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SOMMARIO. - In questo lavoro si ottengono alcune condizioni sufficienti (nec-

essarie) per la validita del principio di massimo per sistemi ellittici di tipo
cooperativo e non.

SUMMARY. - In this paper we obtain some sufficient (necessary) conditions for

the validity of the maximum principle for cooperative and non-cooperative
elliptic systems.

0. Introduction. In this paper we shall prove some results concemning the
maximum principle for weakly-coupled elliptic systems of the form

L(D)U =A(z)U+F in QCRN
U =0 on QJQ

where Q C RY¥(N > 1) is a smooth bounded domain, £ = [L(D),
L2(D),...,Ly(D)] is a diagonal-matrix of second order elliptic opera-
tors, A(z) = (aij(z)) is a n x n coefficient matrix and F is a given
n-vector function defined in Q. By a maximum principle we mean the
statement of the positiveness of the solution U of (0.1) (thatis, U > 0 in
Q) when the given function F > 0 in Q.

The classical maximum principle of Protter-Weinberger (see [8]) for
weakly-coupled elliptic systems of the form (0.1) holds if the following
conditions on A(z) are satisfied:

(0.1)
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@ aij(2) 20 Vi#j zeQ
(i) Y i 0ii(2) <0 Vi ze€Q.

A system (0.1) for which (i) above holds is said to be cooperative.
It is clear that since (ii) is assumed, the above result cannot contain the
maximum principle for the single equation. Indeed a maximum principle
for —Au = a(z)u + f holds, for example, if a(z) < XA; in Q. Here );
denotes the first eigenvalue of (—A, H. (} (€2)). Hence, it is natural to ask
if it is possible to refine the above mentioned result for systems by relaxing
condition (ii) somehow. In this paper we show that this is actually possible.
Let us briefly sketch the contents of the present paper.

In section 1 we treat a general class of cooperative systems like (0.1)
with variable coefficients. We start by giving a proof of the above men-
tioned result, see Theorem 1.1. Qur proof is completely different from the
“parabolic” proof contained in [8]. Then we prove our Theorem 1.2, which
is a noticeable improvement of the previous theorem. The case when the
elliptic operators Ly, are all equal to the same selfadjoint elliptic operator
is considered. We then obtain the right generalization of the scalar case
(single equation) stated above.

In Section 2 we consider the case when all the entries of the matrix A
are constant and the operators Ly, are all equal to a self adjoint operator L.
We then obtain a necessary and sufficient condition for the existence of a
maximum principle in terms of the characteristic polynomial of A.

In Section 3 we analyse a2 x 2 noncooperative system. Using the
idea of embedding such a system into 3 x 3 cooperative system we are able
to prove maximum principles of noncooperative systems. In this way we
recapture a result obtained before by the authors in [5]. We also treat fourth
order elliptic operators, and in particular we obtain a maximum principle
for the biharmonic operator under the so-called Navier boundary condi-
tions.

Some of the results contained in this paper were announced at the

“Conference on Reaction Diffusion equations” held in Edinburgh in June
1988.
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1. Maximum principle for cooperative elliptic systems with variable
coefficients. Let us first fix the notation and state some conditions that
will be used throughout this section.

Consider the following set of second order elliptic operators with real
valued coefficients defined in some bounded domain Q inR¥,

LyD) = - () DiD;+ ) b (=) Di, k=1,...,n
ij i

where b; = bf; and

Yo bk(n)& > ML, z€Q, £eRY, VK
U

for some function M(z) > 0, z € Q. So each Ly is elliptic as defined
in Gilbarg-Trudinger [6]. No regularity on the coefficients is needed. We
shall assume that there is a constant M > 0 such that

k
(1.1) @I oy, ceq, vi, k.

M z)
Let A = [ak;j( z)] be anxnmatrix whose entries are real-valued functions
defined in Q. We assume that the off-diagonal entries are nonnegative
(cooperativeness):

(1.2) aki(z) >0, z€Q, k¥FJ.

Let F(z) = (fi(x),..., fa(x)) be a given n-vector whose components
are real-valued functions defined in Q.

Let us consider the elliptic system

(1.3)k Li(Duk =Y ar()uj+ fi k=1,...,m
j

or, in short

(1.3) L(D)U=AU+F

where £( D) denotes the diagonal operator-matrix ( L1(D), ..., La(D))
and U is the solution n-vector (u1(z),...,us(2)).
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We say that an n-vector V(z) = (v1(2),...,v.(x3)) is > O if all its
components are nonnegative functions.

In this section we shall discuss the nonnegativeness of solutions of
system (1.3).

More precisely, we investigate when F > 0 implies that a solution of
the Dirichlet problem

L(D)U =AU+F in Q
(1.4 U =0 on 9Q

issuchthatU > 0 in Q.

By a solution we mean a classical solution, that is a function I defined
in Q which is continuous in & and belongs to C2(Q). Here we do not
discuss existence questions. We assume that a classical solution of (1.4) is
given and we prove its nonnegativeness.

The first result is the following (see [8] for a different proof):

THEOREM 1.1. Suppose in addition to the above assumptions that

(1.5) ak(2) =) () <0 z€Q, k=1,...,n.
J

Then F > 0 in Q implies thatU > 0, being U a solution to (14).

REMARK 1.1. Condition (1.5) and the hypothesis that the off—d1agona1
entries of A are > 0 imply that az(z) <0VzeQ,k=1,.

We shall prove next that if the conclusion of Theorem 1.1 holds under
the stronger assumption

(1.5 ar(z) <0, for z € Q and k=1,...,n

then Theorem 1.1 is true.

Indeed, let @ = a(z;) be a positive C? real-valued function which
will be chosen later. let vi(z) (k = ..,m) be defined by ui(z) =
a(x1)vg(z). Through some calculatlons we come to

Liug = alivg — 2/ Z bl,D v — ’b"lbk + of blvk
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Thus the v;’s satisfy the system
2 o o fr
L — — k Doy = _.bk —_ _._bk + s + —
KOk — — E'_ ' bi Divy, ( ~ b — b1 J Ej Qk5Vj Y’
or

(1.6) ﬁUDV=AV+§
where £ and £ have the same principal part and b¥ is replaced by

BE = bF — b .

a
Also A and A have the same off-diagonal terms and ayy is replaced by
o

!
- k k
= o o— — —}bT.
Gek = apx + —bi — — b1
Now we choose the function a( z1) in such a way that G, < 0 in Q, and
consequently G < 0 in Q.
Using the ellipticity of L and condition (1.1) we have

1 /A ! (
an Lt - L < D) - Ltk < Ma) [9”—- - Mf‘i]
(o] (a4 [¢] o (a3 (4]

supposing that > 0,a' < 0 and a” < 0.

Our claim is attained by showing that an o as such can be chosen to
make the right hand side of (1.7) strictly negative. Since Q is bounded, we
‘may assume that Q is contained in the strip {z,: 0 < z1 < K} for some
K > 0. Thus, choosing

a(z)) = —eP® + PE 4 1

where 8 > M, we see that « fulfills all the above requirements. Clearly
U>0ifandonlyif V > 0.

Proof of Theorem 1.1. By the previous remark we assume (1.5)” in-
stead of (1.5). Using the notation in (1.5) we write system (1.3) as

8%  Li(D)uk = ap(D)up+ Y aki(3) [u; — wil + fil )
ik
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Suppose by contradiction that U is not positive. This means that at least
one of its components is not positive. Without loss of generality, assume
that it is u;. Hence, there is 2! € Q such that

(19 v1(z') = minui(z) <0 .
z€Q)

Since L1(D)u;(z!) < 0, it follows that, for at least one j =% 1, we have
a1;(z") [us(z") —ui(a")] <0 .

Without loss of generality assume that this happens for j = 2. So,

(1.10) uz(z') < uy(z")

and let z* € Q be such that

(1.11) uz (%) = minuz(z) <0 .

Using the second equation in (1.8); we infer that
a2;(z*) [uj(z*) —uz(2?)] < 0

for some j # 2. Clearly j # 1 in view of (1.9), (1.10) and (1.11). Asin
the previous case we may assume that

u3(2?) < ua(z?)

and we proceed as before using the third equation in (1.8),. Observe that
u3(7%) < u1(=?). Repeating the above argument after using the (n— 1)t
equation, we come to a point z* € Q where

ty(z") = min u,(z) < 0
zel)

and u,(z™) < u;(z") forj # n.
Finally, using the »** equation in ( 1.8); we come to a contradiction.

¢

Next we obtain a maximum principle for the solutions of (1.4) under
a weaker hypothesis than (1.5).
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- DEFINITION 1.1. The operator £ — A, satisfies property (¢) if there
exists a C2-function ¢ : Q — R such that .
@ yY(z) >0 for z€Q
(i) L(¢) > AY in Q.

REMARK 1.2. If property (4) holds for £L(D) — A where A > B
(.e. aij(z) > b;j(z) 1,7,...,n) thenit also holds for £L(D) — B.

REMARK 1.3. If the coefficients of the matrix A are bounded i.c.
aij € L*™(Q) then a sufficient condition in order that £L( D) — A satisfies
property (1)) is the solvability of the following system ‘

(%) ¢ =0 on gQ

{E(qb) =Ap+ F in Q
¢ >0 in Q

where F = (F,..., F,) with Fj = E;?:l aff, and aff = ||aij||Le-

Indeed if (x) has a solution then, the operator £ — A, satisfies prop-
erty (¢) withy = ¢+ 1 (ie. P; = ¢;+ 1,1 =1,...,n) and then by the
preceding Remark £ — A satisfies the same property.

REMARK 1.4. In the special case L;(D) = L2(D) = L(D) with L
self-adjoint (see [6]).

(1.12) L(D)u=—Y  Di(aijDju+b(.u)) + Y  bDiu
i i

where the coefficients are continuous functions defined in a domain Q' >
Q we can give a simple sufficient condition as follows:
Let 01(Q) be the first eigenvalue of (L (D), Hé (€)). Suppose that

ar(z) <A <M(Q) z€Q.

Let Q) be,suchthat Q' 5 Q D Q,and A < M(Q) < M(Q), where
A1(£2) denotes the first eigenvalue of (L( D), H(}( 0)). Let ¢ be a posi-
tive eigenfunction corresponding to X1 ( Q). Then we see that the operators
L — A satisfies property (¢) with ¢ = (¢,...,4).
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THEOREM 1.2. If the operators L — A satisfies property (1) then

F >0 inQ implies U > 0, being U a solution to (1.4).

COROLLARY 1.1. Let L be as in Remark 1.4. Assume that ax(z) <
A <X(Q),Vz€Q.Then F > 0inQ impliesU >0 in Q, being U a

solution of (1.4).

REMARK 1.5. Theorem 1.2 above contains Thcorem 1.1. Indeed if

ar(z) < 0, then it is sufficient to consider ¢ = (1, ., D).

Proof of Theorem 1.2. Let us introduce the functions v, k=1,...,n

by
up(z) = (D) Pr(z) z€Q

and put hi(z) = Le(9e) — X% arj9i().
Then

Lyug = Y Lyvg + v Ly — 2 E bf-f) D Djvy
1j

which implies
Vi 2
Lo, — — z b Dy Djvy = Dl > ekitsl+
j=1

Gk VY5
¥ Z ) ¢'

Thus, system (1.1) is equivalent to

k

= Tk
(1.13) Livg = cijvi+ — k=1,....n
kVk Zl: kjVj ™

where Ly, and L, have the same principal part and

= bk-—Zb Djy; .
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c ,_{ l[hk+z?=laki¢i“akk¢k] if j=k

For system (1.13) we have

ck—zck,-——-—<0

and so Theorem 1.1 may be applied to conclude the proof.

¢

REMARK 1.6. Assume that each L is strictly elliptic, thatis A(z) >
Mo for some positive constant Ao and all z € Q. Suppose that the a;’s
are L* functions and let M > O be such that ja(z)| < M,k=1,...,n
z € Q. It follows from a resuit of Protter and Weinberger [8; p. 73] that
if the domain is contained in a sufficiently narrow slab bounded by two
parallel planes, or if M is sufficiently small, then £ — A satisfies property
(¢). To see how narrow has the slab to be or how small M, look at the
footnote on page 74 of [6].

REMARK 1.7 (a strong maximum principle). Assume that the diago-
nal entries a; are L™ functions, and that Q is smooth. Then on the hy-
potheses of Theorem 1.2, if, for some k, f is positive on a set of positive
measure, it follows that ux > 0 in Q and the outward normal derivative
a—"‘ < 0. To see that let M be a positive constant such that M > |agi(T)|
for all z € Q and apply the usual strong maximum principle for scalar
equations to the equation

(Li+ M)u=)Y apus+ (age+ M)ug + fi .
ik

REMARK 1.8. If f : Q — R™is a given C! function with coopera-
tive Jacobian J; and f(0) = O, then it follows from Theorem 1.1 and the
mean value theorem (we apply the mean value theorem componentwise)
that if there exists a function 9 : Q — R™" such that

@9Y>0inQ
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(i) L(¢) > f(¢) inQ

then forevery F': Q — R" with F > 0 in Q the solutions to

L(u) =f(U)+F inQ
U =0 on 0Q

are non negative.

2. A maximum principle for a cooperative system with constant coef-
ficients.

In this section we study system (1.4) of the previous section in the
case when

Li(D) =La(D)=...=La(D) = L
with L self-adjoint i.e. L is of the form

L(D) = - ) " DiayDj+b) + Y b;D;
i i

the coefficients a;;, b; € C(Q) and A is a constant matrix with nonnegative
off-diagonal entries. Namely

L(D)U =AU+F, inQ

(2.1) U =0 on JdQ

For such a system we prove the following result, which is a strong sharp-
ening of Theorem 1.2. We shall denote by ); the principal eigenvalue of
(L, Hy(Q)).

THEOREM 2.1. Let py()),...,p.()\) be the characteristic polyno-
mials of the first n-principal minors of A, namely '

e on a11 012 Qi3
(a1, e ax ax |,...A.
Q21 Q22
@31 a3 a33

Then

(2.2) (M) >0 i=1,....m
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is a necessary and sufficient condition for

(2.3) F>0=2U>0,

where U is a solution to (3.1).

REMARK 2.1. F > 0 means Fj(z) > 0 and F;(z) % O for all ;.
F > 0 means F;(z) > 0 for all j. Conditions (2.2) in the above theorem
is sufficient for F >0 = U > 0.

REMARK 2.2. We see as a consequence of Lemma 3.1 below, that
condition (2.2) implies that the characteristic polynomial p( \) of any prin-
cipal minor is positive at A1, i.e. p(A1) > 0. This fact dissipates a possible
suspicion raised by the apparent asymmetry of condition (2.2).

To fix terminology used here we recall that a principal minor is a minor
obtained from the original matrix by dropping lines and columns of the
same order. For instance, the second and fourth lines and the second and
fourth columns. All othe rminors are called secondary.

DEFINITION 2.1. A matrix of the form

ai —012 ... —0ign
—Q a —Q
Mn —_ 21 22 2ﬂ
—0pl —0an2 Qnn

where gi; > 0 foralli,j = 1,...,nis called an M-matrix. Now we list
some facts about these matrices and, for sake of completeness, we include
the proofs.

LEMMA 2.1. Suppose that all principal minors of My, including M,
itself, have positive determinants.

Then the (n+ 1) x (n+ 1) matrix below has non positive determinant

21 t2 ... tae1
22
Zprl &

M,
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where2; < 0,i=1,...,n+1,¢ <0 fori=2,...,n+ 1. Moreover, if
z; < 0 forall i, thendet Z,,; < 0.

Proof. By induction. The result is clearly true for 1 x 1 M -matrices.
Now, assume the result is true for (n— 1) x (n—1) M -matrices. Let M,
be a given n x n M -matrix satisfying the hypothesis of the Lemma. Then,

n
(2.4 det Zne1 = z1det M+ ) (~1)*'det 2y
j=2

where Z ; is the minor obtained from Z,,, by omitting line j,2 < j <
n+ 1, and the first column. The matrix Z; ; hasits ( j —1)*» column formed
by nonpositive numbers. We transpose this column with the first one and
we obtain a matrix 2‘,-; of the type Z,, whose determinant is nonpositive by
induction hypothesis. Since

det Z1; = (—1)7"2 det Z;

we get the result from (2.4).
¢

LEMMA 2.2. Let M, be an M-matrix and suppose that its n-first
principal minors have positive determinants. Then

(i) all other principal minors have positive determinants

(ii) (—=1)"*7 det M, ij > 0 when M;; is the secondary minor determined
from M, by dropping the it* line and the jt* column, i # j.

Proof. By induction. For n= 2 we obtain

ane2 —aizay >0 a;p >0

by hypothesis, which implies a;; > 0. Now, we assume the result true
for(n— 1) x (n— 1) M-matrices, and let M, be a n x n M-matrix

satisfying the hypothesis of the lemma. Let us prove (ii). Assume ; < j.
The case 1 > j can be proved similarly. Observe that the it column of M; ;
is formed by non-positive numbers; we transpose it with the first column.
The (j — 1) line of M. ;7 is formed by nonpositive numbers: we transpose
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it with the first line. We then obtain a matrix M,, of the type Zn-1. S0, by
Lemma 2.1, det M;; < 0. On the otherhand

det Mi; = (=1)""1(=1)7"2 det Nf;; .

So the result follows. Now let us prove (i). In view of the induction hy-
pothesis it remains to prove that the principal minors containing a.,, have
positive determinants. To do that it suffices to prove that a,,, > 0. For that
matter we write

det My = G det Myt — Y an (—1)™7 det My .
j=2

By part (ii) each term (j = 2,...,n) of the above summation is > 0.
Since det M,, > 0 and det M,,_; > 0 it follows that a,,, > 0.

¢

LEMMA 2.3. Let M be an M-matrix. If all solutions X of
(2.5 MX=Y

forY > 0 are such that X > 0, then all principal minors of M have
positive determinant. (Here X > 0 means X i >0 foreach j).

Proof. The i** equation in (2.5) gives

QT = E 0ijT;i + Y1 -
i7j
Since a;; > 0 forall4,j and z; > 0, y; > O it follows aj; > 0. Now we
proceed by induction. Assume the result has been proved to a system (2.5)
with n — 1 equations.

Let us prove it for a system with n equations. From such a system
we can write n system with n — 1 equations and n — 1 unknown using
the following procedure: drop the i** equation and write the other n — 1
equations in the form

(2.6) ajjTj — Z QjkTk = GjiTi + Yj .
kAi
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The matrix of system (2.6) is an M -matrix. So by the induction hypothesis
allj x j (j < n— 1) principal minors of M have positive determinant. It
remains to show thatdet M > 0. We first observe thatdet M # 0. Indeed,
if det M = 0, then there would exist X, # 0, such that M Xy = 0. Then
if X > 0 is a solution to (2.5) foragivenY > 0, then X + tXo for any
t € R is also a solution. Clearly for a convenient choice, at ¢ we can get
X + tXo not > 0. Now, by Cramer’s rule

" —alz e —Q1y
(2.7) zidet M =det |¥2 02 —02n
Yn —Qn2 Qpn

By Lemma 2.1 it follows that the determinant in the right hand side of (2.7)
is positive. Consequently det M > 0.

¢

To prove Theorem 2.1 we need some preliminaries.

Let E be a Banach space ordered by a closed convex cone K. An
operator P : E — FE is said to be positive if P(K) C K. A set P of
positive bounded linear operators in E is said to be positive-numbers-like
if

@IePp

(i) AP, = P,PYP,,P, €P
i) ||Py+ Po|| = ||B1||+ ||B2ll, |IPPa]| = ||Bu]| |P2 VP, Py € P,
where || P|| denotes the norm of the operators P, and I is the identity op-
erator.

REMARK 2.3. Let P be a positive-numbers-like set of operators.
Then, if and P € P and ||P|| < 1, it follows that (I — P)~! is a pos-
itive bounded lienar operator and

I =P)T|=(I-||P|p~".

Indeed,
n n n
. 7 — T 7 =1 7
nh;,njz_ljpn h;plvlj_zlpu h;n;uPn-
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REMARK 2.4. Let P be as in the previous remark. Then the set
formed by all polynomials

2 P ... PPE .., aa>0,
|laf<m
for any set of operators Py,..., P in P, is a positive-numbers-like set of

operators.

REMARK 2.5. Let P be as in Remark 3 above. Then, the set made up
by operators of form (I — P1) "' P,, with P, P, € P and ||Pi|| < 1, is
also a positive-numbers-like set of operators.

REMARK 2.6. A set P of positive bounded linear operators with the
property that there exists ¢ € K such that P¢ = ||P||¢ forall P € P,is a
positive-numbers-like set of operators.

EXAMPLE 2.1. Let E = L?(Q) where Q is a bounded domain in
RY. Let K be the cone of a.e. non-negative L2 -functions. Let L and )
be as defined in the beginning of this section.

For each real number o < )1, consider the operator B, : L2(Q) —
L*(Q) defined by B,u = v where

(L—a)v =u inQ
v =0 ondQ

The norm of B, is (A — @)~ and B,¢ = (A1 — a) ~1¢, where ¢ is the
first eigenfunction of (L, H}(Q)).
The set
P={I}U{B,:a< M}

is a positive-numbers-like set of operators in L2 (Q).
Now we prove a result on the positivity of an inverse matrix of positive-
numbers-like operators. Consider the following matrix

- I —~P;, —-Pi3 ... —Pln T
—Py I —Pn3 —P,
(2.8) P=|-Py —-Pp I... — P,

| —P,1 —Pp —Pg I
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where P;; are positive-numbers-like operators in a Banach space F with a
cone K. We consider the equation

(2.9 . PU=F

where U = (u1,...,u,) and F = (fi,..., fa) with u;, f; € E.

We now state conditions on the operators P;; which ensure that a solu-
tionU € K™ when F € K™. For that matter consider the following matrix
of scalars associated with the matrix P

TR B

210 Pll= |~ b1 —l||£23 v —I2q

( ) |IP| —||P31 ~||Ps2|| 1 cer —||P3al|
—||Pn1|| —||P,,2||... —“Pn3“ 1

we have the following result.

THEOREM 2.2. Let P be a matrix as in (2.8). Suppose that the n.

first principal minors of the matrix ||P|| defined in (2.10) have positive
determinants.

ThenU € K" if F € K™, for all solutions U of (2.9).

REMARK 2.7 By Lemma 3.1 it follows that all principal minors of
||P || have positive determinants.

Proof. By induction. For n= 2 we have

u1 — Ppuz = fi

—Puuit+tuz=fy. |
Applying Py, to the first equation and adding the result to the second equa-
tion we obtain
(2.11) (I-PPu)uy=Pufi+fz.

By hypothesis ||Piz|| ||P2|| < 1, which implies, in view of Remark 2.3,
that (I — Pi2 P51) ! is a positive operator.
So u, € K and u; =f1 + Phur € K.
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Next, assume that the result is true for systems with j < n— 1 equa-
tions; let us prove that it is true for j = n.

Applying P;1,2 < i < n, to the first equation and adding the 34
equation we obtain a system with n — 1 equation, whose matrix is

I— PPy —Py3 — Pi3Py... —Poy— PPy
—Ps3; — Py Py I—Pi3Ps... —P3, — P1,P51
—Pp — PiuPni —Pg — P3Py ... I — P1,Ppu

and the right hand side is in K.

(2+p2fi,...,fatP1afi) € K"
It follows from the hypothesis through Remark 2.3, that
Qij=(I—-PyP)~", j=2,...,n

are positive operators.
So we are reduced to a system with n — 1 equations

U2 ] 92 ]

(2.12) P; =

L Unp L On
where

g; = Pu(fi + P1jf1)
and the matrix P; is given by

I —Qu(P3+Pi3Pi).. —Q12(Piat+PinPn) ]|
—Q13( P32+ P12 P31) I —Q13(P3p+PiaPs1)
—"an(PKZ"'PlZPnl) an(Pn?""PBPul)m I -

This matrix is like matrix P. So, by the induction hypothesis, the positive-
ness of uy,...,u, will follow, if one proves that the principal minors of
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the matrix [P, ||, defined analogously to |IP ||, have positive determinants.
But this is the same as to show that this is true for the matrix below

1 — p12pa —P23 —P13P21-.. —P2q — P1nP21
C = | =Pz —pupn 1 —pispsr... —pay— D1nD31
P2 —P12Pnl —DPn3 —DP13Pmt 1 — P1apm

where p;; = || Py||.
However, this is equivalent to show that the m first principal minors
of the matrix

e —

1
0 1...............
0

oo o
[um—y

are positive.
Observe the matrix C; is obtained from the matrix ||P || by multiplying
the first line by p;; and adding the 4t line to it.

This procedure does not change the determinants of the first n princi-
pal minors of the matrix C;.

The proof is complete.

Proof of Theorem 2.1.

Necessity.

Multiplying each equation in system (2. 1) by ¢, the first positive eigen-
function of (L, H}(Q)), and integrating by parts we obtain the following
linear algebraic system '

(2.13) MI-AX=Y

where X = (z1,...,%,), i = [ wid;andY = (yy,...,4,),9: = Jo fid.
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The matrix A\;I — A is an M -matrix. So, an application of Lemma
(2.1) concludes the proof.

Sufficiency.

System (2.1) can be written as

u1 —a12B1u2 ... — a1uBiuy, = B1 fi

—a1Bauy + uz ... —a2,Bouy, = B2 f
—Qql Bnul - an2 Bnu2 oot un = ann

where B; = B, (see the definition of B, in example 2.1). Recall that the
hypothesis of the theorem implies ay; < \Vi=1,...,n
The matrix of the above system is like P in Theorem 2.2. So to use

Theorem 2.2 in the present situation it suffices to verify that the matrix of
scalars

1 —ap(M1—an)t... —ain( —ag) !
—a21( A —az)™! 1 —az2n(M1 —az2) !

—an (X —'am)_l —an (M —‘am)_l 1

has its # first principal minors with positive determinants. But by hypoth-
esis this is the case since these minors are

1, M=) ' On—a22) 1oV, ., QOi—am) oo (a—am) Tlpa()).

This concludes the proof.
¢

REMARK 2.8. A useful consequence of Theorem 2.1 is that it fur-
nishes a sufficient condition for the validity of condition (1) in the case of
systems with non-constant coefficients, see Remark 1.3.

We conclude this Section by proving a positivity result connected with
the classical eigenvalue problem for systems. See [7] for general results in
this direction.

We assume that L is as in (2.1) and A is a constant n x n cooperative
matrix.
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THEOREM 2.3. Let P1(N),...,pn(N) be the characteristic polyno-
mials of the first n principal minors of A.
Let

v i=max{v:pj(v) =0, j= 1,...,n},

and assume that agx > O for at least one k(1 <k<n).
Thenv* > 0 and u1(A) = %L is an eigenvalue of

LO =uAd inQ
(2.14 {(b =0 ondQ

with non negative eigenfunction @ .

Moreover, if 4 < p1(A), then F > 0 in Q implies U > 0inQ,
being U a solution of

(2.15) {Cg

pAU + F inQ
0 on 9Q

Proof. Let us denote by Ply,-..,Pny the characteristic polynomials
of the first n principal minors of yA.

Clearly we have
iy
Pju(X) = 1 pji( ;) j=1,.
Now we apply Theorem 2.1 to the equation (2.15). If p < _1, then
pju(}) >0 forallj=1,.

So Theorem 2.1 1mp11es that a maximum principle holds for (2.15).

Next suppose that y = 2L, Then for some 7, Pju(A1) = 0. This means that
A1 is an eigenvalue of the matrix

a1l ... Q14
A= ;
Hey H (ajl cre Q51 )
Let e € R7 be a corresponding eigenvector

pAje = Aie.
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We claim that the coordinates e;(i = 1,...,J) of e are all positive. Indeed
this follows from Perron-Frobenius theorem applied to the matrix p(A; +
mI) where m is a positive constant such that m > |as), 1= 1,...,J. To
complete the proof take @ = (¢re1,...,01€5,...,0...0). Itis easy to
see that L@ = pAD .

¢

3. Embedding of a 2 x2 noncooperative system into a 3 x 3 cooperative
system.

In this section, we shall use the results of the two previous sections
to obtain maximum principles for a class of noncooperative systems with
variable coefficients, as well as stronger results for such systems in the case
of constant coefficients. Since we restrict ourselvesto a2 x 2 system with
the same differential operator in the left side, we use the simpler notation
below

(3.1a) Lu=au+bv+ f

(3.1b) Lv=cu+dv+g,

where a, b, c,d, f and g are given functions defined in €.

Let us start with the simpler case when b < 0 and ¢ < 0 in Q.
Although the system is noncooperative in this case, it can be changed into
a cooperative system for the unknowns u and —v. Namely

Lu=au—b(—-v)+ f

L(=v) =(—c)u+d(—v) —g .

So using Corollary 1.1 we obtain the following result.

THEOREM 3.1. Suppose that L is self-adjoint and A1 is the first eigen-
value of (L(D), H(Q)). Assume also that

@) b(x),c(x) 0 nQ

(ii) max {sup[a(z) — b(z)]; sup[—c(z) + d(x)]1} < A1.

z€EQ €
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Then,if f > 0 andg < 0inQ, it followsthatu > 0,v <0 inQ,
being (u, v) the solution to (3.1).

Next we consider the more challenging case which corresponds to
b(z) < 0,8zx) # 0, c(x) > 0 in Q. Our main purpose is to find
out conditons on the coefficients of the system (3.1) which will giveus a
maximum principle. The idea now is first to embed the given2 x 2 (non-
cooperative) system into a 3 x 3 (cooperative) system. Then we apply the
results already established for cooperative systems in order to obtain infor-
mation about the given system. We introduce a new unknown w = gu+ év,

where € # 0, § # O are real parameters to be determined as we proceed.
So we have an additional equation

(3.1¢) —Aw=(ce+chu+ (be+ d8)v+ef+ 6g .
Since —eu — 6v + w = 0 we may rewrite system (3.1) as follows

—Au=(a—re)u+ (b—r6)v+rw+ f
—Av=cu+dv+g

—Aw=(ag+cb—se)u+ (be+ db — sb)v+ sw+ef + bg,

where the real-valued functions r(z) and s(z) are to be determined later.
In order to get cooperativeness, we observe initially that in the first equation
we should have r > 0 and b — 6 > O in view of the hypothesis b < 0 and
h # O, we infer that § < 0 and r > O, r & 0. On the other hand, aiming
at a maximum principle we should have ef + §g > 0, which implies that
e > 0. We may without loss of generahty take € = 1. So we obtain the
following system: -

(32a) -Au=(a—1u+(b—rd)v+rw+ f
(32b) -Av=cu+dv+g
(32¢) -Aw=(a—s+ chu+ (b+db— sb)v+ sw+ f+ 8g

which will be cooperative if
(3.3)

f(2) >0, bz)—r(x)s>0; 2D+ H)E

6

< s(x) <a(x)+c(x)6
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for all z in Q. These conditions can be satisfied by a proper choice of §
r(z) and s(z) provided that there is a § < O such that

(34) c(x)8% + (a(z) —d(z))6—b(z) <0, VzeQ.

We summarize the foregoing arguments in the

PROPOSITION 3.1. The noncooperative system (3.1) [b(z) < O,
b(z) # 0, c(x) > 0] can be embedded into a cooperative system (3.2)
if there exists a § < 0 such that (3.4) holds.

" REMARK 3.1. Embedding in the previous proposition means that:
if (u,v,w) is a solution to (3.2), then (u,v) is a solution of (3.1), and
moreover any solution of (3.1) is obtained in this way.

REMARK 3.2. The existence of 6 as required in the above proposition
is equivalent to the following conditions on the entries of the matrix A:

(3.5) [a(z) — d(z)]1? + 4b(z)c(z) >0, VzeQ.
(3.6) d(z) < a(2), VreQ,

(3.1 sup 6_(z) < inf 6,(zx) ,
xeg IEQ

where §_(z) and 6. () are the two roots of the quadratic (3.4). By (3.5)

and (3.6) these roots are < 0.

REMARK 3.3. If the entries of the matrix A are constants, then the
existence of § as stated above is equivalent to (a — d)2 + 4bc > 0 (which

is also equivalent to saying that the matrix A has real eigenvalues) and
d < a+ (=bo)l/2.

Now we obtain a maximum principle for system (3.1) by applying

Corollary 1.1 to system (3.2). We should then require that §, » and s be
chosen to satisfy the additional conditions

(3.8) a(z) + b(z) —r(2)6 < Xp, c(x) +d(z) <X\

(3.9 a(zx) + c(x2)6+ b(z) + d(x)6 — ()6 < M1,
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forall z in Q. The les»s restrictive choice of s in (3.9) is obtained form
(3.3), namely s(x) = [b(z) + d(z)61/6. And we get from (3.9

(3.10) a(z) + c(z)6 < )] .
In this way we see that the best choice of § to attend (3.10) is

6_=supé_(x)
z+Q

where §_(z) is defined right after (3.7). Next we choose r(z) = %2

and the first requirement in (3.8) is attained if a(xz) < A\, forallzin Q.
Summarizing, we have the following maximum principle

THEOREM 3.2. Consider system GB.D) with b(z) < 0, b(x) # 0 and
c(z) > 0 in Q. Assume condition (3.4) of Proposition 3.1. Suppose in
addition that

) c(z) +d(z) < \p; a(a:)+c(:1;)6_<)\—1, Ve Q.

Then, if f(z) > 0, g(z) > 0 and f(z) + 6_g(z) > 0 inQ, it follows
©u>0,v>0inQ.

For recent results on the maximum principle for non cooperative sys-
tems with variable coefficients see [3].

THE MAXIMUM PRINCIPLE OF [5]. In [5] the authors of the present
paper considered the following system in Q

(3.12q) —Au=d u—v+ f

(3.12b) —Av=6u—qu,

subject to Dirichlet boundary conditions on Q. Here 8, v are positive
constants. We showed that f > 0 in Q implies u,v > 0 in Q, provided

(3.13) VE<y+ A,
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14 —y+2 A<\ + .
(3.14) 7+2VE <X < Y
We remark that this result is not a consequence of Theorem 3.2. Indeed,
although the condition (3.4) gives the first half of the inequality in (3.14),
the conditions (3.11) in the notation of the system (3.12) are

)\<)\1: 6_'7<)‘17

where the first inequality is more restrictive than (3.14), and the second is
not comparable with (3.13) for general values of 8.

However we can derive the maximum principle in [S] from our The-
orem 2.1. In fact, in the case when the coefficients of (3.1) are constant,
the parameters r and s in the system (3.2) can be chosen also as constants.
So in this case, with the further assumption that , = —A, a maximum
principle for (3.2) holds if (1) the system is cooperative, i.e.

(3.16) r>0, b—1r6>0,
(3.17) b+ad‘s <s<a+ch, and
(ii) the conditions of Theorem 2.1 are verified, namely
(3.18) a—T1< M.
AM—a+7r —=b+1716
(3.19) ‘ IV P
M—a+T —b+ 176 -
(3.20) —C AM—d 0O |>0
—a+s—c6 —b—-—dé+s6 Mi_s

Now we proceed to choose the parameters &, r and s in such a way that
conditions (3.16)—(3.20) are satisfied. First choose r = b/8. Therefore
condition (3.16) is satisfied, and (3.18) and (3.19) are verified if

(3.21) a—%<)\1, d< At
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Also, condition (3.20) can be written as

b bc
(e ) (o 1) 50

Now we choose s < Aj+ b/8. [Such a choice can be done attending (3.17),
because (b+ d8) /8 < A1 + b/8]. So the above inequality becomes

bc
M—d’

(3.22) a <A —

Finally it remains to choose 8. Take as § the smallest root of
c®+(a—d)f—b=0.

And then check that

—bc b

4 < 5 provided V—bc < A\; — d.

Summarizing, we conclude that the parameters 6, r and s can be chosen to
attend conditions (3.16)-(3.20) if

(3.23) d+2vV-bc<a
(3.24) d<)i, a<h -2
' b TN —d
(3.25) V=bc< M\ —d.

THEOREM 3.3. Consider system (3.1) with constant matrix A and
L = —A. Assume conditions (3.23)-(3.25). Then f>20,9=0inQ
impliesu,v>0inQ.

REMARK 3.4. The above theorem gives the maximum principle [5].
For others results connected with [5] see [3,4,10].
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On the biharmonic equation. Let us consider the fourth order elliptic
equation

(3.26) (A +a(z))(A+b(z))v=pv+ fin Q |
subject to the so-called Navier boundary conditions, namely
(3.27) v=0, Av=0 ondQ.

We discuss now conditions on the functions o and b and the real param-
eter u that will lead to a maximum principle for the problem above. For
that matter we introduce a new dependent variable v = —(A + b)v, and
transform the above equation into the system below

—-Au=au+pv+ f

—Av=u+bv

subject to Dirichlet boundary conditions u = v = 0 on 0Q. Then applying
previous results we have the following statements.

A) If p > 0, the system is cooperative and ther is a maximum prin-

ciple for (3.26)-(327) if a(z) + p < My and 1 + b(x) < A, forall z in
Q.

B) If 4 > 0 and a and b are constants, there is a maximum principle
if
a<drand (A —a)(M\1 —b) >p.

C) If u < 0, the system above is noncooperative and we apply Theo-
rem 3.2 to obtain a maximum principle for (3.26)-(3.27) provided

a(z) > b(x) + 2/—p, a(x) < M and 1+ b(x) < Xjforall zin Q .

D) If 4 < 0 and the coefficients o and b are constant, we apply The-
orem 3.3 and the conditions are

a2 b+ 2y, b< A, 0 < hi - b,\/_‘—udl'—b.
_—
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E) Suppose now that a = b = 0. So in (3.26) we have precisely
the biharmonic operator A2. Then from B) above we have a maximum
principle provided

0<u< )\f .

On the other hand if 4 < 0, D) above does not give any information about
the biharmonic operator. Nevertheless we have some partial results if the
coefficients are constant and Q has some regularity property. Let us con-
sider the simplest case

A2v+ 82y =f in Q

(3.28) { v =Av=0 on 9Q

where § € R and f is a given positive function defined on Q . Observe that
the biharmonic operator subject to Navier boundary conditions has eigen-
values Afr{, k=1,2,..., where A are the eigenvalues of (—A yH (Q).

By putting B = (—A)~! and supposing that §2 < ), it follows that
(3.28) is equivalent to

(3.29) v=(I+6B*"'B%(f).

Since (I + §2°B%*)~! = T . (I + §2B?) where T = (I — 6*B%)1, it
follows that, in order to prove that v > 0 in Q, it is sufficient to prove that
the operator B® — 52 B* is positive, hence in particular that B — §2 B3 is
positive.

PROPOSITION 3.2. Let Q C R¥ be a bounded C'' domain. Then
there exists a constant K > 0 such that

(i) K < )2
(i) if6> < Kthen f>0 = v>0inQ
(iii)Kgl+ff%\2;.

Proof. We shall denote by G(z, ) the Green function of —A subject
to Dirichlet boundary conditions, that is G( -, ¥)(y € Q) is the solution to
the problem

(3.30) —A,G(z,y) = 6,(3) TEQ
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G(z,y) =0 z€0Q.
Let A € R* and consider
o(z) = (BH(z) = MB}f)(z) z€Q.

We see that the solution of (3.28) is v = (T'B)gs: where T' = (I —
64 B4)—1 .

So in order to show that v is positive, it is sufficient to prove that
there exists A € R* such that g,(z) > 0 (z € Q) (this will imply that
gs2(z) > 0 if 62 < )\). By using the integral representation we see that

gx(z) =fg G(m,y)f(y)dy—kLsG(x,b)G(a,b)G(a,y)f(y)dadbdy-

Hence, in order to show that g, > 0 it is sufficient to prove that the function

H(z,y) = (f G(z,5)G(a,b)G(a,y)da db) (G(z,4))""
Q2

is uniformly bounded in Q.
Indeed if the last statement is true, i.e.

(3.31) H(z,y) <K VYz,yeQ

then if we take \ < (K)~! we are done. In factif A < (K)~! then

(B! f G(z,5)Gla, ) Cla,y) da db < G(s, 1)
Q2

which implies (since f > 0) that

A [ 6,060,600 f(dadbdy < [ Ga,9 fs)dy

ie. ga(z) > 0inQ.

To prove that (3.31) holds we can use the results of Zhao [11] in a
special situation.

Namely by [11] we know that if Q C R¥ is C!:! domain then there
exists A > O such that:

G(z,2)G(y, 2)
G(z,v)

Vz,y,2 € Q < Allg — 2N + |y —2>7M,
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hence,

H(z,y) = / G(x, 5)G(a,b)G(a, y) Gz, y)~"da db =
Q2 |

=/ G(z,5)G(y, ) G(z,9)™" - G, b) - Cla,y) - Gy, b)~'da db <
Q2

< A*M(z,y)

where

M(z,y) =f (z =8P +|y—b2M (Ja=b2V+|a—y>V)da db,
Q2

Since M (-, -) is continuous we conclude that

sup H(z,y) < A* max M(z,y) = K
z,y€Q z,y€Q

This concludes the proof of (ii).

To prove (i) it is sufficient to restrict our attention to (¢1) (the
eigenspace generate by ¢1). Indeed if B — KB3 is a positive operator
then B¢ — KB?¢; > 0 i.e. K < \2. The same remark can be used to
prove (iii), in fact (ii) is the necessary conditionon B — K'B3 in order to
be positive on (¢, ¢2).

REMARK 3.5. Proposition above generalizes results of Sweers [9]
and Bonnet [1] which hold respectively if @ ¢ R¥ is ball and if Q is
of class C%. We observe that in general we are not able to find the “best
constant” K. Some results in this direction are contained in [2].

REMARK 3.6. It is possible to prove by using the results of Zhao
[11] in the full generality that a maximum principle still holds for equation
(3.26) in a bounded C'! domain, without requiring that the coefficients
satisfy condition C).
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