## An example of a decomposition of a f.g. torsion module over a PID

Let $A=K[x]$ be the polynomial ring over a field $K$. Let $U$ be the submodule of $A \oplus A$ generated by $\left(x^{2}, 0\right)$ and $\left(0, x^{3}\right)$. Let $M=(A \oplus A) / U$.

- $M$ is an $A$ finitely generated $A$-module (for instance by $m_{1}=[(1,0)]$ and $\left.m_{2}=[(0,1)]\right) ;$
- The order of $m_{1}$ is $x^{2}$ and the order of $m_{2}$ is $x^{3}$.
- The minimal annihilator of $M$ is $\nu=x^{3}$. In particular $M$ is a torsion module.
- We can represent the elements of $M$ in a canonical way as follows: if $[(a, b)] \in M$, we can divide $a$ by $x^{2}$ (the first component of the first generator of $U$ ) and we get $a=p x^{2}+r$, where $r$ is a polynomial in $x$, $\operatorname{deg}(r) \leq 1$. Analogously, we divide $b$ by $x^{3}$ and we get $b=q x^{3}+s$, where $\operatorname{deg}(s) \leq 2$. Hence $[(a, b)]=[(r, s)]$. Therefore every element of $M$ is represented by an element of the form $\left[\left(a_{0}+a_{1} x, b_{0}+b_{1} x+b_{2} x^{2}\right)\right]$ $\left(a_{0}, a_{1}, b_{0}, b_{1}, b_{2} \in K\right)$ in a unique way.
- It is useful to see the $A$-module $M$ as a $K$-vector space. From the previous point it follows that a $K$-basis of $M$ is:

$$
[(1,0)],[(x, 0)],[(0,1)],[(0, x)],\left[\left(0, x^{2}\right)\right]
$$

- In order to decompose $M$ as a direct sum of cyclic modules we need an element of order $\nu$. We can choose for instance $c_{1}=[(0,1)]$, so we define $C_{1}=\left\langle c_{1}\right\rangle$. Therefore $M=C_{1} \oplus L$ for a suitable $L$ that has to be determined.
- The module $C_{1}$ is a $K$-vector space. Its basis is given by

$$
[(0,1)],[(0, x)],\left[\left(0, x^{2}\right)\right]
$$

- It follows that $L$ is the submodule of $M$ that, as a $K$ vector space, has a basis given by $[(1,0)],[(x, 0)]$. As an $A$-module, $L$ is generated by $c_{2}=$ $[(1,0)]$, therefore is cyclic.
- As a consequence of the previous points, we see that, if we set $C_{2}=\left\langle c_{2}\right\rangle$, we decompose $M$ as follows:

$$
M=C_{1} \oplus C_{2}
$$

where the order $\mu_{1}$ of $C_{1}$ is $x^{3}$, the order $\mu_{2}$ of $C_{2}$ is $x^{2}$. Moreover, $\mu_{1}$ is a multiple of $\mu_{2}$ so $\mu_{1}$ and $\mu_{2}$ are the invariant factors of $M$.

- The above decomposition of $M$ is dependent of the choice of the element $c_{1}$ of order $\nu$. We can find another decomposition of $M$ starting from another element of order $\nu$. For instance take $c_{1}^{\prime}=[(1,1)]$ (which, indeed, is of order $\nu$ ).
- Let $C_{1}^{\prime}=\left\langle c_{1}^{\prime}\right\rangle$ be the cyclic module generated by $c_{1}^{\prime}$. Its $K$-basis is $[(1,1)],[(x, x)],\left[\left(0, x^{2}\right)\right]$. Indeed: every element of $C_{1}^{\prime}$ is of the form $[(f, f)]$, $f \in A$, let $f=q x^{3}+s$, then

$$
[(f, f)]=\left[\left(q x^{3}+s, s\right)\right]=[(s, s)]=\left[\left(b_{0}+b_{1} x, b_{0}+b_{1} x+b_{2} x^{2}\right)\right]
$$

- Again, we have: $M=C_{1}^{\prime} \oplus L$, for a suitable $A$-module $L$. Since the element $c_{2}^{\prime}=[(1,0)]$ is not a $K$-linear combination of the $K$-basis of $C_{1}^{\prime}$, we can assume that $c_{2}^{\prime} \in L$. Let $C_{2}^{\prime}=\left\langle c_{2}^{\prime}\right\rangle$ be the cyclic module generated by $c_{2}^{\prime}$ (of order $x^{2}$ ), we have that $L=C_{2}^{\prime}$ and we get the decomposition $M=C_{1}^{\prime} \oplus C_{2}^{\prime}$. The invariant factors are again $x^{3}, x^{2}$ and $C_{1} \simeq C_{1}^{\prime}$, $C_{2} \simeq C_{2}^{\prime}$.

