F. Obersnel

Università degli Studi di Trieste office 336 (third floor) tel. 0405582616
e.mail: obersnel@units.it

First part:
Conservation laws and first order equations
Second part:

The wave equation

References I used:
Partial Differential Equations
L.C. Evans, American Mathematical Society

Partial Differential Equations in Action
S. Salsa, Springer

An Introduction to Partial Differential Equations Y. Pinchover, J. Rubinstein (Cambridge Univ. Press)

A model example: pollution in a channel

A water stream of constant speed v transports the pollutant along the positive direction of the x-axis;
we neglect the depth of the water (floating pollutant)
we neglect the transversal dimension (narrow channel)
$u(x, t)=$ concentration of the pollutant

$$
\int_{x}^{x+\Delta x} u(y, t) d y
$$

is the mass of pollutant inside the interval $[x, x+\Delta x]$ at time t.
Mass conservation law (no sinks, no sources)

$$
\frac{d}{d t} \int_{x}^{x+\Delta x} u(y, t) d y=\int_{x}^{x+\Delta x} u_{t}(y, t) d y=q(x, t)-q(x+\Delta x, t)
$$

$\frac{d}{d t} \int_{x}^{x+\Delta x} u(s, t) d s$ is the growth rate of the mass contained in the interval $[x, x+\Delta x]$
$q(x, t)-q(x+\Delta x, t)$ is the net mass flux into $[x, x+\Delta x]$ through the end-points

$$
\begin{aligned}
\frac{1}{\Delta x} \int_{x}^{x+\Delta x} u_{t}(s, t) d s & =\frac{q(x, t)-q(x+\Delta x, t)}{\Delta x} \\
u_{t}(x, t) & =-q_{x}(x, t)
\end{aligned}
$$

In higher dimensione $(N>1)$: e.g. $N=3, \Omega \subset \mathbb{R}^{3}$ bounded smooth basin,

$$
\iiint_{\Omega} u(x, t) d x
$$

is the mass of pollutant inside the basin Ω at time t.
Mass conservation law:

$$
\frac{d}{d t} \iiint_{\Omega} u(x, t) d x=-\iint_{\partial \Omega} q \cdot \nu d \sigma
$$

q flux function
ν outward normal
$\partial \Omega$ boundary of the basin Ω
$\iint_{\ldots} \ldots d \sigma$ denotes a surface integral
By the divergence theorem

$$
\iint_{\partial \Omega} q \cdot \nu d \sigma=\iiint_{\Omega} \operatorname{div} q d x
$$

hence

$$
\iiint_{\Omega} u_{t}(x, t) d x=-\iint_{\partial \Omega} q \cdot \nu d \sigma=-\iiint_{\Omega} \operatorname{div} q d x .
$$

and we derive

$$
u_{t}(x, t)=-\operatorname{div} q_{x}(x, t)
$$

Constitutive relation for q :

- convection (flux determined by the water stream only; $v=$ constant stream speed)

$$
q(x, t)=v \cdot u(x, t)
$$

- diffusion (pollution expands from higher concentration regions to lower ones; Fick's law)

$$
q(x, t)=-k \nabla_{x} u(x, t)
$$

In general $q(x, t)=v \cdot u(x, t)-k \nabla_{x} u(x, t)$.

$$
\begin{gathered}
\operatorname{div} q(x, t)=\nabla_{x} u \cdot v-k \Delta_{x} u(x, t) \\
u_{t}=k \Delta_{x} u-v \cdot \nabla_{x} u \quad\left(\text { if } N=1: u_{t}(x, t)=k u_{x x}(x, t)-v u_{x}(x, t)\right) .
\end{gathered}
$$

Suppose q depends only on convection, i.e. $k=0$, then we obtain

The transport equation in \mathbb{R}^{N} with constant coefficients
$x \in \mathbb{R}^{N}, t \in\left[0,+\infty\left[, u: \mathbb{R}^{N} \times\left[0,+\infty\left[\rightarrow \mathbb{R}, u=u(x, t), v \in \mathbb{R}^{N}\right.\right.\right.\right.$ constant.

$$
u_{t}(x, t)+v \cdot \nabla_{x} u(x, t)=0
$$

i.e., if $w=(v, 1), w \cdot \nabla u=0$, that is

$$
\frac{\partial u}{\partial w}=0
$$

u is constant along the direction w.

$$
\gamma(s)=(x, t)+s(v, 1)
$$

is the characteristic line passing through (x, t), along which the value of u is constant. $u(x+s v, t+s)=u(x, t) \quad$ for all $s \in \mathbb{R}, t+s \geq 0$.
The initial value problem $g: \mathbb{R}^{N} \rightarrow \mathbb{R}$

$$
\begin{gathered}
\begin{cases}u_{t}(x, t)+v \cdot \nabla_{x} u(x, t)=0 & \text { in } \mathbb{R}^{N} \times[0,+\infty[, \\
u(x, 0)=g(x) & \text { on } \Gamma=\mathbb{R}^{N} \times\{t=0\}, \\
u(x, t)=g(x-t v)\end{cases}
\end{gathered}
$$

Travelling wave moving with velocity v.
If the initial datum is $u\left(x, t_{0}\right)=g(x)$ we have $u(x, t)=$?

$$
u(x, t)=g\left(x+\left(t_{0}-t\right) v\right) .
$$

The non-homogeneous problem (distributed source)

$$
\begin{gathered}
\begin{cases}u_{t}(x, t)+v \cdot \nabla_{x} u(x, t)=f(x, t) & \text { in } \mathbb{R}^{N} \times[0,+\infty[\\
u(x, 0)=g(x) & \text { on } \Gamma=\mathbb{R}^{N} \times\{t=0\},\end{cases} \\
z(s)=u(x+s v, t+s) \\
\frac{d z}{d s}=v \nabla_{x} u(x+s v, t+s)+\frac{\partial u}{\partial t}(x+s v, t+s)=f(x+s v, t+s) \\
u(x, t)=g(x-t v)+\int_{0}^{t} f(x-(t-\eta) v, \eta) d \eta
\end{gathered}
$$

Observe that

$$
u(x, t)=g(x-t v)
$$

is a solution of the homogeneous problem

$$
\begin{cases}u_{t}(x, t)+v \cdot \nabla_{x} u(x, t) & \text { in } \mathbb{R}^{N} \times[0,+\infty[, \\ u(x, 0)=g(x) & \text { on } \Gamma=\mathbb{R}^{N} \times\{t=0\},\end{cases}
$$

while, for each s,

$$
w(x, t)=f(x-(t-s) v, s)
$$

is a solution of the problem

$$
\begin{cases}w_{t}(x, t)+v \cdot \nabla_{x} w(x, t)=0 & \text { in } \mathbb{R}^{N} \times[0,+\infty[, \\ w(x, s)=f(x, s) & \text { on } \Gamma=\mathbb{R}^{N} \times\{t=0\} .\end{cases}
$$

Duhamel's Principle.
For all $s>0$ let $w(\cdot, \cdot ; s)$ be a solution of

$$
\begin{cases}w_{t}+v \cdot \nabla_{x} w=0 & \text { in } \mathbb{R}^{N} \times[0,+\infty[, \\ w(x, s ; s)=f(x, s) & \text { on } \Gamma=\mathbb{R}^{N} \times\{t=0\}\end{cases}
$$

Then $u(x, t)=\int_{0}^{t} w(x, t ; s) d s$ is a solution of

$$
\begin{cases}u_{t}(x, t)+v \cdot \nabla_{x} u(x, t)=f(x, t) & \text { in } \mathbb{R}^{N} \times[0,+\infty[, \\ u(x, 0)=0 & \text { on } \Gamma=\mathbb{R}^{N} \times\{t=0\} .\end{cases}
$$

A problem is well-posed (according to J. Hadamard) if

1. The problem has a solution.
2. The solution is unique.
3. The solution is stable (a small change in the equation and in the side conditions gives rise to a small change in the solutions)

Theorem

Let $g \in C^{1}\left(\mathbb{R}^{N}\right), f \in C^{1}\left(\mathbb{R}^{N} \times[0,+\infty[)\right.$. Then, problem

$$
\begin{cases}u_{t}(x, t)+v \cdot \nabla_{x} u(x, t)=f(x, t) & \text { in } \mathbb{R}^{N} \times[0,+\infty[, \\ u(x, 0)=g(x) & \text { on } \Gamma=\mathbb{R}^{N} \times\{t=0\},\end{cases}
$$

has a unique solution. Moreover, it is stable on finite-time intervals, i.e., for all $T>0$, small changes of $f_{\mid \mathbb{R}^{N} \times[0, T]}$ in $\|\cdot\|_{L^{\infty}\left(\mathbb{R}^{N} \times[0, T]\right)}$ norm and of g in $\|\cdot\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}$ norm yield small changes of the solutions in $\|\cdot\|_{L^{\infty}\left(\mathbb{R}^{N} \times[0, T]\right)}$ norm.

The problem with decay (exercise)
Due to biological decomposition the pollutant decays at the rate $-\gamma u(x, t), \gamma>0$;

$$
\begin{cases}u_{t}(x, t)+v \cdot \nabla_{x} u(x, t)+\gamma u(x, t)=f(x, t) & \text { in } \mathbb{R}^{N} \times[0,+\infty[, \\ u(x, 0)=g(x) & \text { on } \Gamma=\mathbb{R}^{N} \times\{t=0\} .\end{cases}
$$

Multiply the equation by $e^{\gamma t}$

$$
\begin{gathered}
w(x, t)=e^{\gamma t} u(x, t) \\
u(x, t)=e^{-\gamma t} g(x-t v)+e^{-\gamma t} \int_{0}^{t} e^{\gamma \eta} f(x+(\eta-t) v, \eta) d \eta
\end{gathered}
$$

(if $f=0$ damped travelling wave)

An example with a discontinuity
A source of pollutant at $x=0$ starts working at time $t=0$.

$$
\begin{gathered}
\text { Heaviside function } H(t)= \begin{cases}0 & \text { if } t<0 \\
1 & \text { if } t \geq 0\end{cases} \\
\begin{cases}u_{t}(x, t)+v \cdot \nabla_{x} u(x, t)=0 & (x, t) \in[0,+\infty[\times \mathbb{R}, \\
u(0, t)=\beta H(t) & t \in \mathbb{R} \\
u(x, 0)=0 & x \in[0,+\infty[.\end{cases}
\end{gathered}
$$

Here we have both a boundary condition and a initial condition.

$$
u(x, t)=\beta H(v t-x)
$$

The jump discontinuity in $(0,0)$ is transported along the characterisctic $x=v t$.
Compare with the heat equation. In that case the solution is smooth even if the initial datum is discontinuous.

Inflow characteristics: the characteristics carry the information from the boundary to the interior of the domain.

Outflow characteristics: no data have to be assigned.

Exercise

Suppose, for $i=1,2, u_{i}$ is the solution of the problem

$$
\begin{cases}\left.u_{t}(x, t)+v u_{x}(x, t)=0 \text { in }\right] 0, R[\times] 0,+\infty[, \\ u(0, t)=f_{i}(t) & t>0 \\ u(x, 0)=g_{i}(x) & \text { in }] 0, R[.\end{cases}
$$

Prove the least square stability formula

$$
\int_{0}^{R}\left(u_{1}(x, t)-u_{2}(x, t)\right)^{2} d x \leq \int_{0}^{R}\left(g_{1}(x)-g_{2}(x)\right)^{2} d x+v \int_{0}^{t}\left(f_{1}(s)-f_{2}(s)\right)^{2} d s
$$

The method of characteristics

$F: \mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$,

$$
\begin{cases}F(\nabla u, u, x)=0 & \text { in } U \subset \mathbb{R}^{N}, \\ u=g & \text { on } \Gamma \subseteq \partial U\end{cases}
$$

To convert the PDE into an appropriate system of ODEs.
A quasilinear problem

$$
\left\{\begin{array}{lr}
a(x, u) \cdot \nabla u+c(x, u)=0 & \text { in } U \subset \mathbb{R}^{N}, \\
u(x)=g(x) & \text { on } \Gamma \subseteq \partial U .
\end{array}\right.
$$

Theorem

Let $U \subset \mathbb{R}^{N}$ be an open set, $u \in C^{1}(U)$ a solution of the equation

$$
a(x, u) \cdot \nabla u+c(x, u)=0 .
$$

Set $z(s)=u(x(s))$ where $x(s)$ is a solution of the system

$$
x^{\prime}(s)=a(x(s), z(s))
$$

Then $z(s)$ solves the ODE

$$
z^{\prime}(s)=-c(x(s), z(s))
$$

for those s such that $x(s) \in U$.
Example: $N=2$.

$$
a_{1}\left(x_{1}, x_{2}, u\right) u_{x_{1}}+a_{2}\left(x_{1}, x_{2}, u\right) u_{x_{2}}+c\left(x_{1}, x_{2}, u\right)=0
$$

$a_{1}, a_{2}, c: \mathbb{R}^{3} \rightarrow \mathbb{R}$.
Suppose $u=u\left(x_{1}, x_{2}\right)$ is a solution.
Suppose we know the solution u on the curve Γ. We want to span the graph of u starting from Γ.

Parametrize a curve in \mathbb{R}^{3} by $\left(x_{1}(s), x_{2}(s), z(s)\right)$ with $z(s)=u\left(x_{1}(s), x_{2}(s)\right)$.
Then

$$
z^{\prime}(s)=\frac{d}{d s} u\left(x_{1}(s), x_{2}(s)\right)=u_{x_{1}}\left(x_{1}(s), x_{2}(s)\right) x_{1}^{\prime}(s)+u_{x_{2}}\left(x_{1}(s), x_{2}(s)\right) x_{2}^{\prime}(s) .
$$

If we set

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(s)=a_{1}\left(x_{1}, x_{2}, z\right) \\
x_{2}^{\prime}(s)=a_{2}\left(x_{1}, x_{2}, z\right)
\end{array}\right.
$$

then

$$
z^{\prime}=-c\left(x_{1}, x_{2}, z\right)
$$

By solving the ODE system we obtain the value of the solution u along the characteristic. Imposing the initial conditions we hope to recover the whole solution.

Example: the transport equation.
$v \in \mathbb{R}, f: \mathbb{R} \times] 0,+\infty[\rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$.

$$
\begin{cases}v \frac{\partial u}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}}=f\left(x_{1}, x_{2}\right) & \text { in } \mathbb{R} \times] 0,+\infty[, \\ u\left(x_{1}, 0\right)=g\left(x_{1}\right) & \text { on } \Gamma=\left\{\left(x_{1}, 0\right) \in \mathbb{R}^{2}: x_{1} \in \mathbb{R}\right\} .\end{cases}
$$

Characteristic equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(s)=v \\
x_{2}^{\prime}(s)=1 \\
z^{\prime}(s)=f\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

$x_{1}=v s+x_{1}^{0}, x_{2}=s$. Fix $\left(x_{1}, x_{2}\right) \in U$ and find the characteristic passing through $\left(x_{1}, x_{2}\right)$: invert to find $x_{1}^{0}=x_{1}-v x_{2}$ to obtain $z(s)-z^{0}=\int_{0}^{s} f\left(x_{1}(\xi), x_{2}(\xi)\right) d \xi$; i.e.

$$
u(x, t)=g(x-v t)+\int_{0}^{t} f(v \xi+x-v t, \xi) d \xi
$$

Example: a linear problem

$$
\left\{\begin{array}{l}
\left.x_{1} \frac{\partial u}{\partial x_{2}}-x_{2} \frac{\partial u}{\partial x_{1}}=u \text { in } U=\right] 0,+\infty[\times] 0,+\infty[\\
u\left(x_{1}, 0\right)=g\left(x_{1}\right) \quad \text { on } \Gamma=\left\{\left(x_{1}, 0\right) \in \mathbb{R}^{2}: x_{1}>0\right\},
\end{array}\right.
$$

where $g:] 0,+\infty[\rightarrow \mathbb{R}$.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(s)=-x_{2}(s) \\
x_{2}^{\prime}(s)=x_{1}(s) \\
z^{\prime}(s)=z(s)
\end{array}\right.
$$

$$
\begin{aligned}
& z(s)=z^{0} e^{s} ; z^{0}=z(0)=u\left(x_{1}^{0}, 0\right)=g\left(x_{1}^{0}\right) \\
& \left(x_{1}(s), x_{2}(s)\right)=\left(x_{1}^{0} \cos s, x_{1}^{0} \sin s\right)
\end{aligned}
$$

Fix $\left(x_{1}, x_{2}\right) \in U$ and find the characteristic passing through $\left(x_{1}, x_{2}\right)$.
We invert the system

$$
\left\{\begin{array}{l}
x_{1}=x_{1}^{0} \cos s \\
x_{2}=x_{1}^{0} \sin s
\end{array}\right.
$$

to obtain

$$
x_{1}^{0}=\sqrt{x_{1}^{2}+x_{2}^{2}} \quad \text { and } \quad s=\operatorname{atan}\left(\frac{x_{2}}{x_{1}}\right) .
$$

Therefore

$$
u\left(x_{1}, x_{2}\right)=g\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right) \exp \left(\operatorname{atan}\left(x_{2} / x_{1}\right)\right)
$$

Example: a semilinear problem

$$
\left\{\begin{array}{l}
\left.\frac{\partial u}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}}=u^{2} \text { in } U=\mathbb{R} \times\right] 0,+\infty[\\
u\left(x_{1}, 0\right)=g\left(x_{1}\right) \text { on } \Gamma=\left\{\left(x_{1}, 0\right) \in \mathbb{R}^{2}\right\}
\end{array}\right.
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$.

$$
u\left(x_{1}, x_{2}\right)=\frac{g\left(x_{1}-x_{2}\right)}{1-x_{2} g\left(x_{1}-x_{2}\right)}
$$

The solution is defined only locally!
The initial value problem

$$
\left\{\begin{array}{lr}
a(x, u) \cdot \nabla u+c(x, u)=0 \text { in } U, \\
u(x)=g(x) & \text { on } \Gamma,
\end{array}\right.
$$

$N=2$
Γ parametrized by $\gamma(t)=\left(y_{1}(t), y_{2}(t)\right), t \in I$ interval, $\gamma(0)=\left(y_{1}(0), y_{2}(0)\right)=\left(y_{1}^{0}, y_{2}^{0}\right)$.

$$
\left\{\begin{array}{lr}
a_{1}\left(x_{1}, x_{2}, u\right) \frac{\partial u}{\partial x_{1}}+a_{2}\left(x_{1}, x_{2}, u\right) \frac{\partial u}{\partial x_{2}}+c\left(x_{1}, x_{2}, u\right)=0 \text { in } U \\
u\left(y_{1}(t), y_{2}(t)\right)=g\left(y_{1}(t), y_{2}(t)\right) & t \in I
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(s)=a_{1}\left(x_{1}(s), x_{2}(s), z(s)\right) \\
x_{2}^{\prime}(s)=a_{2}\left(x_{1}(s), x_{2}(s), z(s)\right) \\
z^{\prime}(s)=-c\left(x_{1}(s), x_{2}(s), z(s)\right) \\
x_{1}(0)=y_{1}^{0}, \quad x_{2}(0)=y_{2}^{0}, \quad z(0)=z^{0}=g\left(y_{1}^{0}, y_{2}^{0}\right)
\end{array} \quad\right. \text { characteristic equations }
$$

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(s, t)=a_{1}\left(x_{1}(s, t), x_{2}(s, t), z(s, t)\right) \\
x_{2}^{\prime}(s, t)=a_{2}\left(x_{1}(s, t), x_{2}(s, t), z(s, t)\right) \\
z^{\prime}(s, t)=-c\left(x_{1}(s, t), x_{2}(s, t), z(s, t)\right) \\
x_{1}(0, t)=y_{1}(t), \quad x_{2}(0, t)=y_{2}(t), \quad z(0, t)=g\left(y_{1}(t), y_{2}(t)\right)
\end{array}\right.
$$

Inverse function theorem

Assume $\psi: U \subset \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, \psi \in C^{1}\left(U ; \mathbb{R}^{N}\right), x^{0} \in U$.
Assume $\operatorname{det} J \psi\left(x^{0}\right) \neq 0$, then ψ is a local C^{1}-diffeomorphism, i.e. there exist neighbourhoods $U_{1} \subseteq U$ of x^{0}, V_{1} of $\psi\left(x^{0}\right)$, and a function $\phi \in C^{1}\left(V_{1}, U_{1}\right)$ which is the inverse of $\psi_{\mid U_{1}}$.

$$
\begin{gathered}
\psi(s, t)=\left(x_{1}(s, t), x_{2}(s, t)\right) \quad \phi\left(x_{1}, x_{2}\right)=\left(s\left(x_{1}, x_{2}\right), t\left(x_{1}, x_{2}\right)\right) \\
\frac{\partial x_{1}}{\partial s}(0,0)=a_{1}\left(y_{1}^{0}, y_{2}^{0}, z^{0}\right) \\
\frac{\partial x_{2}}{\partial s}(0,0)=a_{2}\left(y_{1}^{0}, y_{2}^{0}, z^{0}\right) \\
\frac{\partial x_{1}}{\partial t}(0,0)=y_{1}^{\prime}(0) \quad \frac{\partial x_{2}}{\partial t}(0,0)=y_{2}^{\prime}(0)
\end{gathered}
$$

Transversality condition:

$$
a_{1}\left(y_{1}^{0}, y_{2}^{0}, z^{0}\right) y_{2}^{\prime}(0)-a_{2}\left(y_{1}^{0}, y_{2}^{0}, z^{0}\right) y_{1}^{\prime}(0) \neq 0
$$

Call ν the unit normal to Γ :

$$
\begin{aligned}
\nu\left(y_{1}^{0}, y_{2}^{0}\right)= & \frac{1}{\sqrt{y_{1}^{\prime}(0)^{2}+y_{2}^{\prime}(0)^{2}}}\left(y_{2}^{\prime}(0),-y_{1}^{\prime}(0)\right) \\
& a\left(y^{0}, z_{0}\right) \cdot \nu\left(y^{0}\right) \neq 0 .
\end{aligned}
$$

Theorem (Local existence and uniqueness)
Suppose $U \subset \mathbb{R}^{N}, I \subset \mathbb{R}$ interval,
$\gamma \in C^{1}\left(I ; \mathbb{R}^{N}\right), \Gamma=\gamma(I), \Gamma \subseteq \partial U$,
$g: \Gamma \rightarrow \mathbb{R}, g \circ \gamma \in C^{1}(I ; \mathbb{R})$,
$y^{0}=\gamma(0), J \subset \mathbb{R}$ is a neighbourhood of $g\left(y^{0}\right), a, c \in C^{1}(U \times J)$.
Assume the transversality condition holds in a neighbourhood W of y^{0} in Γ, i.e. for all $y \in W$

$$
a(y, g(y)) \cdot \nu(y) \neq 0
$$

Then, there exists a neighbourhood V of y^{0} in \mathbb{R}^{N} and a unique function $u \in C^{1}(V ; \mathbb{R})$ which solves

$$
\left\{\begin{array}{l}
a(x, u) \cdot \nabla u+c(x, u)=0 \text { in } V, \\
u(x)=g(x)
\end{array} \text { on } \Gamma \cap V .\right.
$$

If for some neighbourhood W of y^{0} in Γ the transversality condition is not satisfied for all $y \in W$, then either the problem has no C^{1} solutions or it has infinitely many solutions.

What happens if the transversality condition is not satisfied?

$$
\left\{\begin{array}{l}
a_{1} u_{x_{1}}+a_{2} u_{x_{2}}=-c \\
u\left(y_{1}(t), y_{2}(t)\right)=g\left(y_{1}(t), y_{2}(t)\right)
\end{array}\right.
$$

Assume u is a solution. Set $h(t)=u\left(y_{1}(t), y_{2}(t)\right)$. Then the vector $\nabla u\left(y_{1}^{0}, y_{2}^{0}\right)$ solves the algebraic system

$$
\left\{\begin{array}{l}
\nabla u\left(y_{1}^{0}, y_{2}^{0}\right) \cdot\left(a_{1}\left(y_{1}^{0}, y_{2}^{0}, u\left(y_{1}^{0}, y_{2}^{0}\right)\right), a_{2}\left(y_{1}^{0}, y_{2}^{0}, u\left(y_{1}^{0}, y_{2}^{0}\right)\right)\right)=-c\left(y_{1}^{0}, y_{2}^{0}, u\left(y_{1}^{0}, y_{2}^{0}\right)\right), \\
\nabla u\left(y_{1}^{0}, y_{2}^{0}\right) \cdot\left(y_{1}^{\prime}(0), y_{2}^{\prime}(0)=h^{\prime}(0) .\right.
\end{array}\right.
$$

By Rouché-Capelli Theorem the vectors $\left(a_{1}, a_{2},-c\right)$ and $\left(y_{1}^{\prime}(0), y_{2}^{\prime}(0), h^{\prime}(0)\right)$ must be parallel.

In this case a necessary condition to get a solution is that the curve $\gamma(t)$ must be parallel to the characteristic curve at $\left(y_{1}^{0}, y_{2}^{0}, z^{0}\right)$.

Example: non-homogeneous Burgers equation

$$
\left\{\begin{array}{l}
u \frac{\partial u}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}}=1, \\
u\left(x_{1}, 0\right)=h\left(x_{1}\right)
\end{array}\right.
$$

where $h \in C^{1}(\mathbb{R})$, for example if $h(x)=x$.

$$
u\left(x_{1}, x_{2}\right)=x_{2}+\frac{2 x_{1}-x_{2}^{2}}{2+2 x_{2}}
$$

Example

$$
\left\{\begin{array}{l}
u \frac{\partial u}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}}=1 \\
u\left(x_{1}, x_{2}\right)=\frac{x_{2}}{2}
\end{array} \text { on } \Gamma=\left\{\left(\mathrm{t}^{2}, 2 \mathrm{t}\right): \mathrm{t} \in \mathbb{R}\right\}\right.
$$

$$
u\left(x_{1}, x_{2}\right)=1 / 2 x_{2}-1 / 2 \sqrt{4 x_{1}-x_{2}^{2}} \quad \text { or } \quad u\left(x_{1}, x_{2}\right)=1 / 2 x_{2}+1 / 2 \sqrt{4 x_{1}-x_{2}^{2}}
$$

non-regular solutions.
Example

$$
\begin{gathered}
\left\{\begin{array}{l}
\frac{\partial u}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}}=1, \\
u(t, t)=t
\end{array} \quad t \in \mathbb{R} .\right. \\
u\left(x_{1}, x_{2}\right)=x_{2}+f\left(x_{1}-x_{2}\right)
\end{gathered}
$$

for any f such that $f(0)=0$.
(infinitely many solutions)

Exercise

$$
\begin{cases}x_{1} \frac{\partial u}{\partial x_{1}}+x_{2} \frac{\partial u}{\partial x_{2}}=4 u, & \left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \\ u\left(x_{1}, x_{2}\right)=1 & x_{1}^{2}+x_{2}^{2}=1\end{cases}
$$

Scalar Conservation Laws

We consider equations of the form

$$
u_{t}+\operatorname{div}_{x} q(u(x, t))=0, \quad x \in \mathbb{R}^{N}, t>0
$$

(If $N=1$ we write $u_{t}+q(u)_{x}=0, \quad x \in \mathbb{R}, t>0$.)
Denote by $u(x, t)$ the concentration of a physical quantity Q inside a set Ω at time t. The amount of Q inside the set Ω at time t is given by (assume e.g. $N=3$)

$$
\iiint_{\Omega} u(x, t) d x
$$

The conservation law says that

$$
\frac{d}{d t} \iiint_{\Omega} u(x, t) d x=-\iint_{\partial \Omega} q \cdot \nu d \sigma
$$

where $\frac{d}{d t} \iiint_{\Omega} u(x, t) d x$ is the rate of change of Q in Ω, and $-\iint_{\partial \Omega} q \cdot \nu d \sigma$ is the net flux through the boundary of Ω.
(If $N=1$ and $\Omega=\left[x_{1}, x_{2}\right]$ we have $\frac{d}{d t} \int_{x_{1}}^{x_{2}} u(x, t) d x=q\left(u\left(x_{1}, t\right)\right)-q\left(u\left(x_{2}, t\right)\right)$.)
By the divergence theorem

$$
\begin{aligned}
& \qquad \iint_{\partial \Omega} q \cdot \nu d \sigma=\iiint_{\Omega} \operatorname{div}_{x} q d x \\
& \text { hence } \quad \iiint_{\Omega}\left(u_{t}(x, t)+\operatorname{div}_{x} q\right) d x=0
\end{aligned}
$$

and we derive

$$
u_{t}+\operatorname{div}_{x} q(u(x, t))=0 .
$$

(If $N=1$ we write $u_{t}+q(u)_{x}=0$.)
Let us consider the following problem:

$$
\left\{\begin{array}{l}
u_{t}+q^{\prime}(u) u_{x}=0, \\
u(x, 0)=g(x)
\end{array} \quad x \in \mathbb{R} .\right.
$$

We shall use the method of the characteritics for the equation $a_{1} u_{x_{1}}+a_{2} u_{x_{2}}=c$ with $x_{1}=x, x_{2}=t, a_{1}=q^{\prime}(u), a_{2}=1$.

The characteristic equations are

$$
\left\{\begin{array}{l}
x^{\prime}(s)=q^{\prime}(z(s)) \\
t^{\prime}(s)=1 \\
z^{\prime}=0
\end{array}\right.
$$

The characteristics are straight lines, here $s=t$ hence we can write the cartesian equation of the lines instead of the parametric equation:

$$
x(t)=q^{\prime}\left(g\left(x^{0}\right)\right) t+x^{0}, \quad u(x, t)=g\left(x^{0}\right) .
$$

The transversality condition is always satisfied, indeed $a(y, g(y))=(q, 1), \quad \nu(y)=(0,1)$.
Notice however that the characteristics may possibly intersect!
How can we write the solution? Recall the solution of the transport equation:

$$
u(x, t)=g\left(x^{0}\right)=g(x-t v) .
$$

Now we still have $u(x, t)=g\left(x^{0}\right)$. Since $x(t)-q^{\prime}\left(g\left(x^{0}\right)\right) t=x^{0}$ we can write

$$
u(x, t)=g\left(x(t)-q^{\prime}\left(g\left(x^{0}\right)\right) t\right)
$$

We obtain an implicit formula for the solution: $u=g\left(x-t q^{\prime}(u)\right)$
Implicit Function Theorem:
Consider the level set

$$
F(x, t, z)=0 .
$$

Suppose $\left(x^{0}, t^{0}, z^{0}\right)$ belongs to the level set, i.e. $F\left(x^{0}, t^{0}, z^{0}\right)=0$.
Then, if $\frac{\partial F}{\partial z}\left(x^{0}, t^{0}, z^{0}\right) \neq 0$, there exists locally a funcion $u=u(x, t)$ such that

$$
F(x, t, u(x, t))=0 \quad \text { for all } \quad(x, t) .
$$

Moreover

$$
\frac{\partial u}{\partial x}(x, t)=-\frac{\frac{\partial F(x, t, u(x, t))}{\partial x}}{\frac{\partial F(x, t, u(x, t))}{\partial z}}
$$

and

$$
\frac{\partial u}{\partial t}(x, t)=-\frac{\frac{\partial F(x, t, u(x, t))}{\partial t}}{\frac{\partial F(x, t, u(x, t))}{\partial z}}
$$

Here we have

$$
u-g\left(x-t q^{\prime}(u)\right)=0
$$

Therefore it is possible to write $u=u(x, t)$ if

$$
1+t q^{\prime \prime}(u) g^{\prime}\left(x-t q^{\prime}(u)\right) \neq 0 .
$$

What if $q^{\prime \prime}(u)>0$ and $g^{\prime}<0$?
Smooth solutions may fail to exist.
"However, the fluid described by the equation keeps flowing unaware of our mathematical troubles..."

What kind of solutions can we expect?

Example: Burgers equation (shockwave)

$$
\left\{\begin{array}{l}
\left.u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \text { in } \mathbb{R} \times\right] 0,+\infty[\\
u(x, 0)=g(x) \quad x \in \mathbb{R}
\end{array}\right.
$$

where

$$
g(x)= \begin{cases}1 & \text { if } x \leq 0 \\ 1-x & \text { if } 0<x \leq 1 \\ 0 & \text { if } x>1\end{cases}
$$

$$
u(x, t)= \begin{cases}1 & \text { if } x \leq t, 0 \leq t \leq 1 \text { or } t>1, x<\frac{1}{2} t+\frac{1}{2} \\ \frac{1-x}{1-t} & \text { if } 0 \leq t \leq x \leq 1 \\ 0 & \text { if } x \geq 1,0 \leq t \leq 1 \text { or } t>1, x>\frac{1}{2} t+\frac{1}{2}\end{cases}
$$

Mild solution

An integrable function $u: \mathbb{R} \times] 0,+\infty[\rightarrow \mathbb{R}$ is a mild solution of

$$
\left\{\begin{array}{l}
u_{t}+q(u)_{x}=0, \\
u(x, 0)=g(x) \quad x \in \mathbb{R} .
\end{array}\right.
$$

if $u(x, 0)=g(x)$ for all $x \in \mathbb{R}$ and, for all $x_{1}<x_{2}$,

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} u(x, t) d x=q\left(u\left(x_{1}, t\right)\right)-q\left(u\left(x_{2}, t\right)\right) .
$$

Notice that mild solutions may be discontinuous.

Weak solution

A function $u \in L^{\infty}(\mathbb{R} \times] 0,+\infty[)$ is a weak solution of

$$
\left\{\begin{array}{l}
u_{t}+q(u)_{x}=0, \\
u(x, 0)=g(x) \quad x \in \mathbb{R} .
\end{array}\right.
$$

if, for all test functions $\phi \in C^{\infty}(\mathbb{R} \times[0,+\infty[)$, with compact support, we have

$$
\int_{0}^{+\infty}\left(\int_{-\infty}^{+\infty} u(x, t) \phi_{t}(x, t)+q(u(x, t)) \phi_{x}(x, t) d x\right) d t+\int_{-\infty}^{+\infty} g(x) \phi(x, 0) d x=0 .
$$

Observation: A classical solution is a mild solution, a mild solution is a weak solution. A function $u \in C^{1}(\mathbb{R} \times] 0,+\infty[)$ is a classical solution of the problem if and only if u is a weak solution of the problem.

What information about the u is hidden in the formula for a weak solution if u is, for example, singular along a shock curve (jump discontinuity)?

The Rankine-Hugoniot condition

We suppose now that u is a weak solution which is C^{1} in some open region $V \subset$ $\mathbb{R} \times] 0,+\infty\left[\right.$ except on a smooth curve C which separates V into two parts: V^{l} and V^{r}.

Then the speed of the shock wave is the quotient of the flux jump over the density jump:

$$
q\left(u^{+}\right)-q\left(u^{-}\right)=\left(u^{+}-u^{-}\right) \varphi^{\prime}(t),
$$

where $\gamma(t)=(\varphi(t), t), \gamma$ being a parametrization of C.
Example: Burgers equation again

$$
\left\{\begin{array}{l}
\left.u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \text { in } \mathbb{R} \times\right] 0,+\infty[\\
u(x, 0)=g(x) \quad x \in \mathbb{R}
\end{array} \quad g(x)= \begin{cases}1 & \text { if } x \leq 0 \\
1-x & \text { if } 0<x \leq 1 \\
0 & \text { if } x>1\end{cases}\right.
$$

$$
u(x, t)= \begin{cases}1 & \text { if } x \leq t, 0 \leq t \leq 1 \text { or } t>1, x<\frac{1}{2} t+\frac{1}{2} \\ \frac{1-x}{1-t} & \text { if } 0 \leq t \leq x \leq 1 \\ 0 & \text { if } x \geq 1,0 \leq t \leq 1 \text { or } t>1, x>\frac{1}{2} t+\frac{1}{2}\end{cases}
$$

Example: rarefaction wave

$$
\left\{\begin{array}{l}
\left.u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \text { in } \mathbb{R} \times\right] 0,+\infty[\\
u(x, 0)=g(x) \quad x \in \mathbb{R}
\end{array} \quad g(x)=\left\{\begin{array}{l}
0 \text { if } x \leq 0 \\
1 \text { if } x>0
\end{array}\right.\right.
$$

What is u in the wedge $x>0, t \geq x$?
We set

$$
u(x, t)=\left\{\begin{array}{l}
0 \text { if } x<\frac{t}{2} \\
1 \text { if } x>\frac{t}{2}
\end{array}\right.
$$

u is a shock solution and the Rankine-Hugoniot condition is satisfied.
Is this an acceptable solution?
We expect a shock in presence of a compression wave, not in presence of an expansion wave.

Looking for a second solution:
Regularised problem:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left.u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \text { in } \mathbb{R} \times\right] 0,+\infty[\\
u(x, 0)=g_{\varepsilon}(x) \quad x \in \mathbb{R}
\end{array}\right. \\
& g_{\varepsilon}(x)=\left\{\begin{array}{l}
0 \quad \text { if } x \leq 0 \\
\frac{1}{\varepsilon} x \text { if } 0<x<\varepsilon \\
1 \quad \text { if } x \geq \varepsilon
\end{array}\right. \\
& u(x, t)= \begin{cases}0 & \text { if } x<0 \\
\frac{x}{t+\varepsilon} & \text { if } 0<x<t+\varepsilon \\
1 & \text { if } x>t+\varepsilon\end{cases}
\end{aligned}
$$

When $\varepsilon \longrightarrow 0$:

$$
u(x, t)=\left\{\begin{array}{l}
0 \text { if } x<0 \\
\frac{x}{t} \text { if } 0<x<t \\
1 \text { if } x>t>0
\end{array}\right.
$$

More in general, assuming q^{\prime} is invertible, if g has a jump at $x=a$, in the wedge we can define

$$
u(x, t)=\left(q^{\prime}\right)^{-1}\left(\frac{x-a}{t}\right)
$$

How can we chose the "right" solution?

The Entropy Condition

We require an "entropy condition"

$$
q^{\prime}\left(u^{-}\right)>\sigma>q^{\prime}\left(u^{+}\right)
$$

Characteristics must enter the shock curve and are not allowed to emanate from it.
Assume $q^{\prime \prime}>0$. A weak solution is said to be an entropy solution if there exists $C \geq 0$ such that, for every $x, \Delta x \in \mathbb{R}, \Delta x>0$, and every $t>0$, we have

$$
u(x+\Delta x)-u(x, t) \leq \frac{C}{t} \Delta x .
$$

Assume $q^{\prime \prime} \geq K>0$ and $g^{\prime}>0$. If u is smooth, then u is an entropy solution.
Assume u is an entropy solution. Then, for all fixed $t>0$ the function

$$
\psi_{[t]}(x):=u(x, t)-\frac{C}{t} x
$$

is decreasing.
Assume $q^{\prime \prime} \geq K>0, u$ is an entropy solution presenting a shock curve $\varphi(t)$. Then the slope of the shock curve is smaller than the slope of the left characteristics and larger than the slope of the right characteristics:

$$
q^{\prime}\left(u^{+}\right)<\varphi^{\prime}(t)<q^{\prime}\left(u^{-}\right)
$$

Lax-Oleinik theorem.

Assume $q \in C^{2}(\mathbb{R})$ is strictly convex (or strictly concave) and $g \in L^{\infty}(\mathbb{R})$. Then problem

$$
\left\{\begin{array}{l}
u_{t}+q(u)_{x}=0 \quad x \in \mathbb{R}, t>0, \\
u(x, 0)=g(x) \quad x \in \mathbb{R}
\end{array}\right.
$$

has a unique entropy solution.
Furthermore, the solution u is stable and depends continuously on the initial data, in the following sense: there exists a constant A such that, if $h \in L^{\infty}(\mathbb{R})$ and v is the entropy solution for the problem with initial datum h, then, for every $x_{1}, x_{2} \in \mathbb{R}, x_{1}<x_{2}, t>0$,

$$
\int_{x_{1}}^{x_{2}}|u(x, t)-v(x, t)| d x \leq \int_{x_{1}-A t}^{x_{2}+A t}|g(x)-h(x)| d x
$$

(For uniqueness the convexity or concavity of q is not necessary, but the entropy must be suitably defined.)

The Riemann problem

Assume $q \in C^{2}(\mathbb{R})$ and $q^{\prime \prime} \geq C>0$. Set

$$
g(x)=\left\{\begin{array}{l}
u^{-} \text {if } x<0 \\
u^{+} \text {if } x>0
\end{array}\right.
$$

$u^{+} \neq u^{-}$.
Then, the unique entropy solution of the problem

$$
\left\{\begin{array}{l}
u_{t}+q(u)_{x}=0 x \in \mathbb{R} t>0 \\
u(x, 0)=g(x) x \in \mathbb{R}
\end{array}\right.
$$

is
(i) if $u^{+}>u^{-}$,

$$
u(x, t)=\left\{\begin{array}{l}
u^{-} \text {if } x<\sigma t \\
u^{+} \text {if } x>\sigma t
\end{array}\right.
$$

where $\sigma=\frac{q\left(u^{+}\right)-q\left(u^{-}\right)}{u^{+}-u^{-}}$;
(ii) if $u^{-}<u^{+}$,

$$
u(x, t)= \begin{cases}u^{-} & \text {if } x<q^{\prime}\left(u^{-}\right) t \\ \left(q^{\prime}\right)^{-1}\left(\frac{x}{t}\right) & \text { if } q^{\prime}\left(u^{-}\right) t<x<q^{\prime}\left(u^{+}\right) t \\ u^{+} & \text {if } x>q^{\prime}\left(u^{+}\right) t\end{cases}
$$

A model example: the traffic flow

Traffic on a highway along the positive direction of the x-axis;
no overtaking allowed
no exits or entrances
$u(x, t)=$ density of cars in the point x at the time t.
$v(x, t)=$ average speed.
q flux; $q=v u$
The average speed depends on the density alone: $v=v(u)$.

$$
v^{\prime}(u)=\frac{d v}{d u} \leq 0
$$

Conservation law

$$
u_{t}+q(u)_{x}=0
$$

Constitutive relation for v :

$$
v(u)=v_{m}\left(1-\frac{u}{u_{m}}\right)
$$

$v_{m}=$ maximal velocity,
$u_{m}=$ maximal concentration (bumper to bumper).

$$
\begin{gathered}
u_{t}+v_{m}\left(1-\frac{2 u}{u_{m}}\right) u_{x}=0 . \\
\left\{\begin{array}{l}
u_{t}+v_{m}\left(1-\frac{2 u}{u_{m}}\right) u_{x}=0 \\
u(x, 0)=g(x)
\end{array} \quad g(x)= \begin{cases}\frac{1}{8} u_{m} & \text { if } x<0 \\
u_{m} & \text { if } x>0\end{cases} \right.
\end{gathered}
$$

Traffic jam ahead ($v=0$ if $x>0$).
On the left $v=\frac{7}{8} v_{m}$.

$$
u(x, t)= \begin{cases}\frac{1}{8} u_{m} & \text { if } x<-\frac{1}{8} v_{m} t \\ u_{m} & \text { if } x>-\frac{1}{8} v_{m} t\end{cases}
$$

Shock line: $\varphi(t)=-\frac{1}{8} v_{m} t$.
The shock is revealed by the breaking lights of the cars, slowing down because of the traffic jam ahead.

Example: the green traffic-light

$$
\begin{gathered}
\begin{cases}u_{t}+v_{m}\left(1-\frac{2 u}{u_{m}}\right) u_{x}=0 & g(x)= \begin{cases}u_{m} \text { if } x<0 \\
0 & \text { if } x>0\end{cases} \\
u(x, 0)=g(x) & \text { if } x \leq-v_{m} t\end{cases} \\
u(x, t)= \begin{cases}u_{m} & \frac{1}{2} u_{m}\left(1-\frac{1}{v_{m}} \frac{x}{t}\right) \\
\text { if }-v_{m} t<x<v_{m} t \\
0 & \text { if } x \geq v_{m} t\end{cases}
\end{gathered}
$$

Example

$$
\left\{\begin{array}{l}
\left.u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \text { in } \mathbb{R} \times\right] 0,+\infty\left[\quad g(x)=\left\{\begin{array}{l}
0 \text { if } x<0 \\
1 \text { if } 0 \leq x \leq 1 \\
0(x, 0)=g(x) \quad x \in \mathbb{R}
\end{array} \text { if } x>1\right.\right.
\end{array}\right.
$$

Exercise

Determine a weak solution o the Lighthill-Whitham-Richard model for traffic flow

$$
\left\{\begin{array}{l}
\left.u_{t}+(v(u) u)_{x}=0 \text { in } \mathbb{R} \times\right] 0,+\infty[\\
u(x, 0)=g(x) \quad x \in \mathbb{R}
\end{array}\right.
$$

with velocity

$$
v(u)=2-\frac{u}{2}
$$

and initial density

$$
g(x)= \begin{cases}2 & \text { if } x<0 \\ x+2 & \text { if } 0 \leq x<1 \\ 3 & \text { if } x \geq 1\end{cases}
$$

Describe the trajectory of a car initially in position $x=-2$.

Exercise

Discuss existence and uniqueness and determine a weak solution of the scalar conservation law

$$
\left\{\begin{array}{l}
\left.u_{t}+4 u u_{x}=0 \text { in } \mathbb{R} \times\right] 0,+\infty[\\
u(x, 0)=g(x) x \in \mathbb{R}
\end{array} \quad g(x)= \begin{cases}1 & \text { if } x<0 \\
0 & \text { if } 0 \leq x<1 \\
-1 & \text { if } x \geq 1\end{cases}\right.
$$

The wave equation

The vibrating string

We consider small transversal vibrations of a tightly stretched perfectly flexible horizontal string (the stress at any point can be modelled by a tangential force, the tension)
we neglect friction
vibrations have small amplitude
we assume there is only vertical displacement, and this depends on the position x and time $t: u=u(x, t)$

Consider a string element at a fixed time t, represented by the curve $\gamma(x)=(x, u(x, t))$.
The forces acting to the string $=$ external vertical forces f (gravity, loads) + internal forces \bar{T} (tension)

The horizontal forces have to balance:

$$
\begin{gathered}
\left.\bar{T}\left(x_{2}\right)\right|_{\text {horizontal }}=\left.\bar{T}\left(x_{1}\right)\right|_{\text {horizontal }} \\
\tau\left(x_{2}, t\right) \cos \left(\alpha\left(x_{2}, t\right)\right)-\tau\left(x_{1}, t\right) \cos \left(\alpha\left(x_{1}, t\right)\right)=0
\end{gathered}
$$

$\tau=|\bar{T}|$ magnitude
$\alpha(x, t)$ angle between the x-axis and the tangent of γ at x

$$
\begin{gathered}
\frac{\partial}{\partial x}(\tau(x, t) \cos (\alpha(x, t)))=0 \\
\tau(x, t) \cos (\alpha(x, t))=\tau_{0}(t)
\end{gathered}
$$

Vertical tension:

$$
\tau(x, t) \sin (\alpha(x, t))=\tau_{0}(, t) \tan (\alpha(x, t))=\tau_{0}(t) u_{x}(x, t)
$$

Conservation of mass:
$\rho_{0}=\rho_{0}(x)=$ linear density of the string at rest
$\rho(x, t)=$ linear density of the string at time t

$$
\rho_{0}(x) \Delta x=\rho(x, t) \Delta s
$$

Newton law:

$$
\begin{gather*}
\int_{\gamma} u_{t t}(s, t) \rho(s, t) d s=\int_{x_{1}}^{x_{2}} u_{t t}(x, t) \rho_{0}(x) d x=\int_{x_{1}}^{x_{2}} f(x, t) \rho_{0}(x) d x+\tau_{0}(t)\left(u_{x}\left(x_{2}, t\right)-u_{x}\left(x_{1}, t\right)\right) \\
u_{t t}(x, t)-\frac{\tau_{0}(t)}{\rho_{0}(x)} u_{x x}(x, t)=f(x, t) \quad(\text { J. d'Alembert 1752) } \tag{J.d'Alembert1752}
\end{gather*}
$$

Since the string is perfectly elastic τ_{0} is constant; since the string is homogeneous ρ_{0} is constant.

Set

$$
c^{2}=\frac{\tau_{0}}{\rho_{0}}
$$

The homogeneous equation.
$f \in C^{2}(\mathbb{R}), g \in C^{1}(\mathbb{R})$

$$
\begin{cases}\left\{\begin{array}{ll}
u_{t t}(x, t)-c^{2} u_{x x}(x, t)=0 & x \\
u(x, 0)=f(x) & x \in \mathbb{R}, t>0 \\
u_{t}(x, 0)=g(x) & x
\end{array}\right)=\mathbb{R} \\
& \left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u=0\end{cases}
$$

Set $v=\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)$, then solve the linear transport equation $v_{t}-c v_{x}=0$.
We have $v(x, t)=\varphi(x+c t)$ for some φ.
Solve $u_{t}+c u_{x}=\varphi(x+c t)$.

$$
u(x, t)=\varphi(x-c t)+\int_{0}^{t} \varphi(x+(\eta-t) c+c \eta) d \eta
$$

Observe that $u(x, 0)=\psi(x)$ and $u_{t}(x, 0)=\varphi(x)-c \psi^{\prime}(x)$.
Since $u(x, 0)=f(x)$ and $u_{t}(x, 0)=g(x)$, we deduce
D'Alembert formula:

$$
u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\xi) d \xi
$$

Theorem The Cauchy problem above has a unique solution, and for all $T>0$, this is uniformly stable on $\mathbb{R} \times[0, T]$.

Weak solution
Assume $f \in C(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$.
A function $u \in C(\mathbb{R} \times[0,+\infty[)$ is a weak solution of

$$
\begin{cases}u_{t t}(x, t)-c^{2} u_{x x}(x, t)=0 & x \in \mathbb{R}, t>0 \\ u(x, 0)=f(x) & x \in \mathbb{R} \\ u_{t}(x, 0)=g(x) & x \in \mathbb{R}\end{cases}
$$

if, for all test functions $v \in C^{2}(\mathbb{R} \times[0,+\infty[)$, with compact support, we have

$$
\begin{aligned}
& \int_{0}^{+\infty}\left(\int_{-\infty}^{+\infty} u(x, t)\left(v_{t t}(x, t)-c^{2} v_{x x}(x, t)\right) d x\right) d t \\
- & \int_{-\infty}^{+\infty}\left(g(x) v(x, 0)-f(x) v_{t}(x, 0)\right) d x=0 .
\end{aligned}
$$

Observation: the singularities of the solutions of the wave equation are travelling only along characteristics.

Domain of dependence and region of influence

Example (chord of infinite length plucked at the origin)

$$
\begin{cases}u_{t t}(x, t)-c^{2} u_{x x}(x, t)=0 & x \in \mathbb{R}, t>0 \\ u(x, 0)=f(x) & x \in \mathbb{R} \\ u_{t}(x, 0)=0 & x \in \mathbb{R}\end{cases}
$$

where

$$
f(x)= \begin{cases}0 & \text { if }-\infty<x<-1 \\ x+1 & \text { if }-1 \leq x<0 \\ 1-x & \text { if } 0 \leq x<1 \\ 0 & \text { if } x \geq 1\end{cases}
$$

The non-homogeneous equation
$f \in C^{2}(\mathbb{R}), g \in C^{1}(\mathbb{R})$

$$
\begin{cases}u_{t t}(x, t)-c^{2} u_{x x}(x, t)=h(x, t) & x \in \mathbb{R}, t>0 \\ u(x, 0)=f(x) & x \in \mathbb{R} \\ u_{t}(x, 0)=g(x) & x \in \mathbb{R}\end{cases}
$$

Theorem The problem is well-posed for $h, h_{x} \in C\left(\mathbb{R}^{2}\right), f \in C^{2}(\mathbb{R}), g \in C^{1}(\mathbb{R})$, for each $T>0$, in $\mathbb{R} \times[0, T]$.

D'Alembert formula:

$$
u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\xi) d \xi+\frac{1}{2 c} \iint_{\Delta(x, t)} h(\xi, \tau) d \xi d \tau
$$

Here $\Delta(x, t)$ is the characteristic triangle with vertex (x, t).
Observation Let f and g be even (odd, periodic of period P) functions; let, for all $t \geq 0, h(\cdot, t)$ be even (odd, periodic of period P). Then, for all $t \geq 0$, the solution $u(\cdot, t)$ is also even (odd, periodic of period P).

The problem on the half line (a reflection method).
$f \in C^{2}\left(\left[0,+\infty[), g \in C^{1}\left(\left[0,+\infty[), f(0)=f^{\prime \prime}(0)=g(0)=0 ;\right.\right.\right.\right.$

$$
\begin{cases}u_{t t}(x, t)-c^{2} u_{x x}(x, t)=0 & 0<x<+\infty, t>0 \\ u(0, t)=0 & t>0 \\ u(x, 0)=f(x) & 0 \leq x+\infty \\ u_{t}(x, 0)=g(x) & 0 \leq x<+\infty\end{cases}
$$

Extend f and g as odd functions \tilde{f} and \tilde{g} over \mathbb{R} and consider the problem on \mathbb{R}, to obtain

$$
u(x, t)=\left\{\begin{array}{l}
\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\xi) d \xi \text { if } x>c t \\
\frac{1}{2}(f(x+c t)-f(c t-x))+\frac{1}{2 c} \int_{c t-x}^{x+c t} g(\xi) d \xi \text { if } 0 \leq x \leq c t
\end{array}\right.
$$

Peculiarities of dimensione $N=1$.
There is no decay of waves.
Once the wave if detected, even if it has a compact support it will never disappear.
Radially symmetric solutions of the wave equation in three dimensions.

$$
u_{t t}\left(x_{1}, x_{2}, x_{3}, t\right)-c^{2} \Delta u\left(x_{1}, x_{2}, x_{3}, t\right)=0
$$

Spherical coordinates:
$r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}, x_{1}=r \sin \varphi \cos \theta, x_{2}=r \sin \varphi \sin \theta, x_{1}=r \cos \varphi$.
Laplacian in spherical coordinates: (radial part) + (spherical part)

$$
\left.\begin{array}{c}
\Delta u=\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}}\left(\frac{1}{\sin ^{2} \varphi} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial \varphi^{2}}+\frac{\cos \varphi}{\sin \varphi} \frac{\partial u}{\partial \varphi}\right) \\
u_{t t}\left(x_{1}, x_{2}, x_{3}, t\right)-c^{2} \Delta u\left(x_{1}, x_{2}, x_{3}, t\right)=0
\end{array} \begin{array}{ll}
u_{t t}-c^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}\right)=0 & 0<r<+\infty, t>0 \\
u(r, 0)=f(r) & 0 \leq r<+\infty \\
u_{t}(r, 0)=g(r) & 0 \leq r<+\infty
\end{array}\right\} \begin{aligned}
& u(r, t)=\frac{1}{2 r}((r+c t) \tilde{f}(r+c t)+(r-c t) \tilde{f}(r-c t))+\frac{1}{2 r c} \int_{r-c t}^{r+c t} \xi \tilde{g}(\xi) d \xi
\end{aligned}
$$

In dimension 3 there is a decay of the wave with time at any point.

Examples

$$
\begin{aligned}
& f(r)=0, \\
& g(r)=\left\{\begin{array}{l}
1 \text { if } 0 \leq r \leq 1 \\
0 \text { if } r>1
\end{array}\right. \\
& \begin{cases}u_{t t}-\Delta u=0 & 0 \leq r<+\infty, t \geq 0 \\
u(r, 0)=f(r) & 0 \leq r<+\infty \\
u_{t}(r, 0)=g(r) & 0 \leq r<+\infty\end{cases} \\
& \begin{cases}u_{t t}-\Delta u=0 & 0 \leq r<+\infty, t \geq 0 \\
u(r, 0)=g(r) & 0 \leq r<+\infty \\
u_{t}(r, 0)=f(r) & 0 \leq r<+\infty\end{cases}
\end{aligned}
$$

Spherical means and the general Cauchy problem in \mathbb{R}^{3}.
Spherical mean. $h \in C^{1}\left(\mathbb{R}^{3}\right)$,

$$
M_{h}(r, x)=\frac{1}{4 \pi r^{2}} \iint_{\partial B(x, r)} h(\sigma) d \sigma
$$

is the average of h over the sphere $\partial B(x, r)$.
We have

$$
\begin{gathered}
\lim _{r \rightarrow 0} M_{h}(r, x)=? \\
\lim _{r \rightarrow 0} M_{h}(r, x)=h(x) \\
\frac{\partial}{\partial r} M_{h}(r, x)=\frac{1}{4 \pi r^{2}} \iiint_{B(x, r)} \Delta h(x) d x \\
\frac{\partial^{2}}{\partial r^{2}} M_{h}(r, x)=-\frac{1}{2 \pi r^{3}} \iiint_{B(x, r)} \Delta h(x) d x+\frac{1}{4 \pi r^{2}} \iint_{\partial B(x, r)} \Delta h(\sigma) d \sigma \\
\Delta_{x} M_{h}(r, x)=\frac{1}{4 \pi r^{2}} \iint_{\partial B(x, r)} \Delta h(\sigma) d \sigma
\end{gathered}
$$

Darboux equation

$$
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right) M_{h}(r, x)=\Delta_{x} M_{h}(r, x)
$$

Proposition I.
If u is a solution of

$$
\begin{cases}u_{t t}-c^{2} \Delta u=0 & x \in \mathbb{R}^{3}, t \geq 0 \\ u(x, 0)=0 & x \in \mathbb{R}^{3} \\ u_{t}(x, 0)=g(x) & x \in \mathbb{R}^{3}\end{cases}
$$

then $w=M_{u}(r, x, t)$ is a solution of

$$
\left\{\begin{array}{lc}
w_{t t}-c^{2}\left(\frac{\partial^{2} w}{\partial r^{2}}+\frac{2}{r} \frac{\partial w}{\partial r}\right)=0 & 0<r<+\infty, t>0 \\
w(r, 0)=0 & 0 \leq r<+\infty \\
w_{t}(r, 0)=M_{g}(r, x) & 0 \leq r<+\infty
\end{array}\right.
$$

Proposition II.
If u is a solution of

$$
\begin{cases}u_{t t}-c^{2} \Delta u=0 & x \in \mathbb{R}^{3}, t \geq 0 \\ u(x, 0)=0 & x \in \mathbb{R}^{3} \\ u_{t}(x, 0)=g(x) & x \in \mathbb{R}^{3}\end{cases}
$$

then $v(x, t):=u_{t}(x, t)$ is a solution of

$$
\begin{cases}v_{t t}-c^{2} \Delta v=0 & x \in \mathbb{R}^{3}, t \geq 0 \\ v(x, 0)=g(x) & x \in \mathbb{R}^{3} \\ v_{t}(x, 0)=0 & x \in \mathbb{R}^{3}\end{cases}
$$

Solution: (Kirchhoff's formula)

$$
u(x, t)=t M_{g}(c t, x)+\frac{\partial}{\partial t}\left(t M_{f}(c t, x)\right)
$$

$$
u(x, t)=\frac{1}{4 \pi c^{2} t} \iint_{\partial B(x, c t)} g(\sigma) d \sigma+\frac{\partial}{\partial t}\left(\frac{1}{4 \pi c^{2} t} \iint_{\partial B(x, c t)} f(\sigma) d \sigma\right)
$$

Huygens principle holds.
Theorem Let $f \in C^{3}\left(\mathbb{R}^{3}\right), h \in C^{2}\left(\mathbb{R}^{3}\right)$. Then Kirchhoff's formula yields the unique solution $u \in C^{2}\left(\mathbb{R}^{3} \times[0,+\infty[)\right.$ of the problem

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} \Delta u=0 x \in \mathbb{R}^{3}, t \geq 0 \\
u(x, 0)=f(x) \quad x \in \mathbb{R}^{3} \\
u_{t}(x, 0)=g(x) x \in \mathbb{R}^{3}
\end{array}\right.
$$

The problem in \mathbb{R}^{2} (Hadamard's descent method).

$$
\begin{cases}u_{t t}-c^{2}\left(u_{x_{1} x_{1}}+x_{x_{2} x_{2}}\right)=0 & \left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, t \geq 0 \\ u\left(x_{1}, x_{2}, 0\right)=f\left(x_{1}, x_{2}\right) & \left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \\ u_{t}\left(x_{1}, x_{2}, 0\right)=g\left(x_{1}, x_{2}\right) & \left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}\end{cases}
$$

Poisson's formula:

$$
\begin{aligned}
u\left(x_{1}, x_{2}, t\right) & =\frac{1}{2 \pi c} \iint_{B\left(x_{1}, x_{2} ; c t\right)} \frac{g\left(\xi_{1}, \xi_{2}\right)}{\sqrt{c^{2} t^{2}-\left(x_{1}-\xi_{1}\right)^{2}-\left(x_{2}-\xi_{2}\right)^{2}}} d \xi_{1} d \xi_{2} \\
& +\frac{\partial}{\partial t}\left(\frac{1}{2 \pi c} \iint_{B\left(x_{1}, x_{2} ; c t\right)} \frac{f\left(\xi_{1}, \xi_{2}\right)}{\sqrt{c^{2} t^{2}-\left(x_{1}-\xi_{1}\right)^{2}-\left(x_{2}-\xi_{2}\right)^{2}}} d \xi_{1} d \xi_{2}\right)
\end{aligned}
$$

Theorem Let $f \in C^{3}\left(\mathbb{R}^{2}\right), g \in C^{2}\left(\mathbb{R}^{2}\right)$. Then Poisson's formula yields the unique solution $u \in C^{2}\left(\mathbb{R}^{2} \times[0,+\infty[)\right.$ of the problem.

In dimension 2 Huygens principle does not hold. Any perturbation will leave trace for all later times.

The wave equation in a bounded interval (separation of variables) The Dirichlet problem:

$$
\begin{gathered}
\begin{cases}u_{t t}(x, t)-c^{2} u_{x x}(x, t)=0 & 0<x<L, t>0 \\
u(0, t)=u(L, t)=0 & t \geq 0 \\
u(x, 0)=f(x) & x \in[0, L] \\
u_{t}(x, 0)=g(x) & x \in[0, L]\end{cases} \\
w^{\prime \prime}(t)=\lambda c^{2} w(t)
\end{gathered}\left\{\begin{array}{r}
v^{\prime \prime}(x)=\lambda v(x) \\
v(0)=0 \\
v(L)=0
\end{array}\right\}
$$

$a_{k}, b_{k} \in \mathbb{R}, k=1,2,3, \ldots$.

The Neumann problem: (exercise)

$$
\begin{cases}u_{t t}(x, t)-c^{2} u_{x x}(x, t)=0 & 0<x<L, t>0 \\ u_{x}(0, t)=u_{x}(L, t)=0 & t \geq 0 \\ u(x, 0)=f(x) & x \in[0, L] \\ u_{t}(x, 0)=g(x) & x \in[0, L]\end{cases}
$$

where $f^{\prime}(0)=f^{\prime}(L)=g^{\prime}(0)=g^{\prime}(L)=0$.

$$
u_{k}(x, t)=\left(a_{k} \cos \left(\frac{\pi k c}{L} t\right)+b_{k} \sin \left(\frac{\pi k c}{L} t\right)\right) \cos \left(\frac{\pi k}{L} x\right)
$$

$a_{k}, b_{k} \in \mathbb{R}, k=1,2,3, \ldots$
Imposing initial conditions:
A formal solution:

$$
\sum_{k=1}^{+\infty}\left(\hat{f}_{k} \cos \left(\frac{\pi k c}{L} t\right)+\frac{L}{\pi k c} \hat{g}_{k} \sin \left(\frac{\pi k c}{L} t\right)\right) \sin \left(\frac{\pi k}{L} x\right)
$$

Energy: $E(t)=\frac{1}{2} \int_{0}^{L}\left(w_{t}^{2}+c^{2} w_{x}^{2}\right) d x$
Energy is conserved \Rightarrow uniqueness.
Uniqueness? Stability?
Exercise
Solve the hyperbolic problem

$$
\left\{\begin{array}{cl}
u_{t t}-4 u_{x x}=x, & \text { in }] 0,+\infty[\times] 0,+\infty[, \\
u(0, t)=0, & \text { in }] 0,+\infty[, \\
u(x, 0)=x^{4}, & \text { in }[0,+\infty[, \\
u_{t}(x, 0)=0, & \text { in }[0,+\infty[.
\end{array}\right.
$$

Exercise

Compute the solution u of the hyperbolic problem

$$
\begin{cases}u_{t t}-\Delta u=0 & \text { in } \mathbb{R}^{3} \times \mathbb{R} \\ u(x, y, z, 0)=0 & (x, y, z) \in \mathbb{R}^{3} \\ u_{t}(x, y, z, 0)=h(x, y, z) & (x, y, z) \in \mathbb{R}^{3}\end{cases}
$$

where

$$
h(x, y, z)=\left\{\begin{array}{l}
2 \text { if } x^{2}+y^{2}+z^{2} \leq 1 \\
0 \text { if } x^{2}+y^{2}+z^{2}>1
\end{array}\right.
$$

at the point $P=(2,0,0)$ at the times $t_{1}=\frac{1}{2}, t_{2}=\frac{3}{2}, t_{3}=4$

