Derivate

Calcolare le derivate prime delle funzioni:

$$f_1(x) = 2x^3 - x^2 + 3 \qquad f_2(x) = 5 x^4 - 7x^3 - 2x^2 - 3x + 19 \qquad f_3(x) = 8 - 2x - 3x^2$$

$$f_4(x) = \frac{2x}{3 - x^2} \text{ b)} \qquad f_5(x) = \frac{\ln(1 + 3x)}{2x} \qquad f_6(x) = \sqrt{\cos x}$$

$$f_7(x) = x \cos^2 x^2$$
 $f_8(x) = \sin(e^x)$ $f_9(x) = x e^{\frac{x^2 - 3}{x - 1}}$

$$f_{10}(x) = x^4 - \frac{2}{3}x^3 + 2x^2 - 4x + 1$$
 $f_{11}(x) = \cot x + x$ $f_{12}(x) = \frac{x^5}{e^x}$

$$f_{13}(x) = \arcsin 3x$$
 $f_{14}(x) = \tan(e^{x^2})$

Calcolare le derivate seconde delle funzioni:

$$f_{15}(x) = x^2 e^{-x^2}$$
 $f_{16}(x) = \log(\tan x^2)$

Scrivere lo sviluppo in serie di Mc Laurin della funzione $f_{17}(x) = \log(x^2 + 1)$ fino al terzo termine.

Calcolare i limiti delle forme indeterminate:

1)
$$\frac{0}{0} \quad \lim_{x \to \pi} \frac{\sin 3x}{\cos \frac{x}{2}} \quad \lim_{x \to 0} \frac{\sin 3x}{\sin 5x} \quad \lim_{x \to -4} \frac{\ln(x+5)}{\sin \pi x} \qquad \lim_{x \to 1} \frac{1-\cos 2x}{x^2}$$

2)
$$\frac{\infty}{\infty} \quad \lim_{x \to \infty} \frac{e^{4x}}{x^2 + x + 1} \lim_{x \to \pi} \frac{\ln|x|}{x}$$
3)
$$0 \infty \quad x \ln|x| \quad \text{lin}$$

3)
$$0 \infty$$
 $x \ln|x|$ $\lim_{x \to \frac{1}{2}} \ln(4x-1) \tan \pi x$

Scrivere l'equazione della retta tangente alla curva di equazione $y = \sqrt{x}$ nel punto di ascissa x = 4.

Scrivere l'equazione della retta tangente alla curva di equazione y = ln(x) nel punto di ascissa x = e.

Determinare il verso della concavità della curva di equazione $y = \frac{x+2}{2x-1}$ nel punto x = 1.

Studiare le funzioni razionali: $f_1(x) = x^2 - 1$; $f_2(x) = x^2 - 2x - 3$; $f_3(x) = x^2 + 1$; ; $f_4(x) = \frac{x^2 - 2x - 3}{x}$; $f_5(x) = \frac{x^2 - 2x - 3}{x^2 + 1}$.

Calcolare i massimi e i minimi della funzione: $f_3(x) = x^3 - 5x^2 - 2x + 3$

Studiare le seguenti funzioni irrazionali e trascendenti:

$$f_1(x) = x \ln x$$
; $f_2(x) = \sqrt{x^2 - 4}$; $f_3(x) = x e^{-x}$