Three altitudes of a triangle

We want to consider here the elementary geometric theorem which says that the three altitudes of a triangle meet in a common point (called the orthocenter) in order to see an example of a primary decomposition of an ideal.

We formulate the problem as follows:
We consider the triangle $A B C$ in an affine plane and we give coordinates to the points: $B=(0,0), C=(c, 0), A=(a, b)$ (the given coordinates are not restrictive).

Next, we consider the altitudes, so let $D=(a, 0), E=\left(x_{1}, x_{2}\right), F=\left(x_{3}, x_{4}\right)$ be three points (D on the line $B C, E$ on the line $A C$ and F on the line $A B$) such that the lines $A D$ and $B C$ are orthogonal, the lines $B E$ and $A C$ are orthogonal and the lines $C F$ and $A B$ are orthogonal.

We want to see if the three lines $A D, B E$ and $C F$ meet in a common point. In order to see this, we consider the points $G=\left(a, z_{1}\right)$ and $H=\left(a, z_{2}\right)$ which are the intersection points of the line $A D$ with the line $B E$ and $C F$ respectively and we want to see if (when) G and H coincide.

The above conditions give the following equations:

$$
\begin{array}{ll}
b c-b x_{1}+a x_{2}-c x_{2}=0 & \text { points } A, C, E \text { collinear } \\
b x_{3}-a x_{4}=0 & \text { points } A, B, F \text { collinear } \\
a c-a x_{3}-b x_{4}=0 & \text { lines } A B \text { and } C F \text { orthogonal } \\
a x_{1}-c x_{1}+b x_{2}=0 & \text { lines } B E \text { and } A C \text { orthogonal } \\
a x_{2}-x_{1} z_{1}=0 & \text { lines } B, E, G \text { collinear } \\
a x_{4}-c x_{4}+c z_{2}-x_{3} z_{2}=0 & \text { points } A, D, H \text { collinear }
\end{array}
$$

Consider now the ideal J generated by the above polynomials. Its primary decomposition (in the polynomial ring $\mathbb{Q}\left[a, b, c, x_{1}, \ldots, x_{4}, z_{1}, z_{2}\right]$) is the following:

$$
J=\bigcap_{i=1}^{14} \mathcal{Q}_{i}
$$

where the primary ideals are:

$$
\begin{aligned}
& \mathcal{Q}_{1}=\left(x_{4}, x_{3}, c, b-z_{1}, a x_{2}-x_{1} z_{1}, x_{1}^{2}+x_{2}^{2}, a x_{1}+x_{2} z_{1}, a^{2}+z_{1}^{2}\right) \\
& \mathcal{Q}_{2}=\left(z_{1}-z_{2}, c, b-z_{2}, a x_{4}-x_{3} z_{2}, x_{3}^{2}+x_{4}^{2}, x_{2} x_{3}-x_{1} x_{4}, x_{1} x_{3}+x_{2} x_{4}\right. \text {, } \\
& \left.a x_{3}+x_{4} z_{2}, a x_{2}-x_{1} z_{2}, x_{1}^{2}+x_{2}^{2}, a x_{1}+x_{2} z_{2}, a^{2}+z_{2}^{2}\right) \\
& \mathcal{Q}_{3}=\left(z_{1}, x_{3}, c, b, a\right) \\
& \mathcal{Q}_{4}=\left(z_{2}, z_{1}, c, b, a\right) \\
& \mathcal{Q}_{5}=\left(x_{4}, c-x_{3}, b, a-x_{3}, x_{2} x_{3}-x_{1} z_{1}\right) \\
& \mathcal{Q}_{6}=\left(x_{4}, x_{3}, x_{2}, x_{1}, c\right) \\
& \mathcal{Q}_{7}=\left(x_{2}, x_{1}, c, b-z_{2}, a x_{4}-x_{3} z_{2}, x_{3}^{2}+x_{4}^{2}, a x_{3}+x_{4} z_{2}, a^{2}+z_{2}^{2}\right) \\
& \mathcal{Q}_{8}=\left(x_{4}, x_{2}, x_{1}, c-x_{3}, b\right) \\
& \mathcal{Q}_{9}=\left(x_{2}, x_{1}, b, a, c x_{4}-c z_{2}+x_{3} z_{2}\right) \\
& \mathcal{Q}_{10}=\left(x_{3}, x_{1}, c, b, a\right) \\
& \mathcal{Q}_{11}=\left(z_{2}, x_{1}, c, b, a\right) \\
& \mathcal{Q}_{12}=\left(c-x_{3}, b-x_{4}, x_{4}^{2}, a x_{4}-x_{3} x_{4}, x_{2} x_{3}+x_{1} x_{4}-x_{3} x_{4}-x_{1} z_{1}\right. \text {, } \\
& x_{1} x_{3}-x_{3}^{2}-x_{2} x_{4}+x_{2} z_{1}+2 x_{4} z_{1}, a x_{3}-x_{3}^{2}+x_{4} z_{1}, a x_{2}-x_{1} z_{1}, \\
& \left.x_{1}^{2}+x_{2}^{2}-x_{3}^{2}+x_{2} z_{1}+2 x_{4} z_{1}, a x_{1}-x_{3}^{2}+x_{2} z_{1}+2 x_{4} z_{1}, a^{2}-x_{3}^{2}+2 x_{4} z_{1}\right) \\
& \mathcal{Q}_{13}=\left(x_{1}, b-x_{2}, a x_{4}-c x_{4}+c z_{2}-x_{3} z_{2}, x_{3}^{2}+x_{4}^{2}-x_{4} z_{2}\right. \text {, } \\
& x_{2} x_{3}-c x_{4}+c z_{2}-x_{3} z_{2}, c x_{3}+x_{2} x_{4}-x_{4} z_{2}, a x_{3}+x_{2} x_{4}-x_{2} z_{2} \text {, } \\
& x_{2}^{2}, a x_{2}, a c-x_{2} z_{2}, a^{2}, c x_{2} x_{4}-c x_{2} z_{2}+c x_{4} z_{2}-c z_{2}^{2}+x_{3} z_{2}^{2} \text {, } \\
& \left.c^{2} x_{4}-c^{2} z_{2}-2 x_{2} x_{4} z_{2}+x_{4} z_{2}^{2}\right) \\
& \mathcal{Q}_{14}=\left(z_{1}-z_{2}, a x_{4}-c x_{4}+c z_{2}-x_{3} z_{2}, x_{2} x_{3}-c x_{4}+x_{1} x_{4}+c z_{2}-x_{1} z_{2}-x_{3} z_{2},\right. \\
& x_{1} x_{3}-x_{3}^{2}-x_{2} x_{4}-x_{4}^{2}+x_{2} z_{2}+x_{4} z_{2}, c x_{3}-x_{3}^{2}-x_{4}^{2} \text {, } \\
& b x_{3}-c x_{4}+c z_{2}-x_{3} z_{2}, a x_{3}-x_{3}^{2}-x_{4}^{2}+x_{4} z_{2}, a x_{2}-x_{1} z_{2}, \\
& x_{1}^{2}-b x_{2}+x_{2}^{2}-x_{3}^{2}-b x_{4}-x_{4}^{2}+x_{2} z_{2}+x_{4} z_{2} \text {, } \\
& c x_{1}-b x_{2}-x_{3}^{2}-b x_{4}-x_{4}^{2}+x_{2} z_{2}+x_{4} z_{2}, a x_{1}-x_{3}^{2}-b x_{4}-x_{4}^{2}+x_{2} z_{2}+x_{4} z_{2} \text {, } \\
& b c-b x_{1}-c x_{2}+x_{1} z_{2}, a c-x_{3}^{2}-b x_{4}-x_{4}^{2}+x_{4} z_{2} \text {, } \\
& a^{2}-x_{3}^{2}-b x_{4}-x_{4}^{2}+b z_{2}+x_{4} z_{2}, c x_{2} x_{4}-c x_{2} z_{2}+c x_{4} z_{2}-2 x_{1} x_{4} z_{2}-c z_{2}^{2}+x_{1} z_{2}^{2}+x_{3} z_{2}^{2} \text {, } \\
& \left.b x_{2} x_{4}-b x_{2} z_{2}-b x_{4} z_{2}+x_{2} x_{4} z_{2}, c^{2} x_{4}-x_{3}^{2} x_{4}-b x_{4}^{2}-x_{4}^{3}-c^{2} z_{2}+x_{3}^{2} z_{2}+2 x_{4}^{2} z_{2}\right)
\end{aligned}
$$

The associated primes are $\mathcal{P}_{i}(i=1, \ldots, 14)$ where $P_{i}=Q_{i}$ for $i \notin\{12,13\}$, while Q_{12} and Q_{13} are primary but not prime and

$$
\begin{aligned}
& \mathcal{P}_{12}=\left(x_{4}, c-x_{3}, b, a-x_{3}, x_{2} x_{3}-x_{1} z_{1}, x_{1} x_{3}-x_{3}^{2}+x_{2} z_{1}, x_{1}^{2}+x_{2}^{2}-x_{3}^{2}+x_{2} z_{1}\right) \\
& \mathcal{P}_{13}=\left(x_{2}, x_{1}, b, a, c x_{4}-c z_{2}+x_{3} z_{2}, x_{3}^{2}+x_{4}^{2}-x_{4} z_{2}, c x_{3}-x_{4} z_{2}\right)
\end{aligned}
$$

The conclusion is that, if we do not consider the degenerate cases, then G and H coincide (i.e. $z_{1}=z_{2}$).

Note that if we perform the computations in \mathbb{C} (or in $\mathbb{Q}[\sqrt{-1}]$), then the ideals Q_{1}, Q_{2} and Q_{7} split in smaller ideals.

