Esame di Metodi Matematici per l'Ingegneria ${\bf Prova}~{\bf 3}$

COGNOME	NOME
N. Matricola	Anno di corso
Corso di Studi in Ingegneria	
QUESITO N. 1. Si definisca la nozione di spazio $L^p(E)$ tra tali spazi.), con $p=1,2,\infty.$ Si descrivano eventuali relazioni di inclusione
QUESITO N. 2. Si enunci il teorema di migliore approproiezione ortogonale.	ossimazione in uno spazio di Hilbert e si definisca la nozione di

${\bf QUESITO~N.~3.}$ Si consideri la funzione

$$f(x) = \begin{cases} 0 & \text{se } -\pi \le x < 0, \\ x & \text{se } 0 \le x < \pi, \end{cases}$$

e la si estenda per $2\pi\text{-periodicità}$ su ${\rm I\!R}.$

(0.00.1		
(i) Si determini lo sviluppo in serie di Fourier di f rispetto al sistema $\{e^{inx}\}_{n\in\mathbb{Z}}$.		
(ii) Si discutano le proprietà di convergenza puntuale e uniforme della serie.		

COGNOME e NOME	N. Matricola
QUESITO N. 4. Si scrivano le condizioni di monogeneità di Cauch $u(x,y)+iv(x,y)$ usando le derivate parziali di u e v ; se $g(x,y)=h(\rho,\vartheta)=f(\rho e^{i\vartheta})$ usando le derivate di h rispetto a ρ e ϑ .	ay-Riemann nelle diverse forme: se $f(x + iy) = f(x + iy)$ usando le derivate parziali di g ; se
QUESITO N. 5. Sia $F(s)$ la trasformata di Laplace della funzione funzioni:	f(t). Si calcoli la trasformata di Laplace delle
$(i) g(t) = e^{-2t} f(t-1);$	
$(ii) \ h(t) = e^{-2t} f(2t).$	

QUESITO N. 6. Si consideri la funzione razionale $\frac{1}{(2-z)(z^2+4)}$.

 $\left(i\right)$ Si determinino le singolarità di fe si calcolino i residui in tali punti.

 $(ii) \text{ Al variare di } r \in \mathbb{R}^+ \text{ si denoti con } \phi_r : [0,\pi] \to \mathbb{C} \text{ la curva } \phi_r(t) = 2 + re^{it}. \text{ Si verifichi che } \lim_{r \to 0} \int_{\phi_r} f(z) \, dz = -\frac{\pi}{8}i.$

(iii) Si calcoli il valor principale

$$PV \int_{-\infty}^{+\infty} \frac{1}{(2-x)(x^2+4)} \, dx.$$