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A model example: pollution in a channel

A water stream of constant speed v transports the pollutant along the positive direction
of the x−axis;

we neglect the depth of the water (floating pollutant)
we neglect the transversal dimension (narrow channel)
u(x, t) = concentration of the pollutant∫ x+∆x

x

u(y, t) dy

is the mass of pollutant inside the interval [x, x+ ∆x] at time t.

Mass conservation law (no sinks, no sources)

d

dt

∫ x+∆x

x

u(y, t) dy =

∫ x+∆x

x

ut(y, t) dy = q(x, t)− q(x+ ∆x, t)

d

dt

∫ x+∆x

x

u(s, t) ds is the growth rate of the mass contained in the interval [x, x+ ∆x]

q(x, t)− q(x+ ∆x, t) is the net mass flux into [x, x+ ∆x] through the end-points
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1

∆x

∫ x+∆x

x

ut(s, t) ds =
q(x, t)− q(x+ ∆x, t)

∆x

ut(x, t) = −qx(x, t).

In higher dimensione (N > 1): e.g. N = 3, Ω ⊂ R3 bounded smooth basin,

∫∫∫
Ω

u(x, t) dx

is the mass of pollutant inside the basin Ω at time t.

Mass conservation law:

d

dt

∫∫∫
Ω

u(x, t) dx = −
∫∫

∂Ω

q · ν dσ.

q flux function
ν outward normal
∂Ω boundary of the basin Ω∫∫
...
. . . dσ denotes a surface integral

By the divergence theorem∫∫
∂Ω

q · ν dσ =

∫∫∫
Ω

div q dx

hence ∫∫∫
Ω

ut(x, t) dx = −
∫∫

∂Ω

q · ν dσ = −
∫∫∫

Ω

div q dx.

and we derive

ut(x, t) = −div qx(x, t).

Constitutive relation for q:
• convection (flux determined by the water stream only; v = constant stream speed)

q(x, t) = v · u(x, t)

• diffusion (pollution expands from higher concentration regions to lower ones; Fick’s
law)

q(x, t) = −k∇xu(x, t)

In general q(x, t) = v · u(x, t)− k∇xu(x, t).

div q(x, t) = ∇xu · v − k∆xu(x, t)

ut = k∆xu− v · ∇xu
(

if N = 1 : ut(x, t) = kuxx(x, t)− vux(x, t)
)
.

Suppose q depends only on convection, i.e. k = 0, then we obtain
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The transport equation in RN with constant coefficients

x ∈ RN , t ∈ [0,+∞[, u : RN × [0,+∞[→ R, u = u(x, t), v ∈ RN constant.

ut(x, t) + v · ∇xu(x, t) = 0

i.e., if w = (v, 1), w · ∇u = 0, that is

∂u

∂w
= 0.

u is constant along the direction w.

γ(s) = (x, t) + s(v, 1)

is the characteristic line passing through (x, t), along which the value of u is constant.
u(x+ sv, t+ s) = u(x, t) for all s ∈ R, t+ s ≥ 0.

The initial value problem
g : RN → R {

ut(x, t) + v · ∇xu(x, t) = 0 in RN × [0,+∞[,
u(x, 0) = g(x) on Γ = RN × {t = 0},

u(x, t) = g(x− tv)

Travelling wave moving with velocity v.

If the initial datum is u(x, t0) = g(x) we have u(x, t) =?

u(x, t) = g(x+ (t0 − t)v).

The non-homogeneous problem (distributed source){
ut(x, t) + v · ∇xu(x, t) = f(x, t) in RN × [0,+∞[,
u(x, 0) = g(x) on Γ = RN × {t = 0},

z(s) = u(x+ sv, t+ s)

dz

ds
= v∇xu(x+ sv, t+ s) +

∂u

∂t
(x+ sv, t+ s) = f(x+ sv, t+ s)

u(x, t) = g(x− tv) +

∫ t

0

f(x− (t− η)v, η) dη.

Observe that
u(x, t) = g(x− tv)

is a solution of the homogeneous problem{
ut(x, t) + v · ∇xu(x, t) in RN × [0,+∞[,
u(x, 0) = g(x) on Γ = RN × {t = 0},
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while, for each s,
w(x, t) = f(x− (t− s)v, s)

is a solution of the problem{
wt(x, t) + v · ∇xw(x, t) = 0 in RN × [0,+∞[,
w(x, s) = f(x, s) on Γ = RN × {t = 0}.

Duhamel’s Principle.
For all s > 0 let w(·, ·; s) be a solution of{

wt + v · ∇xw = 0 in RN × [0,+∞[,
w(x, s; s) = f(x, s) on Γ = RN × {t = 0}.

Then u(x, t) =
∫ t

0
w(x, t; s) ds is a solution of{

ut(x, t) + v · ∇xu(x, t) = f(x, t) in RN × [0,+∞[,
u(x, 0) = 0 on Γ = RN × {t = 0}.

A problem is well-posed (according to J. Hadamard) if

1. The problem has a solution.

2. The solution is unique.

3. The solution is stable (a small change in the equation and in the side conditions
gives rise to a small change in the solutions)

Theorem
Let g ∈ C1(RN ), f ∈ C1(RN × [0,+∞[). Then, problem{

ut(x, t) + v · ∇xu(x, t) = f(x, t) in RN × [0,+∞[,
u(x, 0) = g(x) on Γ = RN × {t = 0},

has a unique solution. Moreover, it is stable on finite-time intervals, i.e., for all T > 0,

small changes of f|RN×[0,T ] in ‖ · ‖L∞(RN×[0,T ]) norm and of g in ‖ · ‖L∞(RN ) norm yield
small changes of the solutions in ‖ · ‖L∞(RN×[0,T ]) norm.

The problem with decay (exercise)
Due to biological decomposition the pollutant decays at the rate −γu(x, t), γ > 0;{

ut(x, t) + v · ∇xu(x, t) + γu(x, t) = f(x, t) in RN × [0,+∞[,
u(x, 0) = g(x) on Γ = RN × {t = 0}.

Multiply the equation by eγt

w(x, t) = eγtu(x, t)

u(x, t) = e−γtg(x− tv) + e−γt
∫ t

0

eγηf(x+ (η − t)v, η) dη.

(if f = 0 damped travelling wave)
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An example with a discontinuity
A source of pollutant at x = 0 starts working at time t = 0.

Heaviside function H(t) =

{
0 if t < 0,
1 if t ≥ 0. ut(x, t) + v · ∇xu(x, t) = 0 (x, t) ∈ [0,+∞[×R,

u(0, t) = βH(t) t ∈ R
u(x, 0) = 0 x ∈ [0,+∞[.

Here we have both a boundary condition and a initial condition.

u(x, t) = βH(vt− x).

The jump discontinuity in (0, 0) is transported along the characterisctic x = vt.
Compare with the heat equation. In that case the solution is smooth even if the initial

datum is discontinuous.
Inflow characteristics: the characteristics carry the information from the boundary to

the interior of the domain.
Outflow characteristics: no data have to be assigned.

Exercise
Suppose, for i = 1, 2, ui is the solution of the problem ut(x, t) + vux(x, t) = 0 in ]0, R[× ]0,+∞[,

u(0, t) = fi(t) t > 0
u(x, 0) = gi(x) in ]0, R[.

Prove the least square stability formula

∫ R

0

(u1(x, t)− u2(x, t))2 dx ≤
∫ R

0

(g1(x)− g2(x))2 dx+ v

∫ t

0

(f1(s)− f2(s))2 ds.

The method of characteristics

F : RN × R× RN → R, {
F (∇u, u, x) = 0 in U ⊂ RN ,
u = g on Γ ⊆ ∂U.

To convert the PDE into an appropriate system of ODEs.

A quasilinear problem

{
a(x, u) · ∇u+ c(x, u) = 0 in U ⊂ RN ,
u(x) = g(x) on Γ ⊆ ∂U.

Theorem
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Let U ⊂ RN be an open set, u ∈ C1(U) a solution of the equation

a(x, u) · ∇u+ c(x, u) = 0.

Set z(s) = u(x(s)) where x(s) is a solution of the system

x′(s) = a(x(s), z(s)).

Then z(s) solves the ODE
z′(s) = −c(x(s), z(s)),

for those s such that x(s) ∈ U .

Example: N = 2.

a1(x1, x2, u)ux1
+ a2(x1, x2, u)ux2

+ c(x1, x2, u) = 0.

a1, a2, c : R3 → R.
Suppose u = u(x1, x2) is a solution.
Suppose we know the solution u on the curve Γ. We want to span the graph of u

starting from Γ.
Parametrize a curve in R3 by (x1(s), x2(s), z(s)) with z(s) = u(x1(s), x2(s)).
Then

z′(s) =
d

ds
u(x1(s), x2(s)) = ux1

(x1(s), x2(s))x′1(s) + ux2
(x1(s), x2(s))x′2(s).

If we set {
x′1(s) = a1(x1, x2, z)
x′2(s) = a2(x1, x2, z)

then
z′ = −c(x1, x2, z).

By solving the ODE system we obtain the value of the solution u along the character-
istic. Imposing the initial conditions we hope to recover the whole solution.

Example: the transport equation.

v ∈ R, f : R× ]0,+∞[→ R, g : R→ R.{
v ∂u
∂x1

+ ∂u
∂x2

= f(x1, x2) in R× ]0,+∞[,

u(x1, 0) = g(x1) on Γ = {(x1, 0) ∈ R2 : x1 ∈ R}.

Characteristic equations: x′1(s) = v
x′2(s) = 1
z′(s) = f(x1, x2)

x1 = vs + x0
1, x2 = s. Fix (x1, x2) ∈ U and find the characteristic passing through

(x1, x2): invert to find x0
1 = x1 − vx2 to obtain z(s)− z0 =

∫ s
0
f
(
x1(ξ), x2(ξ)

)
dξ; i.e.

u(x, t) = g(x− vt) +

∫ t

0

f(vξ + x− vt, ξ) dξ.
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Example: a linear problem{
x1

∂u
∂x2
− x2

∂u
∂x1

= u in U = ]0,+∞[× ]0,+∞[,

u(x1, 0) = g(x1) on Γ = {(x1, 0) ∈ R2 : x1 > 0},
where g : ]0,+∞[→ R. x′1(s) = −x2(s)

x′2(s) = x1(s)
z′(s) = z(s)

z(s) = z0es; z0 = z(0) = u(x0
1, 0) = g(x0

1)(
x1(s), x2(s)

)
=
(
x0

1 cos s, x0
1 sin s

)
Fix (x1, x2) ∈ U and find the characteristic passing through (x1, x2).
We invert the system {

x1 = x0
1 cos s

x2 = x0
1 sin s

to obtain

x0
1 =

√
x2

1 + x2
2 and s = atan

(
x2

x1

)
.

Therefore

u(x1, x2) = g
(√

x2
1 + x2

2

)
exp

(
atan (x2/x1)

)
.

Example: a semilinear problem{
∂u
∂x1

+ ∂u
∂x2

= u2 in U = R× ]0,+∞[,

u(x1, 0) = g(x1) on Γ = {(x1, 0) ∈ R2},
where g : R→ R.

u(x1, x2) =
g(x1 − x2)

1− x2g(x1 − x2)
.

The solution is defined only locally!

The initial value problem{
a(x, u) · ∇u+ c(x, u) = 0 in U,
u(x) = g(x) on Γ,

N = 2
Γ parametrized by γ(t) = (y1(t), y2(t)), t ∈ I interval, γ(0) = (y1(0), y2(0)) = (y0

1 , y
0
2).{

a1(x1, x2, u) ∂u∂x1
+ a2(x1, x2, u) ∂u∂x2

+ c(x1, x2, u) = 0 in U,

u(y1(t), y2(t)) = g(y1(t), y2(t)) t ∈ I,
x′1(s) = a1(x1(s), x2(s), z(s))
x′2(s) = a2(x1(s), x2(s), z(s)) characteristic equations
z′(s) = −c(x1(s), x2(s), z(s))
x1(0) = y0

1 , x2(0) = y0
2 , z(0) = z0 = g(y0

1 , y
0
2).
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x′1(s, t) = a1(x1(s, t), x2(s, t), z(s, t))
x′2(s, t) = a2(x1(s, t), x2(s, t), z(s, t))
z′(s, t) = −c(x1(s, t), x2(s, t), z(s, t))
x1(0, t) = y1(t), x2(0, t) = y2(t), z(0, t) = g(y1(t), y2(t)).

Inverse function theorem
Assume ψ : U ⊂ RN → RN , ψ ∈ C1(U ;RN ), x0 ∈ U .
Assume det Jψ(x0) 6= 0, then ψ is a local C1−diffeomorphism, i.e. there exist neigh-

bourhoods U1 ⊆ U of x0, V1 of ψ(x0), and a function φ ∈ C1(V1, U1) which is the inverse
of ψ|U1

.

ψ(s, t) = (x1(s, t), x2(s, t)) φ(x1, x2) = (s(x1, x2), t(x1, x2))

∂x1

∂s
(0, 0) = a1(y0

1 , y
0
2 , z

0)
∂x2

∂s
(0, 0) = a2(y0

1 , y
0
2 , z

0)

∂x1

∂t
(0, 0) = y′1(0)

∂x2

∂t
(0, 0) = y′2(0)

Transversality condition:

a1(y0
1 , y

0
2 , z

0)y′2(0)− a2(y0
1 , y

0
2 , z

0)y′1(0) 6= 0

Call ν the unit normal to Γ:

ν(y0
1 , y

0
2) =

1√
y′1(0)2 + y′2(0)2

(y′2(0),−y′1(0))

a(y0, z0) · ν(y0) 6= 0.

Theorem (Local existence and uniqueness)
Suppose U ⊂ RN , I ⊂ R interval,
γ ∈ C1(I;RN ), Γ = γ(I), Γ ⊆ ∂U ,
g : Γ→ R, g ◦ γ ∈ C1(I;R),
y0 = γ(0), J ⊂ R is a neighbourhood of g(y0), a, c ∈ C1(U × J).
Assume the transversality condition holds in a neighbourhood W of y0 in Γ, i.e. for

all y ∈W
a(y, g(y)) · ν(y) 6= 0.

Then, there exists a neighbourhood V of y0 in RN and a unique function u ∈ C1(V ;R)
which solves {

a(x, u) · ∇u+ c(x, u) = 0 in V ,
u(x) = g(x) on Γ ∩ V .

If for some neighbourhood W of y0 in Γ the transversality condition is not satisfied for
all y ∈W , then either the problem has no C1 solutions or it has infinitely many solutions.

What happens if the transversality condition is not satisfied?
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{
a1ux1 + a2ux2 = −c,
u
(
y1(t), y2(t)

)
= g
(
y1(t), y2(t)

)
.

Assume u is a solution. Set h(t) = u
(
y1(t), y2(t)

)
. Then the vector ∇u(y0

1 , y
0
2) solves

the algebraic system

{
∇u(y0

1 , y
0
2) ·

(
a1(y0

1 , y
0
2 , u(y0

1 , y
0
2)), a2(y0

1 , y
0
2 , u(y0

1 , y
0
2))
)

= −c
(
y0

1 , y
0
2 , u(y0

1 , y
0
2)
)
,

∇u(y0
1 , y

0
2) · (y′1(0), y′2(0) = h′(0).

By Rouché-Capelli Theorem the vectors (a1, a2,−c) and (y′1(0), y′2(0), h′(0)) must be
parallel.

In this case a necessary condition to get a solution is that the curve γ(t) must be
parallel to the characteristic curve at (y0

1 , y
0
2 , z

0).

Example: non-homogeneous Burgers equation{
u ∂u
∂x1

+ ∂u
∂x2

= 1,

u(x1, 0) = h(x1)

where h ∈ C1(R), for example if h(x) = x.

u(x1, x2) = x2 +
2x1 − x2

2

2 + 2x2
.

Example {
u ∂u
∂x1

+ ∂u
∂x2

= 1,

u(x1, x2) = x2

2 on Γ = {(t2, 2t) : t ∈ R}.

u(x1, x2) = 1/2x2 − 1/2
√

4x1 − x2
2 or u(x1, x2) = 1/2x2 + 1/2

√
4x1 − x2

2

non-regular solutions.

Example {
∂u
∂x1

+ ∂u
∂x2

= 1,

u(t, t) = t t ∈ R.

u(x1, x2) = x2 + f(x1 − x2)

for any f such that f(0) = 0.
(infinitely many solutions)

Exercise {
x1

∂u
∂x1

+ x2
∂u
∂x2

= 4u, (x1, x2) ∈ R2

u(x1, x2) = 1 x2
1 + x2

2 = 1.
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Scalar Conservation Laws

We consider equations of the form

ut + divx q
(
u(x, t)

)
= 0, x ∈ RN , t > 0.

(If N = 1 we write ut + q(u)x = 0, x ∈ R, t > 0.)

Denote by u(x, t) the concentration of a physical quantity Q inside a set Ω at time t.
The amount of Q inside the set Ω at time t is given by (assume e.g. N = 3)∫∫∫

Ω

u(x, t) dx

The conservation law says that

d

dt

∫∫∫
Ω

u(x, t) dx = −
∫∫

∂Ω

q · ν dσ,

where
d

dt

∫∫∫
Ω

u(x, t) dx is the rate of change of Q in Ω, and −
∫∫

∂Ω

q · ν dσ is the net

flux through the boundary of Ω.

(If N = 1 and Ω = [x1, x2] we have d
dt

∫ x2

x1
u(x, t) dx = q(u(x1, t))− q(u(x2, t)).)

By the divergence theorem∫∫
∂Ω

q · ν dσ =

∫∫∫
Ω

divx q dx

hence

∫∫∫
Ω

(ut(x, t) + divx q) dx = 0,

and we derive
ut + divx q

(
u(x, t)

)
= 0.

(If N = 1 we write ut + q(u)x = 0.)

Let us consider the following problem:{
ut + q′(u)ux = 0,
u(x, 0) = g(x) x ∈ R.

We shall use the method of the characteritics for the equation a1ux1
+ a2ux2

= c with

x1 = x, x2 = t, a1 = q′(u), a2 = 1.

The characteristic equations arex′(s) = q′(z(s))
t′(s) = 1
z′ = 0

The characteristics are straight lines, here s = t hence we can write the cartesian equation
of the lines instead of the parametric equation:

x(t) = q′(g(x0))t+ x0, u(x, t) = g(x0).
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The transversality condition is always satisfied, indeed a(y, g(y)) = (q, 1), ν(y) = (0, 1).

Notice however that the characteristics may possibly intersect!

How can we write the solution? Recall the solution of the transport equation:

u(x, t) = g(x0) = g(x− tv).

Now we still have u(x, t) = g(x0). Since x(t)− q′(g(x0))t = x0 we can write

u(x, t) = g
(
x(t)− q′(g(x0))t

)
We obtain an implicit formula for the solution: u = g(x− tq′(u))

Implicit Function Theorem:
Consider the level set

F (x, t, z) = 0.

Suppose (x0, t0, z0) belongs to the level set, i.e. F (x0, t0, z0) = 0.
Then, if ∂F

∂z (x0, t0, z0) 6= 0, there exists locally a funcion u = u(x, t) such that

F
(
x, t, u(x, t)

)
= 0 for all (x, t).

Moreover

∂u

∂x
(x, t) = −

∂F
(
x,t,u(x,t)

)
∂x

∂F
(
x,t,u(x,t)

)
∂z

and

∂u

∂t
(x, t) = −

∂F
(
x,t,u(x,t)

)
∂t

∂F
(
x,t,u(x,t)

)
∂z

Here we have
u− g(x− tq′(u)) = 0

Therefore it is possible to write u = u(x, t) if

1 + tq′′(u)g′(x− tq′(u)) 6= 0.

What if q′′(u) > 0 and g′ < 0 ?
Smooth solutions may fail to exist.
“However, the fluid described by the equation keeps flowing unaware of our mathemat-

ical troubles...”
What kind of solutions can we expect?

Example: Burgers equation (shockwave){
ut +

(
u2

2

)
x

= 0 in R× ]0,+∞[

u(x, 0) = g(x) x ∈ R

where

g(x) =

 1 if x ≤ 0
1− x if 0 < x ≤ 1
0 if x > 1
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u(x, t) =


1 if x ≤ t, 0 ≤ t ≤ 1 or t > 1, x < 1

2 t+ 1
2

1−x
1−t if 0 ≤ t ≤ x ≤ 1

0 if x ≥ 1, 0 ≤ t ≤ 1 or t > 1, x > 1
2 t+ 1

2

Mild solution
An integrable function u : R×]0,+∞[→ R is a mild solution of{

ut + q(u)x = 0,
u(x, 0) = g(x) x ∈ R.

if u(x, 0) = g(x) for all x ∈ R and, for all x1 < x2,

d

dt

∫ x2

x1

u(x, t) dx = q(u(x1, t))− q(u(x2, t)).

Notice that mild solutions may be discontinuous.

Weak solution
A function u ∈ L∞(R×]0,+∞[) is a weak solution of{

ut + q(u)x = 0,
u(x, 0) = g(x) x ∈ R.

if, for all test functions φ ∈ C∞(R× [0,+∞[), with compact support, we have∫ +∞

0

(∫ +∞

−∞
u(x, t)φt(x, t) + q(u(x, t))φx(x, t) dx

)
dt+

∫ +∞

−∞
g(x)φ(x, 0) dx = 0.

Observation: A classical solution is a mild solution, a mild solution is a weak
solution. A function u ∈ C1(R×]0,+∞[) is a classical solution of the problem if and only
if u is a weak solution of the problem.

What information about the u is hidden in the formula for a weak solution if u is, for
example, singular along a shock curve (jump discontinuity)?

The Rankine-Hugoniot condition
We suppose now that u is a weak solution which is C1 in some open region V ⊂

R×]0,+∞[ except on a smooth curve C which separates V into two parts: V l and V r.
Then the speed of the shock wave is the quotient of the flux jump over the density

jump:
q(u+)− q(u−) = (u+ − u−)ϕ′(t),

where γ(t) = (ϕ(t), t), γ being a parametrization of C.

Example: Burgers equation again{
ut +

(
u2

2

)
x

= 0 in R× ]0,+∞[

u(x, 0) = g(x) x ∈ R
g(x) =

 1 if x ≤ 0
1− x if 0 < x ≤ 1
0 if x > 1
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u(x, t) =


1 if x ≤ t, 0 ≤ t ≤ 1 or t > 1, x < 1

2 t+ 1
2

1−x
1−t if 0 ≤ t ≤ x ≤ 1

0 if x ≥ 1, 0 ≤ t ≤ 1 or t > 1, x > 1
2 t+ 1

2

Example: rarefaction wave{
ut +

(
u2

2

)
x

= 0 in R× ]0,+∞[

u(x, 0) = g(x) x ∈ R
g(x) =

{
0 if x ≤ 0
1 if x > 0

What is u in the wedge x > 0 , t ≥ x?
We set

u(x, t) =

{
0 if x < t

2

1 if x > t
2

u is a shock solution and the Rankine-Hugoniot condition is satisfied.
Is this an acceptable solution?
We expect a shock in presence of a compression wave, not in presence of an expansion

wave.
Looking for a second solution:
Regularised problem: {

ut +
(
u2

2

)
x

= 0 in R× ]0,+∞[

u(x, 0) = gε(x) x ∈ R

gε(x) =


0 if x ≤ 0
1
εx if 0 < x < ε

1 if x ≥ ε

u(x, t) =


0 if x < 0
x
t+ε if 0 < x < t+ ε

1 if x > t+ ε

When ε −→ 0:

u(x, t) =


0 if x < 0
x
t if 0 < x < t

1 if x > t > 0

More in general, assuming q′ is invertible, if g has a jump at x = a, in the wedge we
can define

u(x, t) = (q′)−1(
x− a
t

).

How can we chose the “right” solution?

The Entropy Condition
We require an “entropy condition”

q′(u−) > σ > q′(u+)
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Characteristics must enter the shock curve and are not allowed to emanate from it.
Assume q′′ > 0. A weak solution is said to be an entropy solution if there exists C ≥ 0

such that, for every x,∆x ∈ R, ∆x > 0, and every t > 0, we have

u(x+ ∆x)− u(x, t) ≤ C

t
∆x.

Assume q′′ ≥ K > 0 and g′ > 0. If u is smooth, then u is an entropy solution.
Assume u is an entropy solution. Then, for all fixed t > 0 the function

ψ[t](x) := u(x, t)− C

t
x

is decreasing.
Assume q′′ ≥ K > 0, u is an entropy solution presenting a shock curve ϕ(t). Then the

slope of the shock curve is smaller than the slope of the left characteristics and larger than
the slope of the right characteristics:

q′(u+) < ϕ′(t) < q′(u−).

Lax-Oleinik theorem.
Assume q ∈ C2(R) is strictly convex (or strictly concave) and g ∈ L∞(R). Then

problem {
ut + q(u)x = 0 x ∈ R, t > 0,
u(x, 0) = g(x) x ∈ R.

has a unique entropy solution.
Furthermore, the solution u is stable and depends continuously on the initial data, in

the following sense: there exists a constant A such that, if h ∈ L∞(R) and v is the entropy
solution for the problem with initial datum h, then, for every x1, x2 ∈ R, x1 < x2, t > 0,∫ x2

x1

|u(x, t)− v(x, t)| dx ≤
∫ x2+At

x1−At
|g(x)− h(x)| dx.

(For uniqueness the convexity or concavity of q is not necessary, but the entropy must
be suitably defined.)

The Riemann problem
Assume q ∈ C2(R) and q′′ ≥ C > 0. Set

g(x) =

{
u− if x < 0
u+ if x > 0

u+ 6= u−.
Then, the unique entropy solution of the problem{

ut + q(u)x = 0 x ∈ R t > 0,
u(x, 0) = g(x) x ∈ R.

is
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(i) if u+ > u−,

u(x, t) =

{
u− if x < σt
u+ if x > σt

where σ = q(u+)−q(u−)
u+−u− ;

(ii) if u− < u+,

u(x, t) =

 u− if x < q′(u−)t
(q′)−1

(
x
t

)
if q′(u−)t < x < q′(u+)t

u+ if x > q′(u+)t

A model example: the traffic flow
Traffic on a highway along the positive direction of the x−axis;
no overtaking allowed
no exits or entrances
u(x, t) = density of cars in the point x at the time t.
v(x, t) = average speed.
q flux; q = vu
The average speed depends on the density alone: v = v(u).

v′(u) =
dv

du
≤ 0.

Conservation law
ut + q(u)x = 0

Constitutive relation for v:

v(u) = vm

(
1− u

um

)
,

vm = maximal velocity,
um = maximal concentration (bumper to bumper).

ut + vm

(
1− 2u

um

)
ux = 0.

{
ut + vm

(
1− 2u

um

)
ux = 0

u(x, 0) = g(x)
g(x) =

{
1
8um if x < 0
um if x > 0

Traffic jam ahead (v = 0 if x > 0).
On the left v = 7

8vm.

u(x, t) =

{ 1
8um if x < − 1

8vmt

um if x > − 1
8vmt

Shock line: ϕ(t) = − 1
8vmt.

The shock is revealed by the breaking lights of the cars, slowing down because of the
traffic jam ahead.
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Example: the green traffic-light{
ut + vm

(
1− 2u

um

)
ux = 0

u(x, 0) = g(x)
g(x) =

{
um if x < 0
0 if x > 0

u(x, t) =


um if x ≤ −vmt
1
2um

(
1− 1

vm
x
t

)
if − vmt < x < vmt

0 if x ≥ vmt

Example{
ut +

(
u2

2

)
x

= 0 in R× ]0,+∞[

u(x, 0) = g(x) x ∈ R
g(x) =

 0 if x < 0
1 if 0 ≤ x ≤ 1
0 if x > 1

Exercise
Determine a weak solution o the Lighthill-Whitham-Richard model for traffic flow{

ut + (v(u)u)x = 0 in R× ]0,+∞[
u(x, 0) = g(x) x ∈ R

with velocity

v(u) = 2− u

2

and initial density

g(x) =

 2 if x < 0
x+ 2 if 0 ≤ x < 1
3 if x ≥ 1

Describe the trajectory of a car initially in position x = −2.

Exercise
Discuss existence and uniqueness and determine a weak solution of the scalar conser-

vation law {
ut + 4uux = 0 in R× ]0,+∞[
u(x, 0) = g(x) x ∈ R g(x) =

 1 if x < 0
0 if 0 ≤ x < 1
−1 if x ≥ 1
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The wave equation

The vibrating string

We consider small transversal vibrations of a tightly stretched perfectly flexible hori-
zontal string (the stress at any point can be modelled by a tangential force, the tension)

we neglect friction

vibrations have small amplitude

we assume there is only vertical displacement, and this depends on the position x and
time t: u = u(x, t)

Consider a string element at a fixed time t, represented by the curve γ(x) =
(
x, u(x, t)

)
.

The forces acting to the string= external vertical forces f (gravity, loads) + internal
forces T̄ (tension)

The horizontal forces have to balance:

T̄ (x2)|horizontal = T̄ (x1)|horizontal

τ(x2, t) cos(α(x2, t))− τ(x1, t) cos(α(x1, t)) = 0

τ = |T̄ | magnitude
α(x, t) angle between the x-axis and the tangent of γ at x

∂

∂x
(τ(x, t) cos(α(x, t))) = 0

τ(x, t) cos(α(x, t)) = τ0(t)

Vertical tension:

τ(x, t) sin(α(x, t)) = τ0(, t) tan(α(x, t)) = τ0(t)ux(x, t)

Conservation of mass:
ρ0 = ρ0(x) = linear density of the string at rest
ρ(x, t) = linear density of the string at time t

ρ0(x)∆x = ρ(x, t)∆s

Newton law:∫
γ

utt(s, t)ρ(s, t) ds =

∫ x2

x1

utt(x, t)ρ0(x) dx =

∫ x2

x1

f(x, t)ρ0(x) dx+τ0(t) (ux(x2, t)− ux(x1, t))

utt(x, t)−
τ0(t)

ρ0(x)
uxx(x, t) = f(x, t) (J. d’Alembert 1752)



18

Since the string is perfectly elastic τ0 is constant; since the string is homogeneous ρ0 is
constant.

Set
c2 =

τ0
ρ0

The homogeneous equation.
f ∈ C2(R), g ∈ C1(R) utt(x, t)− c2uxx(x, t) = 0 x ∈ R, t > 0

u(x, 0) = f(x) x ∈ R
ut(x, 0) = g(x) x ∈ R(

∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0

Set v =
(
∂
∂t + c ∂∂x

)
, then solve the linear transport equation vt − cvx = 0.

We have v(x, t) = ϕ(x+ ct) for some ϕ.
Solve ut + cux = ϕ(x+ ct).

u(x, t) = ϕ(x− ct) +

∫ t

0

ϕ
(
x+ (η − t)c+ cη

)
dη.

Observe that u(x, 0) = ψ(x) and ut(x, 0) = ϕ(x)− cψ′(x).

Since u(x, 0) = f(x) and ut(x, 0) = g(x), we deduce
D’Alembert formula:

u(x, t) =
1

2

(
f(x+ ct) + f(x− ct)

)
+

1

2c

∫ x+ct

x−ct
g(ξ) dξ

Theorem The Cauchy problem above has a unique solution, and for all T > 0, this is
uniformly stable on R× [0, T ].

Weak solution
Assume f ∈ C(R) and g ∈ L∞(R).
A function u ∈ C(R× [0,+∞[) is a weak solution of utt(x, t)− c2uxx(x, t) = 0 x ∈ R, t > 0

u(x, 0) = f(x) x ∈ R
ut(x, 0) = g(x) x ∈ R

if, for all test functions v ∈ C2(R× [0,+∞[), with compact support, we have∫ +∞

0

(∫ +∞

−∞
u(x, t)

(
vtt(x, t)− c2vxx(x, t)

)
dx

)
dt

−
∫ +∞

−∞
(g(x)v(x, 0)− f(x)vt(x, 0)) dx = 0.



19

Observation: the singularities of the solutions of the wave equation are travelling
only along characteristics.

Domain of dependence and region of influence

Example (chord of infinite length plucked at the origin) utt(x, t)− c2uxx(x, t) = 0 x ∈ R, t > 0
u(x, 0) = f(x) x ∈ R
ut(x, 0) = 0 x ∈ R

where

f(x) =


0 if −∞ < x < −1
x+ 1 if − 1 ≤ x < 0
1− x if 0 ≤ x < 1
0 if x ≥ 1

The non-homogeneous equation
f ∈ C2(R), g ∈ C1(R) utt(x, t)− c2uxx(x, t) = h(x, t) x ∈ R, t > 0

u(x, 0) = f(x) x ∈ R
ut(x, 0) = g(x) x ∈ R

Theorem The problem is well-posed for h, hx ∈ C(R2), f ∈ C2(R), g ∈ C1(R), for
each T > 0, in R× [0, T ].

D’Alembert formula:

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct
g(ξ) dξ +

1

2c

∫∫
∆(x,t)

h(ξ, τ) dξdτ

Here ∆(x, t) is the characteristic triangle with vertex (x, t).

Observation Let f and g be even (odd, periodic of period P ) functions; let, for all
t ≥ 0, h(·, t) be even (odd, periodic of period P ). Then, for all t ≥ 0, the solution u(·, t)
is also even (odd, periodic of period P ).

The problem on the half line (a reflection method).
f ∈ C2([0,+∞[), g ∈ C1([0,+∞[), f(0) = f ′′(0) = g(0) = 0;

utt(x, t)− c2uxx(x, t) = 0 0 < x < +∞, t > 0
u(0, t) = 0 t > 0
u(x, 0) = f(x) 0 ≤ x+∞
ut(x, 0) = g(x) 0 ≤ x < +∞

Extend f and g as odd functions f̃ and g̃ over R and consider the problem on R, to
obtain

u(x, t) =

{
1
2 (f(x+ ct) + f(x− ct)) + 1

2c

∫ x+ct

x−ct g(ξ) dξ if x > ct
1
2 (f(x+ ct)− f(ct− x)) + 1

2c

∫ x+ct

ct−x g(ξ) dξ if 0 ≤ x ≤ ct
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Peculiarities of dimensione N = 1.

There is no decay of waves.

Once the wave if detected, even if it has a compact support it will never disappear.

Radially symmetric solutions of the wave equation in three dimensions.

utt(x1, x2, x3, t)− c2∆u(x1, x2, x3, t) = 0

Spherical coordinates:

r =
√
x2

1 + x2
2 + x2

3, x1 = r sinϕ cos θ, x2 = r sinϕ sin θ, x1 = r cosϕ.

Laplacian in spherical coordinates: (radial part) + (spherical part)

∆u =

(
∂2u

∂r2
+

2

r

∂u

∂r

)
+

1

r2

(
1

sin2 ϕ

∂2u

∂θ2
+
∂2u

∂ϕ2
+

cosϕ

sinϕ

∂u

∂ϕ

)
utt(x1, x2, x3, t)− c2∆u(x1, x2, x3, t) = 0
utt − c2

(
∂2u
∂r2 + 2

r
∂u
∂r

)
= 0 0 < r < +∞, t > 0

u(r, 0) = f(r) 0 ≤ r < +∞
ut(r, 0) = g(r) 0 ≤ r < +∞

u(r, t) =
1

2r

(
(r + ct)f̃(r + ct) + (r − ct)f̃(r − ct)

)
+

1

2rc

∫ r+ct

r−ct
ξg̃(ξ) dξ

In dimension 3 there is a decay of the wave with time at any point.

Examples

f(r) = 0,

g(r) =

{
1 if 0 ≤ r ≤ 1
0 if r > 1 utt −∆u = 0 0 ≤ r < +∞, t ≥ 0

u(r, 0) = f(r) 0 ≤ r < +∞
ut(r, 0) = g(r) 0 ≤ r < +∞ utt −∆u = 0 0 ≤ r < +∞, t ≥ 0
u(r, 0) = g(r) 0 ≤ r < +∞
ut(r, 0) = f(r) 0 ≤ r < +∞

Spherical means and the general Cauchy problem in R3.

Spherical mean. h ∈ C1(R3),

Mh(r, x) =
1

4πr2

∫∫
∂B(x,r)

h(σ) dσ
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is the average of h over the sphere ∂B(x, r).

We have

lim
r→0

Mh(r, x) =?

lim
r→0

Mh(r, x) = h(x)

∂

∂r
Mh(r, x) =

1

4πr2

∫∫∫
B(x,r)

∆h(x) dx

∂2

∂r2
Mh(r, x) = − 1

2πr3

∫∫∫
B(x,r)

∆h(x) dx+
1

4πr2

∫∫
∂B(x,r)

∆h(σ) dσ

∆xMh(r, x) =
1

4πr2

∫∫
∂B(x,r)

∆h(σ) dσ

Darboux equation (
∂2

∂r2
+

2

r

∂

∂r

)
Mh(r, x) = ∆xMh(r, x)

Proposition I.
If u is a solution of  utt − c2∆u = 0 x ∈ R3, t ≥ 0

u(x, 0) = 0 x ∈ R3

ut(x, 0) = g(x) x ∈ R3

then w = Mu(r, x, t) is a solution of
wtt − c2

(
∂2w
∂r2 + 2

r
∂w
∂r

)
= 0 0 < r < +∞, t > 0

w(r, 0) = 0 0 ≤ r < +∞
wt(r, 0) = Mg(r, x) 0 ≤ r < +∞

Proposition II.
If u is a solution of  utt − c2∆u = 0 x ∈ R3, t ≥ 0

u(x, 0) = 0 x ∈ R3

ut(x, 0) = g(x) x ∈ R3

then v(x, t) := ut(x, t) is a solution of vtt − c2∆v = 0 x ∈ R3, t ≥ 0
v(x, 0) = g(x) x ∈ R3

vt(x, 0) = 0 x ∈ R3

Solution: (Kirchhoff’s formula)

u(x, t) = tMg(ct, x) +
∂

∂t
(tMf (ct, x))
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u(x, t) =
1

4πc2t

∫∫
∂B(x,ct)

g(σ) dσ +
∂

∂t

(
1

4πc2t

∫∫
∂B(x,ct)

f(σ) dσ

)
Huygens principle holds.

Theorem Let f ∈ C3(R3), h ∈ C2(R3). Then Kirchhoff’s formula yields the unique
solution u ∈ C2(R3 × [0,+∞[) of the problem utt − c2∆u = 0 x ∈ R3, t ≥ 0

u(x, 0) = f(x) x ∈ R3

ut(x, 0) = g(x) x ∈ R3

The problem in R2 (Hadamard’s descent method). utt − c2(ux1x1
+ xx2x2

) = 0 (x1, x2) ∈ R2, t ≥ 0
u(x1, x2, 0) = f(x1, x2) (x1, x2) ∈ R2

ut(x1, x2, 0) = g(x1, x2) (x1, x2) ∈ R2

Poisson’s formula:

u(x1, x2, t) =
1

2πc

∫∫
B(x1,x2;ct)

g(ξ1, ξ2)√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

dξ1dξ2

+
∂

∂t

(
1

2πc

∫∫
B(x1,x2;ct)

f(ξ1, ξ2)√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

dξ1dξ2

)

Theorem Let f ∈ C3(R2), g ∈ C2(R2). Then Poisson’s formula yields the unique
solution u ∈ C2(R2 × [0,+∞[) of the problem.

In dimension 2 Huygens principle does not hold. Any perturbation will leave trace for
all later times.

The wave equation in a bounded interval (separation of variables)
The Dirichlet problem:

utt(x, t)− c2uxx(x, t) = 0 0 < x < L, t > 0
u(0, t) = u(L, t) = 0 t ≥ 0
u(x, 0) = f(x) x ∈ [0, L]
ut(x, 0) = g(x) x ∈ [0, L]

w′′(t) = λc2w(t)

 v′′(x) = λv(x)
v(0) = 0
v(L) = 0

uk(x, t) =

(
ak cos(

πkc

L
t) + bk sin(

πkc

L
t)

)
sin(

πk

L
x)

ak, bk ∈ R, k = 1, 2, 3, . . . .
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The Neumann problem: (exercise)
utt(x, t)− c2uxx(x, t) = 0 0 < x < L, t > 0
ux(0, t) = ux(L, t) = 0 t ≥ 0
u(x, 0) = f(x) x ∈ [0, L]
ut(x, 0) = g(x) x ∈ [0, L]

where f ′(0) = f ′(L) = g′(0) = g′(L) = 0.

uk(x, t) =

(
ak cos(

πkc

L
t) + bk sin(

πkc

L
t)

)
cos(

πk

L
x)

ak, bk ∈ R, k = 1, 2, 3, . . . .

Imposing initial conditions:

A formal solution:

+∞∑
k=1

(
f̂k cos(

πkc

L
t) +

L

πkc
ĝk sin(

πkc

L
t)

)
sin(

πk

L
x)

Energy: E(t) =
1

2

∫ L

0

(w2
t + c2w2

x) dx

Energy is conserved ⇒ uniqueness.
Uniqueness? Stability?

Exercise
Solve the hyperbolic problem

utt − 4uxx = x, in ]0,+∞[× ]0,+∞[,
u(0, t) = 0, in ]0,+∞[,
u(x, 0) = x4, in [0,+∞[,
ut(x, 0) = 0, in [0,+∞[.

Exercise
Compute the solution u of the hyperbolic problem utt −∆u = 0 in R3 × R

u(x, y, z, 0) = 0 (x, y, z) ∈ R3

ut(x, y, z, 0) = h(x, y, z) (x, y, z) ∈ R3

where

h(x, y, z) =

{
2 if x2 + y2 + z2 ≤ 1
0 if x2 + y2 + z2 > 1

at the point P = (2, 0, 0) at the times t1 = 1
2 , t2 = 3

2 , t3 = 4


