must also contain Ck ∈ {4, 5̂,8,10,13}.
When Ck = 4, 10, 13, then S ′ = (4, 7̂,1) works.

When Ck = 5̂, then S ′ = (1̂2, 5̂,1) works (by [4, Proposition 4.13]).

When Ck = 8, then S ′ = (8, 2̂,1) works.

This completes the sub-subcase (δ).
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(ε) Ci = 6, Cj = 1̂3. Due to edge {b, e}, S must still contain Ck ∈ {4, 5̂,8,10}.
The analysis is exactly as the previous one, because the odd edges of 1̂3
and the odd edges of 1̂2 coincide.

This completes the sub-subcase (ε).

The subcase Ci = 6 is now complete.
We remark that many sub-sub-subcases have occurred several times in dif-

ferent sub-subcases. We also remark that r′−tuples S ′ with r′ = 5, 4, 3 have
occurred. (r′ = 2 is “hidden” under conditions (A) and (B)).

Cases Cr = 2,3, . . . ,9.

Let σ
n

1 be any permutation of the vertices {a, b, c, d, e, f} of K3,3 which turns
cycle 1 into cycle n, 2 ≤ n ≤ 9. For instance, one can choose:

σ
2

1 = (ef); σ
3

1 = (acb)(ef); σ
4

1 = (acb); σ
5

1 = (ac)(df);

σ
6

1 = (ab)(def); σ
7

1 = (ab); σ
8

1 = (def); σ
9

1 = (ab)(ef).

Thanks to Proposition 4.1, the construction given for cycle 1 is transformed
by σ

n

1 into a construction valid for cycle n, 2 ≤ n ≤ 9. For σ
n

1 acts on all edges
and cycles having a role in the construction given for cycle 1.

Remark

The choice of reducing all cases 2,3, . . . ,9 to cycle 1 is in fact arbitrary. One
can start from any length 4 cycle Cr and reduce all other length 4 cases to the
chosen one.

We are now going to deal with length 6 cycles 10,11, . . . ,15. Again we give
a construction for one of them, and reduce all other cases to the selected one.
However, the selection of the pivotal cycle (cycle 12) is not arbitrary, as we shall
explain later.

Case Cr= cycle 12.

We are given any sequence S := (C1, . . . , Cr) such that Cr = 12 and con-
ditions (A), (B) are satisfied. We look for a sequence S ′ as described in the
statement. In fact we shall find S ′ with the property that its rightmost cycle is
either 12, or 1.

The reader will notice an overall resemblance with case Cr = 1.
Since S is admissible, the edge {c, e}, which occurs in Cr = 12 in odd position,

must also occur in even position in some other cycle Ci of S, i ≤ r−1. Thanks to
condition (B), the possibilities for Ci are 6, 7̂,8,10,15. In order to save space,
we discuss the subcase Ci = 6 completely and leave the reader 7̂,8,10,15 which
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are very similar, as we have checked working them out. We keep using the lighter
notation introduced when dealing with case Cr = 1

• Subcase Ci = 6.

The edge {c, d}, which occurs in Cr = 12 in even position, must occur in odd
position in some other cycle Cj of S, j ≤ r − 1. Again thanks to (B), Cj can

only be 2̂, 7̂, 9̂ and 1̂3.
Subcase Ci = 6 splits into the following three sub-subcases: (ζ), (η) and (ϑ).

(ζ) Ci = 6, Cj = 2̂, 1̂3. S ′ = (6, 2̂,12) works.

(η) Ci = 6, Cj = 7̂. Due to edge {b, d}, S must also contain Ck ∈ {2̂,3,4,10, 1̂5}.
When Ck = 2̂, then S ′ = (6, 2̂,12) works.

When Ck = 3, 1̂5, then S ′ = (7̂,3,12) works.

When Ck = 4,10, then S ′ = (7̂,4,1) works.

(ϑ) Ci = 6, Cj = 9̂. Due to edge {b, d}, S must still contain Ck ∈ {2̂,3,4,10, 1̂5}.
When Ck = 2̂, then S ′ = (6, 2̂,12) works.

When Ck = 3, 1̂5, then S ′ = (6, 9̂,3,12) works.

When Ck = 4,10, then S ′ = (6, 9̂,4,1) works.

The subcase when Ci = 6 is now complete.

Cases Cr = 10,11,13,14,15.

Let σ
n

12 be any element of the symmetry group of K3,3 which turns cycle 12
into cycle n, n ∈ {10,11,13,14,15}, and such that σ

n

12(1) ∈ {2,3, . . . ,9} (i.e.

σ̂
n

12(1) �∈ {2,3, . . . ,9}). For instance, one can choose:

σ
10

12 = (def); σ
11

12 = (ac)(dfe); σ
13

12 = (bc)(df);

σ
14

12 = (ef); σ
15

12 = (ab)(def).

We remark that, with this particular choice, we have:

σ
10

12(1) = σ
13

12(1) = 8; σ
11

12(1) = 3;

σ
14

12(1) = 2; σ
15

12(1) = 6.

Thanks to Proposition 4.1, the construction given for cycle 12 is transformed
by σ

n

12 into a construction valid for cycle n, n ∈ {10,11,13,14,15}. For σ
n

1 acts
on all edges and cycles having a role in the construction given for cycle 12, and
the condition σ

n

12(1) ∈ {2,3, . . . ,9} guarantees that whenever an admissible
r′−tuple S ′ such that its maximum edges are among those of S, happens to
occur in the construction related to cycle 12, then σ

n

12(S
′) has its maximum

edges among those of σ
n

12(S).
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Remark

If one wanted to use another length 6 cycle n0 as pivotal cycle, instead of 12, it
would not be possible to guarantee that σ

n

n0
(S ′), n ∈ {10,11, . . . ,15}\{n0}, has

its maximum edges among those of σ
n

n0
(S), regardless of all possible requirements

put on σ
n

n0
with respect to length 4 cycles.

This is why we have selected cycle 12 among all length 6 cycles.
This completes the proof of Theorem 4.2. �

5. Conservation of the RG property

Let C be a closed path of K3,3 such that every edge either is always in odd
position (“odd edge”), or is always in even position (“even edge”). We can think
of C as of a coloured multigraph (cf., e.g. [7]) in which every odd (multi-)edge
is red, say, and every even (multi-)edge is blue, say.

Lemma 5.1: C has a decomposition into cycles of length ≥ 4, each one of them
having successive edges which alternate in colour.

Proof: It suffices to show that C has a decomposition into cycles with alternating
colours (it is then obvious that every cycle must have length at least 4). Let C̄
be a minimal counterexample. [8, Theorem] says that C̄ has at least one cycle
D (of length ≥ 4) with alternating colours. But then C̄ \ {D} contradicts the
minimality of C̄. �

The following proposition is obvious.

Proposition 5.2: Let S := (C1, . . . , Cr) be an admissible r−tuple of closed
paths of Gr×3×3. For every Ci �= ∅, let Di be a decomposition of Ci into cycles with
alternating colours, and call ci (≥ 1) the cardinality of Di. Also let D := ∪Di.
Then every permutation of the elements of D is an admissible h−tuple of cycles
of Gh×3×3, with h =

∑
ci.

Example 5.3: Let S := (C1, C2, C3) be the following admissible triplet of closed
paths of G3×3×3:

C1 • • • C2 • • • C3 • • •

• • • • • • • • •
where the continuous (resp., dotted) edges are the red (resp., blue) ones.
D1, D2 and D3 are indicated below:
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D1 • • • • • • • • • • • •
• • • • • • • • • • • •

D11 D12 D13 D14

D2 • • • • • •

• • • • • •

D21 D22

D3 • • • • • •

• • • • • •

D31 D32

The 8−tuple (D11, D31, D21, D22, D12, D14, D13, D32) is an admissible se-
quence of cycles of G8×3×3.

Theorem 5.4: Let S := (C1, . . . , Cr) be an RG−sequence of Gr×3×3 (w.r.t.
<Lex). Colour the maximum edges red and all the others blue. For every Ci �= ∅,
call Di a decomposition of Ci into cycles with alternating colours and denote the
cardinality of Di by ci. If D := ∪Di, there exists a permutation of the elements
of D with the property that

(1) the edge of the rightmost cycle which corresponds to the maximum variable
(w.r.t. <Lex) is red, and

(2) the permutation is an RG−sequence of Gh×3×3 (w.r.t. <Lex) with h =
∑

ci.

Proof: Let i1 < i2 < · · · < is be the indices corresponding to the nonempty paths
Ci. For every j = 1, . . . , s− 1, let P

ij
denote any permutation of D

ij
. Moreover,

let P
is

denote any permutation of D
is

which satisfies (1). P
i1

, P
i2

, . . . , P
is

(in
this order) form an admissible sequence, S ′, which still satisfies (1) and whose
maximum edges are all red. We claim that S ′ satisfies (2) as well.

Assume that S ′ does not satisfy (2). We are going to show that then S cannot
be an RG-sequence: a contradiction.

If S ′ is not an RG-sequence, then there exists an RG-sequence, S ′′, of Gh×3×3

such that its maximum edges are among those of S ′ (recall Definition 2.4). Since
S ′ is a sequence of cycles, S ′′ is a sequence of cycles, too. It follows from Theorem
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4.2 that S ′′ consists of at most five cycles. It is not hard to check that in the
reduced Gröbner basis of IA5×3×3 (w.r.t. <Lex) all RG-sequences of cycles involve
at most one length 6 cycle, except for the pairs of antisomorphic cycles of length
6. Hence there exist maximum edges of S ′ which do not occur in S ′′. For if S ′

and S ′′ had the same maximum edges, and S ′′ were a pair of antisomorphic
cycles of length 6, then S ′ = S ′′ (by admissibility), against the assumption that
S ′ be not an RG-sequence. If S ′ and S ′′ had the same maximum edges, and S ′′

were not a pair of antisomorphic cycles of length 6, then S ′ should contain all
length 4 cycles of S ′′, hence S ′ should also contain the only length 6 cycle of S ′′

(by admissibility), and again S ′ = S ′′, which is excluded.
Having ascertained that there exist maximum edges of S ′ which do not occur

in S ′′, we are able to show that S cannot be an RG-sequence.
Notice that S ′′ cannot just involve a single path Ci of S, that is, the maximum

edges of S ′′ cannot just be among the maximum edges of the corresponding Pi.
If this were the case, then every maximum edge of S ′′ should occur among the
red edges of the mentioned Ci. But if S ′′ happened to have at least three distinct
cycles, then the three (or more) red edges of Ci (coming from three different
vertices) would be incident on one and the same vertex, which is impossible.
On the other hand, if S ′′ happened to consist only of two cycles, they would be
antisomorphic and Ci should contain a cycle completely coloured red (of length
either 4 or 6). Ci would then turn out to be determined (up to repetitions) and
its decomposition into cycles with alternating colours would be inconsistent with
S ′′ consisting of two cycles.

Since S ′′ involves at least two distinct closed paths of S, we can say (possibily
patching together the cycles of S ′′ involving a single Ci, and deleting the edges
that in doing so happen to be red and blue at the same time) that there exists
an admissible sequence, S, of closed paths of Gr×3×3 having its maximum edges
among the red edges of S. That is, in<Lex

(g) divides in<Lex
(g), where g (resp.,

g) stands for the binomial associated with S (resp., S).
Recalling the underlined statement above, not all red edges of S occur in S

with the same multiplicities. Hence in<Lex
(g) properly divides in<Lex

(g), and this
contradicts the fact that S is an RG-sequence. �

Example 5.5: Let S be the following RG−sequence of G4×3×3 (cf. Remark 6.5
below):

• • • • • • • • • • • •
• • • • • • • • • • • •

C1 C2 C3 C4

where the maximum edges (w.r.t. <Lex) are the continuous ones, which we as-
sume to be red.



G. Boffi, F. Rossi: Lex Gröbner bases of format r × 3 × 3 23

Decomposing C3 into cycles with alternating colours, we obtain the following
5−tuple:

• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

C1 C2 C31 C32 C4

where the continuous (resp., dotted) edges are coloured red (resp., blue).
The 5−tuple (C1, C2, C31, C32, C4) is an RG−sequence of G5×3×3. In fact,

every permutation of this 5−tuple gives an RG−sequence, as one sees by means
of a simple analysis.

Example 5.6: Notation as in Example 5.5. Let us take (C1, C2, C31, C32, C4)
and patch together C1 and C2. We get (no deletion of edges, here):

• • • • • • • • • • • •
• • • • • • • • • • • •

C1 + C2 C31 C32 C4

where the continuous (resp., dotted) edges are coloured red (resp., blue). Clearly,
every permutation of the 4−tuple above is admissible.

Again, let us take (C1, C2, C31, C32, C4) and patch together C2 and C31. We
get (two edges deleted, which happen to be red and blue at the same time):

• • • • • • • • • • • •
• • • • • • • • • • • •

C1 C2 + C31 C32 C4

where the continuous (resp., dotted) edges are coloured red (resp., blue).
Every permutation of the latter 4−tuple is admissible.

6. Main theorem

We prove our main result, announced at the end of Section 2

Theorem 6.1: Let r′ ∈ {2, 3, 4, 5} and S ′ := (D1, . . . , Dr′) an RG−sequence of
Gr′×3×3 (w.r.t. <Lex) such that Di′ �= ∅ for every i′ ∈ r′. For every r ≥ 6 and
for every choice of indices i1, i2, . . . , ir′ such that 1 ≤ i1 < i2 < · · · < ir′ ≤ r,
consider the r−tuple S

i1
,..., ir′ := (C1, . . . , Cr) such that

Ch :=

⎧⎨
⎩

Di′ if h = ii′

∅ else,
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which is clearly an admissible r−tuple of closed paths of Gr×3×3. Then all and
only the RG−sequences of Gr×3×3 (w.r.t. <Lex) are obtained in this way, when
r′ ranges over {2, 3, 4, 5} and S ′ ranges over the set of all the RG−sequences of
Gr′×3×3 with no empty path.

Proof: Proposition 2.7 says that S
i1

,..., ir′ is an RG−sequence of Gr×3×3 (w.r.t.
<Lex). It remains to show that every RG−sequence of Gr×3×3 is of this kind.

Assume for a contradiction that S := (C1, . . . , Cr) is an RG−sequence of
Gr×3×3 not of the indicated type. At least six paths of S must be nonempty. If
every nonempty Ci is a cycle, Theorem 4.2 says that there exists an admissible
r′−tuple of cycles of Gr′×3×3 2 ≤ r′ ≤ 5, such that the set of its maximum edges
is properly included in the set of the maximum edges of S. This violates the
RG−property of S (recall Remark 2.5). If some nonempty path of S is not a
cycle, Theorem 5.4 produces an RG−sequence of Gh×3×3 (h > r) consisting of
all cycles (and at least six of them �= ∅). Again a contradiction is obtained by
means of Theorem 4.2. �

Corollary 6.2: Let g be an element of the reduced Gröbner basis of IAr×3×3

w.r.t. <Lex (r ≥ 2). Then:

(1) The same (distinct) first indices i1, . . . , ir′ occur in the variables of both
monomials of g, and r′ ∈ {2, 3, 4, 5}.

(2) Every variable occurring in g can occur with degree at most 2. Furthermore,
if r′ = 5, then both monomials of g must be square-free.

(3) The total degree of g is at most 10.

Proof: (1) Let S := (C1, . . . , Cr) be the RG−sequence associated with g. Then
the conclusion is obvious (the range of r′ coming from Theorem 6.1).

(2) Recall that, in our language, r′ is the number of nonempty paths occurring in
S and the degree of a variable is the multiplicity of the corresponding edge.
If there existed a variable of degree ≥ 3, then some path Ci would contain
an edge of multiplicity m ≥ 3. Hence Ci could be decomposed into at
least m cycles (cf. Lemma 5.1) and Theorem 5.4 would imply the existence
of an RG−sequence of cycles containing at least 2m cycles (because of the
admissibility property). But 2m ≥ 6 contradicts Theorem 6.1. Furthermore,
if r′ = 5, then a contradiction arises as soon as m ≥ 2, since one gets an
RG−sequence of cycles containing at least m + 4 ≥ 6 cycles.

(3) Notice that Theorem 6.1 implies that, for every r ≥ 6. the set of the total
degrees of all binomials occurring in the reduced Gröbner basis of IAr×3×3

(w.r.t. <Lex) equals the set of the total degrees of all binomials of the
reduced Gröbner basis of IA5×3×3 . Calculation of the latter Gröbner basis
shows that no total degree exceeds 10.

�
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Remark 6.3: Notice that Corollary 6.2 - (2) implies that if S := (C1, . . . , C5)
is an RG−sequence of G5×3×3 (w.r.t. <Lex) such that all Ci are not empty, then
S must be a 5−tuple of cycles of K3,3.

Remark 6.4: Theorem 6.1 suggests a purely combinatorial algorithm for the
calculation of the reduced Gröbner basis (w.r.t. <Lex) of IAr×3×3, r ≥ 6, once the
reduced Gröbner basis of IA5×3×3 is known.

Notice that the bound r = 5 is sharp (cf. e.g. Example 5.5).

Remark 6.5: The reduced Gröbner basis (w.r.t. <Lex) of IAr×3×3, 3 ≤ r ≤ 5,
has been calculated on a PC with the help of the CoCoA Team of the University
of Genoa (cf. [5]), thanks to an improvement of their algorithm TestSet, now
implemented in CoCoA 4.3.

The corresponding outputs (also giving information on the cardinalities of the
bases and the running times) are available on the web page of the second author
(http://www.dmi.units.it/ r̃ossif/).

Cases r = 2 and r = 3 have also been available in [3] for quite a while.
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[10] B. Sturmfels, Gröbner Bases and Convex Polytopes, AMS, Providence
RI, (1995).


