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1. The indefinite twist

Alessandro Fonda and Antonio J. Ureña

Abstract. We propose an extension to higher dimensions of the Poinca-
ré – Birkhoff Theorem which applies to Poincaré time-maps of Hamil-
tonian systems. Applications to pendulum-type systems and weakly-
coupled superlinear systems are given.

1 Introduction

The classical Poincaré – Birkhoff fixed point theorem, also called Poincaré’s
last geometric theorem, affirms the existence of at least two fixed points for
area-preserving homeomorphisms of the planar annulus keeping both bound-
ary circles invariant and twisting them in opposite directions. Going to the
universal cover it can be stated as follows (see, e.g. [17]):

Theorem (Poincaré – Birkhoff). Let P : R × [a, b] → R × [a, b] be an area-
preserving homeomorphism of the form

P(x, y) = (x+ ϑ(x, y), ρ(x, y)) ,

where the functions ϑ(x, y) and ρ(x, y) are 2π-periodic in their first variable x,
with ρ(x, a) = a and ρ(x, b) = b, for every x ∈ R. Assume the boundary twist
condition:

ϑ(x, a)ϑ(x, b) < 0 , for every x ∈ R . (1)

Then, P has at least two fixed points in [0, 2π[× ]a, b[ .

This theorem was conjectured by Poincaré shortly before his death in 1912.
The original manuscript [65] contained not only the proof of the theorem in
some special cases but also two examples of applications in Dynamics, namely
the search of closed geodesic lines on a convex surface, and the study of periodic
solutions in the restricted three body problem. The full proof of the theorem is
due to Birkhoff [9, 11], who, as Poincaré, had been led to it by its applications
to the search of periodic solutions of conservative dynamical systems [10, 13].
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The use of this version of the theorem in problems of Dynamics encounters,
however, some difficulties due to the requirement that the strip R× [a, b] has to
be invariant under the Poincaré time map. In other cases it may be interesting
to replace the strip R × [a, b] by more general regions of the plane, such as
the one contained between two ordered curves, or even to generalize the area-
preserving condition. Thus, many different generalizations of the Poincaré –
Birkhoff theorem have been proposed, see [18, 24, 25, 37, 38, 39, 40, 41, 46,
48, 52, 62, 67, 72]. (See also [34, 51] for recent reviews on the subject.) These
extended versions have been used to prove the existence and multiplicity of
periodic solutions of non-autonomous planar Hamiltonian systems in a variety
of situations.

On the other hand, the possibility of higher dimensional extensions of the
Poincaré – Birkhoff theorem was considered an outstanding question already by
Birkhoff [11, page 299]. Indeed, as Arnold would later write, attempts to gen-
eralize it to higher dimensions are important for the study of periodic solutions
of problems with many degrees of freedom ([3, page 416]). Birkhoff himself
was the first author to propose a 2N -dimensional version of the theorem [12]
in which the main assumption was the existence of a manifold, diffeomorphic
to the N -torus, where the exact symplectic map preserves the first N coordi-
nates. In this case one can use an idea which goes back to Poincaré [64, Chap.
28] and reduce the problem to that of the critical points of a function on the
manifold. Since then, related arguments have been successfully used to prove
higher-dimensional versions of the Poincaré – Birkhoff theorem for maps which
are close to the identity and also for monotone twist maps [3, 5, 59, 61, 70].

Using a different approach which combined Lyusternik – Schnirelman varia-
tional methods with the Conley index theory for flows, Conley and Zehnder [21,
Theorem 3] proved, thirty years ago, another version of the Poincaré – Birkhoff
Theorem in higher dimensions. Their result concerns the multiplicity of peri-
odic solutions for time-dependent Hamiltonian vector fields provided that the
C2-smooth Hamiltonian function H = H(t, x, y) is periodic in t and the vari-
ables xi, and quadratic on a neighborhood of infinity. Precisely, they assumed

|y| ≥ R ⇒ H(t, x, y) = 1
2
〈By, y〉+ 〈a, y〉 , (2)

for some R > 0, some vector a ∈ RN and some regular symmetric matrix B.
Then, they obtained the existence of at least N+1 periodic solutions. Remark-
ably, their result does not need the Poincaré time-map to be close to the iden-
tity, nor to have a monotone twist. The development of infinite-dimensional
Lyusternik – Schnirelman methods would allow Szulkin [68, Theorem 4.2] to
generalize the Conley and Zehnder theorem by replacing the term 〈a, y〉 by
nonlinearities G(t, x, y) with bounded first-order derivatives. Further results
along these lines can be found in [7, 8, 20, 47, 50].

Despite all this ample literature it seems that, for the time being, there is
no genuine generalization of the Poincaré – Birkhoff theorem to higher dimen-
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sions [61, page 140]. The aim of this paper is to take a further step in this direc-
tion and propose a new higher-dimensional version of the Poincaré – Birkhoff
theorem which will apply to Poincaré time-maps of Hamiltonian systems.

In order to describe our results, let J =
(

0 IN
−IN 0

)
denote the standard

2N × 2N symplectic matrix, and consider the (time dependent) Hamiltonian
system

(HS) ż = J∇H(t, z) ,

or, what is the same, letting z = (x, y),{
ẋ = ∇yH(t, x, y) ,

ẏ = −∇xH(t, x, y) .

In Theorems 1.1, 1.2, and 1.3 below we shall assume that the continuous
function H : R × RN × RN → R, H = H(t, x, y) is T -periodic in its first
variable t, 2π-periodic in the first N state variables x1, . . . , xN , and continu-
ously differentiable with respect to (x, y). Let the open, bounded and convex
subset D ⊆ RN be given; if for every initial position z0 ∈ RN × D there is
a unique solution z(· ; z0) of (HS) satisfying z(0; z0) = z0 and, moreover, this
solution can be continued to the time interval [0, T ], then it makes sense to
consider the so-called Poincaré time map (on RN × D); this is the function
P : RN ×D → R2N defined by

P(z0) = z(T ; z0) .

It is well known that the function P preserves the orientation and the Lebesgue
measure on R2N , and its fixed points give rise to T -periodic solutions of (HS).
Once a T -periodic solution z(t) = (x(t), y(t)) has been found, many others
appear by just adding an integer multiple of 2π to some of the components
xi(t); for this reason, we will call geometrically distinct two periodic solutions
of (HS) (or two fixed points of P) which can not be obtained from each other
in this way.

In case the set D has a C1-smooth boundary one may consider the (contin-
uously defined) unit outward normal vector field on ∂D; we shall denote it by
ν : ∂D → RN . Let us also recall that a square matrix B is called symmetric if
B equals its transpose B∗, regular if detB 6= 0, and involutory if B2 = IN . One
of the main results of this paper is the following.

Theorem 1.1. Let D ⊆ RN be an open, bounded and convex set. Writing

P(x, y) = (x+ ϑ(x, y), ρ(x, y)) , (x, y) ∈ RN ×D ,

let one of the following assumptions hold:
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(a) The set D has a C1-smooth boundary and there is a regular symmetric
N ×N matrix B with

〈ϑ(x, y),Bν(y)〉 > 0 , for every (x, y) ∈ RN × ∂D .

(b) There exists an involutory N ×N matrix B and some point d0 ∈ D with

〈ϑ(x, y),B(y − d0)〉 > 0 , for every (x, y) ∈ RN × ∂D .

Then, P has at least N + 1 geometrically distinct fixed points in RN ×D.

Some comments are in order here:

(i) Condition (a) can be thought of as a generalization of the Conley –
Zehnder assumption (2). Indeed, their assumption guarantees that the
Poincaré time map is well defined, and it can be easily checked that it
implies (a) for D being a sufficiently large ball centered at the origin.

(ii) In the case B = IN condition (b) was introduced by Moser and Zehnder
in [61, Theorem 2.21]; for this reason, our theorem can also be seen as
a generalization in the Hamiltonian case of this result. Notice also that
we do not need the monotone twist condition required there.

(iii) One of our assumptions was that the domain D must be convex, and a
natural question here is whether this is necessary. We do not know the
answer to this question in this generality; however, in the case of B = IN
this problem will be treated in [36].

(iv) Both conditions (a)-(b) require in particular that the matrix B is regular.
However it may fail to be either positive or negative definite; this fact
motivates the words ‘indefinite twist’ in the title of the paper. We do not
know whether (a)-(b) can be weakened by asking only that B is regular
and dropping the symmetry or involutory assumptions.

As an example, we consider the rectangle

R = ]a1, b1[× · · ·×]aN , bN [ ,

and we assume that we are dealing with some Hamiltonian system (HS) whose
Poincaré time map P : RN ×R → RN × RN is well defined. After smoothing
the corners of ∂R, Theorem 1.1 (a) will lead us to the following result:

Theorem 1.2. Writing

P(x, y) = (x+ ϑ(x, y), ρ(x, y)) ,

and ϑ(x, y) = (ϑ1(x, y), . . . , ϑN(x, y)), assume that

ϑi(x, ai)ϑi(x, bi) < 0 , for every x ∈ RN and i = 1, . . . , N.

Then, P has at least N + 1 geometrically distinct fixed points in RN ×R.
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We emphasize that the set RN × R is not required to be invariant by P .
After a symplectic change of variables we shall show an extension of this result
in which ai and bi can vary as functions of xi. This will lead us to Theorem 2.2
and then to Theorem 8.2 below, which is a generalization of some previous
versions of the Poincaré – Birkhoff Theorem for planar annuli with star-shaped
boundaries [25, 52, 67].

A special situation occurs when the fixed points of P are nondegenerate.
We recall that the fixed point z0 = P(z0) is called nondegenerate if 1 is not an
eigenvalue of P ′(z0), or, with other words, if 1 is not a characteristic multiplier
of the solution z(· ; z0) of (HS). Of course, for this definition to make sense
one has to assume that the Hamiltonian function H is twice continuously
differentiable with respect to the state variable z = (x, y). Our next result says
that, if for some reason the fixed points of P are known to be nondegenerate,
then they appear in a greater number:

Theorem 1.3. Under the assumptions of Theorems 1.1 or 1.2, if H is twice
continuously differentiable with respect to z and all fixed points of P are non-
degenerate, then there are at least 2N of them.

Our theorems above apply to maps P : RN ×D → R2N which are Poincaré
time maps of Hamiltonian systems, assumed to be periodic in the xi variables
(or, equivalently, defined on some subset of T ∗(TN) ∼= TN ×RN , the cotangent
space of the torus TN = (R/2πZ)N). A natural question here concerns to
having a way to know when a given map belongs to this class. It is well
known that, assuming some smoothness for the Hamiltonian, P must be a
diffeomorphism into its image, differing from the identity on a periodic map
in the xi variables. Besides, it has to be exact symplectic, i.e.

P ∗λ− λ = dF ,

for some smooth function F : TN × D → R, where λ =
∑N

i=1 yidxi is the
canonical 1-form. On the other hand, a well known result (cf. [56, Proposition
9.19] or [38, Theorem 58.9]) states that P is the Poincaré time map of a
Hamiltonian system of the type we are dealing with if and only if it can be
joined to the identity via a smooth isotopy of exact symplectic maps. However,
this criterion could not be easy to check in practical situations. More explicit
conditions are available when P is an exact symplectic monotone twist map.
Indeed, as Moser has shown [60], in the two dimensional case all such maps are
indeed Poincaré time maps of a Hamiltonian system. The higher dimensional
case has been treated by Golé [38, Theorem 41.6], assuming that the map
is globally defined on T ∗(TN) and the twist is, in some sense, controlled at
infinity.

The paper is organized as follows. In Section 2 we will state our main
results in their general form, which apply to Hamiltonian systems which do
not necessarily have the property of uniqueness of solutions to initial value
problems (so that the Poincaré time map could be multivalued). The results
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presented in this Introduction will then just be the particularization for systems
with uniqueness. Section 3 is devoted to present and prove some facts on the
extrinsic geometry of convex bodies which will be needed in the sequel. In
Section 4 we present the notion of feasible vector fields, which will provide a
unified way to treat both cases (a)-(b) appearing in Theorem 1.1. The bulk
of the proof is carried out in Sections 5 and 6, using the above-cited result
by Szulkin. Then, in Section 7 we shall use an approximation argument to
extend Theorem 1.1(a) to nonsmooth domains; this will lead us to Theorem 1.2
and some generalizations. Finally, in Section 8 we illustrate some examples
of applications, focusing our attention on two types of Hamiltonian systems,
pendulum-like systems and weakly-coupled superlinear systems, for which we
extend some classical results.

2 When the Poincaré time map may be

multivalued

As described in the Introduction, the Poincaré – Birkhoff theorem has been
extensively used to prove existence and multiplicity of periodic solutions for
Hamiltonian systems in the plane. Since the theorem applies to (univalued)
maps, an important requirement is that there must be uniqueness for initial
value problems, something which can be easily ensured by assuming some
smoothness (i.e., Lipschitz continuity) on the Hamiltonian vector field. When
such a condition fails to hold, in many cases one can still show existence
by passing to the limit in a regularization argument; however, multiplicity is
usually lost in this procedure because it may not be easy to show that the
different solutions do not collapse in the limit. Concerned by this fact, we
have developed a generalized version of Theorem 1.1, which does not require
uniqueness for initial value problems.

It will be convenient to introduce some terminology. As before we denote
by z = (x, y) the vectors in R2N , with x = (x1, . . . , xN) and y = (y1, . . . , yN).
Even though we are interested in time-periodic Hamiltonians and periodic
solutions, it will be convenient to have everything defined on a time period
interval [0, T ]. Thus, we shall say that the function H : [0, T ] × R2N → R,
H = H(t, z) = H(t, x, y), is an admissible Hamiltonian if it is continuous, 2π-
periodic in xi for each i = 1, . . . , N , and it has a continuously defined gradient
with respect to z, denoted by ∇H. A solution z : [0, T ] → R2N of (HS) is
said to be T -periodic if it satisfies z(0) = z(T ). Of course, in case H is the
restriction of some function on R × R2N which is T−periodic in time, then
any T -periodic solution in this sense can be extended to a T -periodic solution
defined on R. From now on, unless the contrary is explicitly required, our
Hamiltonians will always be admissible.

As mentioned in the Introduction, if z(t) = (x(t), y(t)) is a solution of (HS),
then, for every choice of integers m1, . . . ,mN , the function (x1(t) + 2πm1, . . . ,
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xN(t) + 2πmN , y(t)) is still a solution. Thus, two periodic solutions of (HS)
are called geometrically distinct if they are not related to each other in this
way. On the other hand, we notice that initial value problems associated to
(HS) may not be uniquely solvable if the Hamiltonian H is merely assumed
to be admissible.

Throughout this paper, D will always denote an open, bounded and convex
subset of RN (such sets will henceforth be called convex bodies). Let F : ∂D →
RN be a continuous vector field; we shall say that the flow of (HS) is guided
by F on ∂D if every solution z(t) = (x(t), y(t)) of (HS) with y(0) ∈ ∂D is
defined for every t ∈ [0, T ] and satisfies

〈x(T )− x(0),F(y(0))〉 > 0 .

The main result of this paper is given next. It is a generalized version of The-
orems 1.1 and 1.3 which applies to Hamiltonian systems without uniqueness.

Theorem 2.1. Let the Hamiltonian function H : [0, T ]×R2N → R be admis-
sible, and assume the existence of a convex body D ⊆ RN such that one of the
following conditions hold:

(a) The set D has a C1-smooth boundary and there exists a symmetric regular
N ×N matrix B such that the flow of (HS) is guided by the vector field
F1(y) = Bν(y) on ∂D.

(b) There exists an involutory N×N matrix B and a point d0 ∈ D such that
the flow of (HS) is guided by the vector field F2(y) = B(y − d0) on ∂D.

Then, the Hamiltonian system (HS) has at least N+1 geometrically distinct
T -periodic solutions z(0), . . . , z(N) such that, writing z(k)(t) = (x(k)(t), y(k)(t)),

y(k)(0) ∈ D , for k = 0, . . . , N .

Moreover, if the Hamiltonian function H is twice continuously differentiable
with respect to z and the T -periodic solutions with initial condition on RN ×D
are nondegenerate, then there are at least 2N of them.

As before, in condition (a) we are denoting by ν to the (continuously de-
fined) unit outer normal vector field on ∂D. It is clear that, in case there
is uniqueness for initial value problems (so that the Poincaré time map P is
well defined on RN ×D) then assumptions (a)-(b) of Theorem 1.1 become the
corresponding assumptions of Theorem 2.1.

We now consider an apparently different situation which, however, will be
reduced to the previous one after a suitable change of variables. By a tube we
mean a set of the form

T = {(x, y) ∈ R2N : ai(xi) < yi < bi(xi), i = 1, . . . , N} ,

where ai, bi : R → R are given 2π-periodic continuous functions, for i =
1, . . . , N , with ai(s) < bi(s) for every s ∈ R.
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Choose now some j ∈ {1, . . . , N}. The j-th (closed) top face of T is the
set

T +
j = {(x, y) ∈ R2N : yj = bj(xj) and ai(xi) ≤ yi ≤ bi(xi), if i 6= j} ,

while the j-th (closed) bottom face of T is given by

T −j = {(x, y) ∈ R2N : yj = aj(xj) and ai(xi) ≤ yi ≤ bi(xi), if i 6= j} .

Notice that ∂T is the union of all the top and bottom faces of T . We will
say that the tube T is twisted by the flow of H provided that every solution
z(t) = (x(t), y(t)) of (HS) with z(0) ∈ ∂T is defined of [0, T ] and, for any
j = 1, . . . , N , either

xj(T )− xj(0)

{
> 0 , if z(0) ∈ T +

j ,

< 0 , if z(0) ∈ T −j ,

or

xj(T )− xj(0)

{
< 0 , if z(0) ∈ T +

j ,

> 0 , if z(0) ∈ T −j .

Theorem 2.2. Let the Hamiltonian function H : [0, T ]×R2N → R be admis-
sible, and let the tube T be twisted by the flow of H. Then, the Hamiltonian
system (HS) has at least N + 1 geometrically distinct T -periodic solutions
z(0), . . . , z(N), with z(k)(0) ∈ T , for every k = 0, . . . , N .

Moreover, if the Hamiltonian function H is twice continuously differentiable
with respect to z and the T -periodic solutions with initial condition on T are
nondegenerate, then there are at least 2N of them.

3 Differential geometry of convex bodies

In this section, we establish some geometrical results which will be needed in
the sequel. These results are probably well-known to specialists in the extrinsic
geometry of convex bodies; however, we have tried to find a presentation which
may be attractive to readers from other areas of mathematics.

Let D ⊆ RN be a convex body, i.e., D is open, bounded, and convex. For
simplicity we shall say that D is smooth if the boundary ∂D is C∞-smooth. In
this case, the unit normal outer vector field ν : ∂D → RN is a C∞-smooth map,
and its differential at a given point p ∈ ∂D, denoted by ν ′(p) : Tp∂D → Tp∂D,
is a selfadjoint endomorphism (see e.g. [27]), which can be identified with the
quadratic form

IIp[u] := 〈u, ν ′(p)u〉, u ∈ Tp∂D .

Here, Tp∂D denotes the tangent space to ∂D at the point p.
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In order to get some geometrical insight on IIp (usually called the second
fundamental form of ∂D at p), we consider the height function relative to the
tangent hyperplane at this point:

hp(q) := 〈q − p,−ν(p)〉 , q ∈ ∂D .

Our function attains a critical point at q = p, and its Hessian quadratic
form there [23, §(16.5.11)] is Hessphp = IIp. This can be easily checked by
choosing some vector u ∈ Tp∂D and some differentiable curve α : ]− ε, ε[→ ∂D
with α(0) = p and α′(0) = u; then,

Hessp hp[u, u] =
d2

dt2
h(α(t))

∣∣∣
t=0

= 〈α′′(0),−ν(p)〉 = IIp[u] , (3)

the last equality being a consequence of the fact that 〈α′(t), ν(α(t))〉 = 0, for
every t. Since the convex set D is supported by its tangent hyperplane at p,
we see that hp attains its minimum at q = p, and hence the quadratic form IIp
must be positive semidefinite. It is true for every point p ∈ ∂D and, indeed,
this property may be used to characterize those compact hypersurfaces which
bound a convex set [28, p. 175]. It motivates the following definition.

The convex body D is said to be strongly convex provided that it is smooth
and IIp is positive definite for every p ∈ ∂D. With other words, if the eigenval-
ues of ν ′(p) (usually called the principal curvatures of ∂D at p) are all of them
positive for every p ∈ ∂D. Equivalently, if det ν ′(p) 6= 0 for every p ∈ ∂D.

As an example, assume that the convex body D can be written as a sublevel
set D = ϕ−1( ]−∞, c[ ), where the C∞-smooth function ϕ : RN → R is strongly
convex, in the sense that its Hessian matrix Hessp ϕ is positive definite at every
point p. Then, D itself is strongly convex. To see this, we first observe that c
must be a regular value of ϕ, implying that D is smooth; moreover, for every
p ∈ ∂D, one has

ν(p) =
∇ϕ(p)

|∇ϕ(p)|
, ν ′(p) =

(
1

|∇ϕ(p)|
IN −

1

|∇ϕ(p)|3
∇ϕ(p) · ∇ϕ(p)∗

)
·Hessp ϕ .

Consequently, the quadratic form IIp, being given by

IIp[u] =
1

|∇ϕ(p)|
〈u, (Hesspϕ)u〉 ,

is positive definite on Tp∂D.

On the other hand, assume instead that there exists a nontrivial segment
[q1, q2] contained in ∂D. Then D is not strongly convex; indeed, q2 − q1 ∈
ker ν ′(p) for every p ∈ [q1, q2]. This is a consequence of (3).

In order to introduce a second notion which will play an important role in
this paper, let D ⊆ RN be a convex body, not necessarily smooth. The outer
normal cone at some point q ∈ ∂D is defined by

N (q) :=
{
w ∈ RN : 〈w, q − p〉 ≥ 0 for every p ∈ D

}
,
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see e.g. [4]. It can be easily checked that N (q) is indeed a nontrivial convex
cone for every q ∈ ∂D.

For instance, assume that D = [0, 1]N is the unit cube. Then, for every
q = (q1, q2, . . . , qN) ∈ ∂D,

N (q) = I(q1)× I(q2)× . . . I(qN) ,

where

I(qi) =


]−∞, 0] , if qi = 0 ,

[0,+∞[ , if qi = 1 ,

{0} , if qi ∈ ]0, 1[ .

On the other hand, if the convex body D has a C1-smooth boundary ∂D
and, as usually, we denote by ν : ∂D → RN the associated unit outward normal
vector field, then one easily checks that

N (q) = {λν(q) : λ ≥ 0} , q ∈ ∂D .

We now show how convex bodies in RN can always be approximated from
their interior by strongly convex ones (see also [43, 57]).

Lemma 3.1. Let D be a convex body and let K ⊆ D be a compact set.

(†) There exists a strongly convex body D∗ such that

K ⊆ D∗ ⊆ D∗ ⊆ D .

(‡) Furthermore, given ε > 0 the set D∗ can be chosen with the following
additional property: for every p ∈ ∂D∗ there exists some q ∈ ∂D such
that

|p− q| < ε , dist(ν∗(p),N (q)) < ε ,

where we denote by ν∗(p) the unit outward normal vector to ∂D∗ at
p ∈ ∂D∗ and by N (q) the outer normal cone to ∂D at q ∈ ∂D.

Proof. (†) There is no loss of generality in assuming that 0 ∈ K. For any
y ∈ RN \ {0} there exists a unique λ(y) > 0 such that λ(y)y ∈ ∂D. We
consider the so-called gauge or Minkowski function associated to D,

f(y) =

0 , if y = 0 ,
1

λ(y)
, if y 6= 0 ,

(see, e.g. [49, Theorem 2, p. 21]). We observe that f is convex, and, moreover

f(y)


< 1 , if y ∈ D ,

= 1 , if y ∈ ∂D ,

> 1 , if y ∈ RN \D .
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We choose some δ ∈ ]0, 1−maxK f [ . Using a standard convolution argument,
we may find a convex C∞-smooth function f̃ : RN → R such that

|f̃(y)− f(y)| < δ

2
, for every y ∈ D .

(Indeed, the convolution of a convex function with a nonnegative one is still
convex). After replacing f̃(y) by f̃(y) +ρ|y|2, for some small positive constant
ρ, we may further assume that the Hessian matrix of f̃ is positive definite at
every point. Observe now that

f̃(y) < 1− δ

2
, for every y ∈ K , (4)

and

f̃(y) > 1− δ

2
, for every y ∈ ∂D ,

so that, since f̃ is convex, we have

f̃(y) > 1− δ

2
, for every y ∈ RN \D . (5)

We define D∗ := f̃−1( ]−∞, 1−δ/2[ ). Then, D∗ is a strongly convex body (see
the comments following the definition of strongly convex bodies) and, by (4),
it contains K. By (5), the closure of D∗ is contained in D, thus concluding
the proof.

(‡) In order to show the second part of the lemma we start by letting
K0 := K; using (†), we may find some strongly convex body D∗1 with K0 ⊆
D∗1 ⊆ D∗1 ⊆ D. We let now K1 := D∗1 ∪ {q ∈ D : dist(q, ∂D) ≥ 1}; as
before we may find a strongly convex body D∗2 with K1 ⊆ D∗2 ⊆ D∗2 ⊆ D. We
iterate the argument and define, for arbitrary n ≥ 2, Kn := D∗n ∪ {q ∈ D :
dist(q, ∂D) ≥ 1/n}, after which we choose some strongly convex body D∗n+1

with Kn ⊆ D∗n+1 ⊆ D∗n+1 ⊆ D. In this way, we have constructed a sequence
{D∗n}n of strongly convex bodies satisfying

K ⊆ D∗1 ⊆ D∗n ⊆ D∗n ⊆ D∗n+1 ,
∞⋃
n=1

D∗n = D .

Fix now some ε > 0; we claim that (ii) holds by taking D∗ := D∗n for some
sufficiently large n. We check this by means of a contradiction argument and
assume, on the contrary, the existence of a sequence (pn)n, with pn ∈ ∂D∗n
for every n, and dist(ν∗n(pn),N (q)) ≥ ε for every q ∈ ∂D with |pn − q| < ε.
(Here, ν∗n(pn) denotes the unit outward normal to D∗n at the point pn.) After
possibly passing to a subsequence, we may assume that (pn)n converges to
some point q ∈ ∂D and ν∗n(pn) → w for some unitary vector w ∈ RN . Since
〈ν∗n(pn), pn−p〉 ≥ 0 for every p ∈ D∗n and every natural number n, passing to the
limit we see that w ∈ N (q). Thus, for n large enough, we have |pn−q| < ε and
dist(ν∗n(pn),N (q)) ≤ |ν∗n(pn) − w| < ε. This is a contradiction and concludes
the proof.
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To conclude this section, let now D be a smooth convex body. The projec-
tion map π : RN \D → ∂D, defined by

p− πp = dist(p, ∂D)ν(πp) ,

is smooth. Moreover, it is well-known that π is non-expansive, i.e.,

‖π′(p)‖ ≤ 1 , for every p ∈ RN \D .

This inequality can be improved when D is strongly convex, as follows.

Lemma 3.2. Let D ⊆ RN be a strongly convex body. Then, ‖π′(p)‖ < 1 for
every p ∈ RN \D. Moreover, there is a constant C > 0 such that

|p| ‖π′(p)‖ ≤ C , for every p ∈ RN \D . (6)

Proof. We start from the equality

π(q + tν(q)) = q , for every q ∈ ∂D and t ≥ 0 . (7)

Differentiating with respect to t, we get

π′(p)ν(πp) = 0 , for every p ∈ RN \D .

Consequently, the norm of the linear map π′(p) : RN → Tπp∂D coincides with
that of its restriction to Tπp∂D. On the other hand, differentiating with respect
to q in (7) gives

π′(p) ◦ [IdTπp∂D + dist(p, ∂D)ν ′(πp)] = IdTπp∂D , (8)

for every p ∈ RN \ D. It means that π′(p)
∣∣
Tπp∂D

: Tπp∂D → Tπp∂D is an

isomorphism and we have found its inverse:

Lp :=
(
π′(p)

∣∣
Tπp∂D

)−1
= IdTπp∂D + dist(p, ∂D)ν ′(πp) .

Since ν ′(πp) : Tπp∂D → Tπp∂D is positive definite for every p ∈ RN \D, and
∂D is compact, there is a constant δ > 0 (not depending on p) such that

〈Lpu, u〉 ≥
(

1 + δ dist(p, ∂D)
)
|u|2 , for every u ∈ Tπp∂D ,

so that, using Schwarz inequality,

|Lpu| ≥
(

1 + δ dist(p, ∂D)
)
|u| , for every u ∈ Tπp∂D .

Then,

‖π′(p)‖ = ‖L−1p ‖ ≤
1

1 + δ dist(p, ∂D)
,

for every p ∈ RN \D. The result follows.
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4 Feasible vector fields

As usually, D will be a convex body in RN . In order to treat both cases (a)-
(b) in Theorem 2.1 in a unified way we devote this section to introduce a new
class of vector fields on ∂D. Roughly speaking, it will comprise those vector
fields F : ∂D → RN which can be globally extended in such a way that there
exists a scalar function, vanishing on D, growing along the integral lines of the
extended vector field on RN \D, and behaving quadratically at infinity.

Precisely, the vector field F : ∂D → RN \{0} is called feasible if there exists

a continuous extension F̃ : RN → RN and a C1-smooth function h : RN → R
satisfying

(i) h(y) = 0, for every y ∈ D;

(ii) 〈∇h(y), F̃(y)〉 > 0, for every y ∈ RN \D;

(iii) sup
y∈RN

|∇h(y)− Ay| < +∞, for some regular symmetric matrix A.

We now present some examples of feasible vector fields.

(I) Let D ⊆ RN be a strongly convex body, and let B be a regular symmetric
N ×N matrix. Then, the vector field F1 : ∂D → RN , defined by

F1(y) = B ν(y) ,

is feasible.

In order to check this statement, we choose some cutoff C∞-smooth func-
tion ρ : R→ R, with

ρ(s) =

{
0 , if s ≤ 0 ,

1/2 , if s ≥ 1 ,
ρ′(s) > 0 , if s ∈ ]0, 1[ ,

and define the C∞-smooth function ϕ : RN → R by

ϕ(y) =

{
0 , if y ∈ D ,

ρ(|y − πy|) , if y ∈ RN \D .
(9)

By the chain rule,

∇ϕ(y) =
ρ′(|y − πy|)
|y − πy|

(Id− π′(y))∗(y − πy) ,

for every y ∈ RN \D. However, using (8),

ker(π′(y)∗) = [Im(π′(y))]⊥ = [Tπy∂D]⊥ ,
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so that y − πy ∈ ker(π′(y)∗). Hence,

∇ϕ(y) =
ρ′(|y − πy|)
|y − πy|

(y − πy) , for every y ∈ RN \D . (10)

We finally define h : RN → R by

h(y) =

{
0 , if y ∈ D ,

ϕ(y)〈y − πy,B(y − πy)〉 , if y ∈ RN \D .

It is clear that h is a C1-smooth function satisfying (i). By the chain rule, if
y ∈ RN \D,

∇h(y) = 〈y − πy,B(y − πy)〉∇ϕ(y) + 2ϕ(y)(Id− π′(y))∗B(y − πy) . (11)

For |y| large enough, ϕ(y) = 1/2 and ∇ϕ(y) = 0, hence

|∇h(y)− By| = | − Bπy − π′(y)∗B(y − πy)| ≤ |Bπy|+ ‖π′(y)∗‖ ‖B‖ |y − πy| ,

so that, by (6),
sup
y∈RN

|∇h(y)− By| < +∞ ,

showing (iii) for A = B. We now continuously extend our vector field F1(y) =
Bν(y) to RN by setting

F̃1(y) = Bν(πy) , if y ∈ RN \D ,

and with no further requirements (using Tietze Theorem) in D. Recalling (11),
we see that, if y ∈ RN \D,

〈∇h(y), F̃1(y)〉 = 〈y − πy,B(y − πy)〉〈∇ϕ(y),Bν(πy)〉+

+2ϕ(y)〈(Id− π′(y))∗B(y − πy),Bν(πy)〉 .

In view of (10), ∇ϕ(y) has the same direction as y − πy. Since y − πy =
dist(y, ∂D)ν(πy), the first term in the right hand side of the equality is non-
negative. On the other hand, Lemma 3.2 implies that (Id− π′(y))∗ is positive
definite, for any y ∈ RN \D, and the second term in the right hand side of the
equality is positive. Therefore,

〈∇h(y), F̃1(y)〉 > 0 , for every y ∈ RN \D ,

showing (ii).

(II) Let D ⊆ RN be a strongly convex body, let d0 ∈ D be given, and let B
be an involutory N × N matrix. Then, the vector field F2 : ∂D → RN ,
defined by

F2(y) = B(y − d0) ,
is feasible.
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Before checking this statement we observe that there is no loss of generality
in assuming that d0 = 0. We shall start by proving the result in the special case
of B being orthogonal and symmetric. With this aim, we choose the function
ϕ : R→ R as in (9), and define h : RN → R by

h(y) =

{
0 , if y ∈ D ,

ϕ(y)〈y − πy,By〉 , if y ∈ RN \D .

It is clear that h is a C1-smooth function satisfying (i). By the chain rule, if
y ∈ RN \D,

∇h(y) = 〈y − πy,By〉∇ϕ(y) + ϕ(y)B(y − πy) + ϕ(y)(Id− π′(y))∗By . (12)

If |y| is large enough, then ϕ(y) = 1
2

and ∇ϕ(y) = 0. Therefore,

|∇h(y)− By| =
∣∣−1

2
Bπy − 1

2
π′(y)∗By

∣∣ ≤ 1
2
‖B‖ |πy|+ 1

2
‖π′(y)∗‖ ‖B‖ |y| ,

which, by (6), implies (iii) for A = B. It remains to check (ii). With this goal

we continuously extend our vector field F2 by setting F̃2(y) = By for every
y ∈ RN . Recalling (12) we see that, if y ∈ RN \D,

〈∇h(y),By〉 = 〈y − πy,By〉〈∇ϕ(y),By〉+ ϕ(y)〈B(y − πy),By〉+

+ϕ(y)〈(Id− π′(y))∗By,By〉 .

We then see that the first term in the right hand side of the equality is non-
negative, the third one is positive, by Lemma 3.2, and, since B is orthogonal
and 0 ∈ D,

〈B(y − πy),By〉 = 〈y − πy, y〉 > 0 , for every y ∈ RN \D .

So, (ii) is also verified, and the proof is complete in the case of an orthogonal
symmetric matrix.

Let us now consider the case of B being a general involutory matrix. Ob-
serve that the only possible (complex) eigenvalues of B are ±1. Combining the
classical Jordan Decomposition Theorem (see, e.g., [45, Ch. 3]), with the fact
that B2 = I, we see that B must be diagonalizable. Consequently, B = P−1B̃P ,
for some regular matrix P and some diagonal matrix B̃ having only ±1 in the
diagonal. We define D̃ = P (D), which is again a strongly convex body con-
taining the origin. Since B̃ is orthogonal and symmetric we have just proved
that there exists a C1-smooth function h̃ : RN → R satisfying

(̃i) h̃(y) = 0, for every y ∈ D̃;

(ĩi) 〈∇h̃(y), B̃y〉 > 0 for every y ∈ RN \ D̃;

(ĩii) sup
y∈RN

|∇h̃(y)− B̃y| < +∞.
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We define h : RN → R by h(w) = h̃(Pw). It is clear that h is of class C1,
and that h(w) = 0 if w ∈ D = P−1(D̃). Moreover,

∇h(w) = P ∗∇h̃(Pw) ,

for every w ∈ RN , and hence

〈∇h(w),Bw〉 = 〈P ∗∇h̃(Pw), P−1B̃Pw〉 = 〈∇h̃(Pw), B̃Pw〉 > 0 ,

for every w ∈ RN \D = P−1(RN \ D̃). Finally, observe that

sup
w∈RN

|∇h(w)− P ∗B̃Pw| = sup
w∈RN

|P ∗∇h̃(Pw)− P ∗B̃Pw|

≤ ‖P ∗‖ sup
y∈RN

|∇h̃(y)− B̃y| < +∞ ,

showing (iii) for A = P ∗B̃P = P ∗PB. It completes the argument.

We conclude this list by pointing out a third class of feasible vector fields,
which will not be further treated in this paper, since the results which could be
derived from its use will be contained as particular cases in [36]; nevertheless,
the simplicity of the argumentation makes it worth, in our opinion, to devote
a few lines to consider it.

(III) Let D ⊆ RN be a smooth convex body and let the continuous vector field
F3 : ∂D → RN be nowhere tangent, i.e.

〈F3(q), ν(q)〉 6= 0 , for every q ∈ ∂D .

Then, F3 is feasible.

We briefly explain how to check this fact now. We observe that there is
no loss of generality in assuming that 〈F3(q), ν(q)〉 > 0 for every q ∈ ∂D,

and continuously extend F3 to a vector field F̃3 : RN → RN satisfying
〈F̃3(y), ν(πy)〉 > 0, for every y ∈ RN \ D. Finally, we define the C1-smooth
function h : RN → R by h(y) = 1

2
dist(y,D)2. The result follows, with A = IN .

Before closing this section we state a general result concerning Hamiltonian
systems whose flow is guided by some feasible vector field on the boundary of
a convex body (the notion of a Hamiltonian flow being guided by a vector field
was introduced in page 7). Proving this theorem will be the main step towards
Theorem 2.1.

Theorem 4.1. Let the Hamiltonian function H : [0, T ]×R2N → R be admis-
sible, and assume the existence of a convex body D ⊆ RN such that the flow of
(HS) is guided by some feasible vector field on ∂D. Then, the same conclusion
of Theorem 2.1 holds.
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The proof of this theorem will be organized into two parts. In the next
section we introduce an auxiliary class of admissible Hamiltonians, which we
shall call strongly admissible. Roughly speaking, they are somewhat more
regular and can be used to approximate other admissible Hamiltonians, while
having the same periodic solutions. In Subsection 6.2 we shall use these facts
to show that it suffices to prove Theorem 4.1 for Hamiltonians belonging to this
subclass. The proof for this particular case will be carried out in Subsection 6.1.

5 Strongly admissible Hamiltonians

Let H : [0, T ] × R2N → R be an admissible Hamiltonian, and let U ⊆ RN be
an open and bounded set (but not necessarily convex). We shall say that H
is strongly admissible with respect to U provided that:

[1.] There exists a relatively open set V ⊆ [0, T ] × RN , containing {0} ×
(RN \ U), such that H is C∞-smooth with respect to the state variables
z = (x, y) on the set V] := {(t, x, y) : (t, y) ∈ V , x ∈ RN};

[2.] There exists some R > 0 such that H(t, x, y) = 0, if |y| ≥ R.

Observe that condition [2.] implies in particular that ∇H is bounded and
the solutions of (HS) cannot explode in finite time. Thus, if H is strongly
admissible with respect to some set U , then the solutions of (HS) are defined
on the whole time interval [0, T ].

The main result of this section is given next. In order to use it in sub-
sequent works (see, e.g., [36]), it is presented in a form which is somewhat
more general than needed in this paper. Here, as usually, we denote by (HS)

the Hamiltonian system associated to the Hamiltonian H and by (ĤS) the

Hamiltonian system associated to Ĥ.

Proposition 5.1. Let the admissible Hamiltonian H : [0, T ]× R2N → R and
the open and bounded set U ⊆ RN be given. We assume that all solutions
z(t) = (x(t), y(t)) of (HS) starting with y(0) ∈ ∂U are defined on the whole
interval [0, T ] and satisfy z(0) 6= z(T ).

Then, for every ε > 0 there exists a Hamiltonian Ĥ : [0, T ] × R2N → R
which is strongly admissible with respect to U and satisfies:

(�) The functions H and Ĥ coincide on a relatively open set which contains

the graph of any T -periodic solution ẑ(t) = (x̂(t), ŷ(t)) of (ĤS) satisfying
ŷ(0) ∈ U .

(��) For any solution ẑ(t) = (x̂(t), ŷ(t)) of (ĤS) with ŷ(0) ∈ ∂U there exists
a solution z(t) = (x(t), y(t)) of (HS), with y(0) ∈ ∂U , such that

|z(t)− ẑ(t)| < ε , for every t ∈ [0, T ] .
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Before going to the proof of Proposition 5.1 we observe that, under the
conditions there, uniqueness for initial value problems associated to (HS) is
not guaranteed. Still, the possibly multivalued flow of our Hamiltonian system
possesses some properties which evoke continuity. We shall start with the
following ‘boundedness on compact sets’ result.

Lemma 5.2. Let H and U be under the conditions of Proposition 5.1. Then,
there exists some constant R1 > 0 such that any solution z(t) = (x(t), y(t))
of (HS) satisfying y(0) ∈ U is defined on [0, T ] and satisfies

|y(t)| ≤ R1 , for every t ∈ [0, T ] . (13)

Proof. Assume first that y(0) ∈ ∂U . By the periodicity of H, it is sufficient
to take x(0) in [0, 2π]N . In this case, since the initial values lie in a compact
set, the result follows, e.g., from [30, Theorem 5, page 9]. In this way we have
shown the existence of some constant R1 > 0 such that (13) holds for every
solution (x(t), y(t)) of (HS) with y(0) ∈ ∂U .

We now notice that the solutions of (HS) cannot explode in the x com-
ponent without exploding in the y component, too. This is due to the pe-
riodicity of H(t, x, y) in the xi variables. So, arguing by contradiction, let
z∗(t) = (x∗(t), y∗(t)) be a solution of (HS), with y∗(0) ∈ U , defined on some
interval [0, T ∗] ⊆ [0, T ], and such that |y∗(T ∗)| > R1. We can take T ∗ so that
|y∗(t)| ≤ R1 + 1, for every t ∈ [0, T ∗]. Along the remaining of the proof, we
will only consider times t in [0, T ∗].

We denote by C∗ the graph of z∗, i.e.,

C∗ = {(t, z∗(t)) : t ∈ [0, T ∗]} ,

and define

A =
{

(t, z(t)) : t ∈ [0, T ∗], z = (x, y) is a sol. of (HS) with y(0) ∈ ∂U
}
.

By the choice of R1, the set A is contained in [0, T ∗]×RN×B(0, R1). Thus,
the sets C∗ and A do not intersect, as otherwise we could follow first a solution
(x, y) departing with y(0) ∈ ∂U along some interval [0, t1], and then z∗ on
[t1, T

∗], so to obtain a solution z = (x, y) of (HS) departing with y(0) ∈ ∂U
and satisfying y(T ∗) > R1. Our aim is to deduce from the above that C∗ is
disconnected, a contradiction.

We know that C∗ is compact, being the graph of a continuous function, and
A is closed (see, e.g., [30, Theorem 5, page 9]). Therefore, it is possible to find
some constant ε, with

0 < ε < |y∗(T ∗)| −R1 , (14)

such that the ‘ε-neighborhood of A’, i.e., the set

[A]ε = {(t, w) ∈ [0, T ∗]× R2N : ∃w′ ∈ R2N : (t, w′) ∈ A and |w − w′| < ε} ,

is such that [A]ε ∩ C∗ = ∅.
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Using a regularization argument, it is possible to construct a sequence
(Hn)n of Hamiltonians Hn : [0, T ∗]× R2N → R, Hn = Hn(t, x, y), all of which
are 2π-periodic in x1, . . . , xN and C∞-smooth with respect to z = (x, y), such
that ∇Hn converges to ∇H, uniformly on [0, T ∗]× RN ×B(0, R1 + 1), and

Hn(t, x, y) = 0 , if |y| ≥ R1 + 2 .

Notice that the associated initial value problems are uniquely solvable, and
the corresponding solutions are defined on [0, T ∗]. Then, we can consider the
flow maps φn : [0, T ∗]×R2N → R2N , sending each point (t, z0) to the value at
time t of the solution z of

Jż = ∇Hn(t, z) , (15)

with z(0) = z0. The maps

Φn : [0, T ∗]× R2N → [0, T ∗]× R2N , (t, z0) 7→ (t, φn(t, z0)) ,

are homeomorphisms. Define the set

An = Φn

(
[0, T ∗]× RN × ∂U

)
.

The complementary set ([0, T ∗] × R2N) \ An is divided into two relatively
open sets, precisely

Qin
n = Φn

(
[0, T ∗]× RN × U

)
,

and
Qout
n = Φn

(
[0, T ∗]×RN × (RN \ U)

)
.

By [30, Theorem 1, page 87], for n large enough, An ⊆ [A]ε, so thatAn∩C∗ = ∅.
Moreover, An ⊆ [0, T ∗]× RN ×B(0, R1 + ε). We claim that, further,

Qin
n ⊆ [0, T ∗]× RN ×B(0, R1 + ε) . (16)

To check this statement we observe that An has empty intersection with the
set Υ := [0, T ∗]×RN×

(
RN \B(0, R1 +ε)

)
. Thus, the latter set can be written

as the disjoint union of the relatively open subsets Υ∩Qin
n and Υ∩Qout

n . But
Υ is connected, and we deduce that either Υ ⊆ Qin

n or Υ ⊆ Qout
n . On the other

hand, by the periodicity in the xi variables, we can think of [0, T ∗]×RN×U as
being compact as a subset of [0, T ∗]× (R/2πZ)N ×RN , and so Qin

n is bounded
in the y-directions. Since Υ is unbounded in the y-directions, it follows that
Υ ⊆ Qout

n , which implies the claim.

Now we know that (0, z∗(0)) ∈ C∗ ∩ Qin
n and, by (14) and (16), that

(T ∗, z∗(T ∗)) ∈ C∗∩Qout
n . Hence, C∗ is the union of the relatively open nonempty

disjoint sets C∗∩Qout
n and C∗∩Qin

n , so that C∗ is disconnected, a contradiction
which concludes the proof of this lemma.

We shall also need a ‘continuous dependence’ result for our possibly mul-
tivalued flow. It is given next:
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Lemma 5.3. Let H and U be under the conditions of Proposition 5.1 and
choose some ε > 0. Then, there exists some δ > 0 such that, whenever Ĥ :
[0, T ]× R2N → R is an admissible Hamiltonian with

|∇Ĥ(t, x, y)−∇H(t, x, y)| ≤ δ , for every (t, x, y) ∈ [0, T ]× R2N ,

then every solution ẑ(t) = (x̂(t), ŷ(t)) of (ĤS) with dist(ŷ(t0), ∂U) ≤ δ for
some t0 ∈ [0, δ] can be extended to the whole time interval [0, T ] and, moreover,

|z(t)− ẑ(t)| < ε , for every t ∈ [0, T ] ,

for some solution z = (x, y) : [0, T ]→ R2N of (HS) satisfying y(0) ∈ ∂U .

Proof. We start by showing the part of the lemma concerning the possibility
to extend the solutions to [0, T ]; moreover, we shall see that, if δ > 0 is small
enough, then our solution ẑ(t) = (x̂(t), ŷ(t)) satisfies

|ŷ(t)| ≤ R1 + 1 , for every t ∈ [0, T ] ,

where R1 > 0 is the constant given by Lemma 5.2. We check this fact
by means of a contradiction argument, and assume instead the existence of
a sequence of admissible Hamiltonians Ĥn : [0, T ] × R2N → R such that

∇Ĥn(t, x, y)→ ∇H(t, x, y) uniformly with respect to (t, x, y), and a sequence

ẑn(t) = (x̂n(t), ŷn(t)) of solutions to the respective Hamiltonian systems (ĤS)n
such that dist(ŷn(tn), ∂U)→ 0 for some sequence tn → 0, but |ŷn(sn)| = R1+1
for some sequence (sn)n ⊂ [0, T ]. It follows from here that, for n large enough,
it has to be sn > tn, as otherwise our solutions would have to cover a too large
distance in a too short time. For the same reason, we see that (sn)n is bounded
away from 0, at least for large n. Thus, after passing to a subsequence, we
may assume that sn → s∗ ∈ ]0, T ] as n → ∞. Moreover, there is no loss of
generality in assuming that |ŷn(t)| ≤ R1 + 1, for any t ∈ [0, sn]. Since they are
solutions of the corresponding sequence of Hamiltonian systems, we see that
(ŷn)n is actually bounded in the C1-sense. Thus, after possibly passing to a
subsequence, we may assume that it converges to a solution z(t) = (x(t), y(t))
of (HS), satisfying y(0) ∈ ∂U , and |y(s∗)| = R1 + 1. This contradicts the
choice of R1.

To check the second part of the result we use again a contradiction argu-
ment and assume, on the contrary, the existence of a sequence of admissible
Hamiltonians Ĥn : [0, T ] × R2N → R such that ∇Ĥn(t, x, y) → ∇H(t, x, y)
uniformly with respect to (t, x, y), and a sequence ẑn = (x̂n, ŷn) : [0, T ]→ R2N

of respective solutions to the corresponding Hamiltonian systems (ĤS)n such
that dist(ŷn(tn), ∂U) → 0 for some sequence tn → 0, and max[0,T ] |ẑn(t) −
z(t)| ≥ ε∗ for any solution z(t) = (x(t), y(t)) of (HS), with y(0) ∈ ∂U , and
some ε∗ > 0. As before, the sequence ẑn must be bounded in the C1-topology,
and hence the Ascoli – Arzelà Theorem shows that, after possibly passing to a
subsequence, one may assume that ẑn is uniformly converging. Its limit must
be a solution z = (x, y) of (HS) with y(0) ∈ ∂U . We thus have a contradiction
with the existence of ε∗, which concludes the proof.
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Proof of Proposition 5.1. Let R1 > 0 be as given by Lemma 5.2 above and
choose some C1-smooth cutoff function a : R→ R, with

a(y) =

{
1 if |y| ≤ R1 ,
0 if |y| ≥ R := R1 + 1 .

After multiplying H(t, x, y) by a(y) we obtain a new Hamiltonian vanishing
for large |y|, which was condition [2.] in the definition of strongly admissible
Hamiltonians. Moreover, under this procedure the solutions z(t) = (x(t), y(t))
of the Hamiltonian system (HS) which depart from some point y(0) ∈ U are
kept the same. Thus, we see that, for the sake of proving Proposition 5.1,
there is no loss of generality in assuming that we start from a Hamiltonian
H already satisfying [2.]. In particular, ∇H is bounded, and consequently all
solutions of (HS) are prolongable to [0, T ].

Being ∂D compact, a straightforward argument based on Ascoli – Arzelà
Theorem implies the existence of some number ε∗ > 0 such that |z(T )−z(0)| ≥
ε∗ whenever z(t) = (x(t), y(t)) is a solution of (HS) departing with y(0) ∈ ∂U .
Choose now some ε ∈ ]0, ε∗/2[ and let δ ∈ ]0, T [ be given by Lemma 5.3. A
convolution procedure can be used to build a C∞-smooth cutoff function m :
RN → [0, 1] satisfying

m(y) =

{
1 , if dist(y,RN \ U) ≤ δ/2 ,

0 , if dist(y,RN \ U) ≥ δ .

Let M1 > 0 be a bound for |∇m| on RN . Using a second convolution
argument we can find an admissible Hamiltonian H̄ : [0, T ]×R2N → R, which
is C∞-smooth in the (x, y) variables, such that, for every (t, x, y),

|H̄(t, x, y)−H(t, x, y)| ≤ δ

2M1

, |∇H̄(t, x, y)−∇H(t, x, y)| ≤ δ

2
,

and
H̄(t, x, y) = 0 , if |y| ≥ R + 1 .

Finally, we choose some continuous cutoff function n : [0, T ]→ [0, 1], with

n(t) =

{
1 , if 0 ≤ t ≤ δ/2 ,

0 , if δ ≤ t ≤ T ,

and define Ĥ : [0, T ]× R2N → R by

Ĥ(t, x, y) := H(t, x, y) + n(t)m(y)
(
H̄(t, x, y)−H(t, x, y)

)
.

In this way, Ĥ is an admissible Hamiltonian. Furthermore, it is strongly
admissible. To check this we firstly observe that Ĥ(t, x, y) = 0 if |y| ≥ R + 1,

so that [2.] holds for Ĥ. Secondly, we let

V := [0, δ/2[×
{
y ∈ RN : dist(y,RN \ U) < δ/2

}
,

and we see that Ĥ coincides with H̄ on V] := {(t, x, y) : (t, y) ∈ V , x ∈ RN}.
So, [1.] holds for Ĥ, too, proving that it is strongly admissible.
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We further observe that, for any (t, x, y),

|∇Ĥ(t, x, y)−∇H(t, x, y)| ≤

≤ n(t)
(
|∇m(y)| |H̄(t, x, y)−H(t, x, y)|+m(y)|∇H̄(t, x, y)−∇H(t, x, y)|

)
≤M1

δ

2M1

+
δ

2
= δ ,

and, moreover, Ĥ and H coincide on the relatively open set

O :=
(

[0, δ]× RN × {y ∈ RN : dist(y,RN \ U) > δ}
)
∪
(

]δ, T ]× R2N
)
.

To check (�), assume that ẑ(t) = (x̂(t), ŷ(t)) is a T -periodic solution of (ĤS)
satisfying ŷ(0) ∈ U . Let us show that the graph of ẑ is contained in O. If not,
it has to cross the set(

[0, T ]× R2N
)
\ O = [0, δ]× RN × {y ∈ RN : dist(y,RN \ U) ≤ δ} .

Then, since ŷ(0) ∈ U , the graph of ẑ(t) has to enter the set

[0, δ]× RN × {y ∈ RN : dist(y, ∂U) ≤ δ} .

So, by Lemma 5.3, there is a solution z(t) = (x(t), y(t)) of (HS) such that
y(0) ∈ ∂U and |z(t) − ẑ(t)| < ε, for every t ∈ [0, T ]. Being ẑ(0) = ẑ(T ), we
conclude that |z(T )− z(0)| ≤ 2ε < ε∗, a contradiction. It proves (�).

Concerning (��), it now follows immediately from Lemma 5.3.

6 Transforming the Hamiltonian into

quadratic near infinity

This section is organized in two steps. Firstly, we shall prove Theorem 4.1
(the one concerning feasible vector fields) for Hamiltonians which are strongly
admissible with respect to some convex body D = U ; this will occupy us
through most of the section. In the second step we shall use approximation
arguments to extend this result and prove, in first place, Theorem 4.1 in its
full generality, and finally Theorem 2.1.

6.1 First Step: Theorem 4.1 for strongly admissible
Hamiltonians

An important ingredient of our proof is the following theorem due to Szulkin
(cf. [68, Theorem 4.2] and [69, Theorem 8.1]), which was proved by variational
methods, after a series of previous achievements [1, 2, 20, 50].
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Theorem 6.1 (Szulkin). Let S be a regular symmetric N ×N matrix, and let
H : [0, T ]× R2N → R be an admissible Hamiltonian, with

H(t, x, y) = 1
2
〈Sy, y〉+G(t, x, y) ,

where the gradient of G with respect to (x, y) is bounded. Then, the Hamilto-
nian system (HS) has at least N+1 geometrically distinct T -periodic solutions.

Moreover, if G is twice continuously differentiable with respect to (x, y)
and the T -periodic solutions are known to be nondegenerate, then there are at
least 2N of them.

Since this theorem is not directly applicable to our situation, we will con-
struct a modified Hamiltonian H̃ : [0, T ]×R2N → R, satisfying its assumptions,
and being equal to H on a relatively open set Ω ⊆ [0, T ]×R2N which contains

every T -periodic solution of the modified Hamiltonian system (H̃S) associated

to H̃.

From now on we operate under the assumptions of Theorem 4.1, i.e., we
assume that the flow of (HS) is guided by the feasible vector field F on the
boundary of the convex body D. Furthermore, we assume that the Hamil-
tonian function H : [0, T ] × R2N → R is strongly admissible with respect to
U = D. Then, a compactness argument based on Ascoli – Arzelà Theorem
may be used to find some positive constant % > 0 such that

〈x(T )− x(0), F̃(y(0))〉 > 0 , (17)

for every solution z(t) = (x(t), y(t)) of (HS) with dist(y(0), ∂D) ≤ %. As

usual, we denote by F̃ : RN → RN the extension of F given by the fact that
it is feasible.

Let V be given by [1.]; then, taking % small enough, we have that

K := {y ∈ D : dist(y, ∂D) ≥ %} ⊇ {y ∈ RN : (0, y) 6∈ V} .

The set K is compact and contained in D. Using Lemma 3.1 (†), we may find
some smooth convex body D∗ ⊆ RN with K ⊆ D∗ ⊆ D∗ ⊆ D. We choose
some constant c > 0 and consider the (relatively open) set

Ω :=
(
{0} ×D∗

)
∪
{

(t, y) ∈ ]0, T ]× RN : dist(y,D∗) < ct
}
.

We denote by Ω] the ‘augmented set’

Ω] :=
{

(t, x, y) ∈ [0, T ]× R2N : (t, y) ∈ Ω
}
.

Combining [1.] and [2.] we see that, if c is large enough, then(
[0, T ]× RN

)
\ Ω ⊆ V ∪ {(t, y) ∈ [0, T ]× RN : |y| > R} ,
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so that

H is C∞-smooth on G] :=
(
[0, T ]× R2N

)
\Ω]

= {(t, x, y) ∈ [0, T ]× R2N : dist(y,D∗) > ct} .
(18)

Another interesting property of Ω], for large c > 0, is that it is strictly forward-
invariant for the flow of (HS), in the sense that

(t0, z(t0)) ∈ Ω] ⇒ (t, z(t)) ∈ Ω] , for every t ∈ ]t0, T ] ,

where z = z(t) is any solution of (HS). What is more, Ω] is strictly forward-

invariant for the flow of every Hamiltonian system (H̃S) which coincides with
(HS) on Ω]. We check these facts below.

Lemma 6.2. Taking c > 0 sufficiently large, the set Ω] is strictly forward-

invariant for the flow of any Hamiltonian system (H̃S) whose associated (ad-

missible but not necessarily strongly admissible) Hamiltonian H̃ : [0, T ] ×
R2N → R coincides with H on Ω].

Proof. Assumption [2.] implies in particular that |∇H| is bounded, i.e.,
|∇H(t, x, y)| ≤M for every (t, x, y) ∈ [0, T ]×R2N and some constant M > 0.
Fix now some c > M and let the sets Ω and Ω] be defined as above. Let

H̃ : [0, T ] × R2N → R be some admissible Hamiltonian coinciding with H on

Ω], and let z(t) = (x(t), y(t)) be a solution of (H̃S) with (t0, z(t0)) ∈ Ω] for
some t0 ∈ [0, T [ . It means that dist(y(t0), D∗) ≤ ct0. Then,

|ẏ(t0)| ≤ |ż(t0)| = |∇H̃(t0, z(t0))| = |∇H(t0, z(t0))| ≤M < c ,

and, consequently, there exists some s ∈ ]t0, T ] such that (t, z(t)) ∈ Ω] for
every t ∈ ]t0, s]. Let s∗ be the supremum of the set made by such numbers s;
then, |ẏ(t)| < c for every t ∈ [t0, s∗] and, consequently,

dist(y(s∗), D∗) ≤ |y(s∗)− y(t0)|+ dist(y(t0), D∗) < c(s∗ − t0) + ct0 = cs∗ .

We conclude that s∗ = T . The lemma is proved.

From now on we fix c > 0 large enough so that (18) and the assertions of
Lemma 6.2 hold, and define the sets Ω and Ω] accordingly. We consider the
set Γ whose elements are those (t, ζ) = (t, ξ, η) ∈ [0, T ] × R2N such that the
solution z = z(t) of (HS) with initial condition z(0) = ζ satisfies

(s, z(s)) ∈ G] , for every s ∈ [0, t] .

We emphasize the fact that it makes sense to consider the solution of such an
initial value problem, since on G] uniqueness holds (by (18)). The set Γ is open
relative to [0, T ]× R2N , and it contains the closed subsets

A] = {0} × RN × (RN\D′) , B] = [0, T ]× RN × (RN \B(0, R′)) ,
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for some R′ ≥ R, and some smooth convex body D′ ⊆ RN with D∗ ⊆ D′ ⊆
D′ ⊆ D. Moreover, Γ is periodic in the xi variables, i.e., it could be thought of
as a subset of [0, T ]× (R/2πZ)N × RN . Hence, one can find a constant k > 0
such that ∆] ⊆ Γ, where ∆] := {(t, ξ, η) ∈ [0, T ]× R2N : (t, η) ∈ ∆}, and

∆ :=
{

(t, η) ∈ [0, T ]× RN : dist(η,D′) > kt
}
.

Let now the C1-smooth function h : RN → R be given by the fact that the
vector field is admissible. We recall that, by (i), h vanishes on D. This fact
will allow us to show the following:

Lemma 6.3. There is a C1-smooth function r : [0, T ]× RN → R satisfying

(?) r(t, η) = 0, if (t, η) /∈ ∆,

(??) 1
T

∫ T
0
r(t, η) dt = h(η), for every η ∈ RN ,

(???) r(t, η) = h(η), if |η| is sufficiently large.

Proof. We choose some C1-smooth function u : R→ R with

u(s) = 0 , if s ≤ 0 , u(s) = 1 , if s ≥ 1 , 0 < u(s) < 1 , if s ∈ ]0, 1[ ,

and define p : [0, T ]× RN\D′ → R by

p(t, η) =
u(dist(η,D′)− kt)

1
T

∫ T
0
u(dist(η,D′)− ks) ds

.

The convex body D′ being smooth, the function η 7→ dist(η,D′) is C∞-smooth
on RN\D′. Thus, we see that p is a C1-smooth function satisfying

(·) p(t, η) = 0, if (t, η) /∈ ∆,

(··) 1
T

∫ T
0
p(t, η) dt = 1, if η ∈ RN\D′,

(···) p(t, η) = 1, if |η| is sufficiently large.

Finally, we define r : [0, T ]× RN → R by

r(t, η) =

{
0 , if η ∈ D′,
p(t, η)h(η) , if η ∈ RN\D′ .

It is easily checked that r satisfies all the required properties. It proves the
lemma.

We consider now the flow map φ : Γ → R2N , φ = φ(t, ζ), giving the
position at time t of the solution z of (HS) with z(0) = ζ. Notice that we
consider only initial conditions ζ = (ξ, η) with η ∈ RN\D∗, and the solutions
satisfy (s, z(s)) ∈ G] for every s ∈ [0, t], so that uniqueness holds. Hence φ
is well defined, and the classical theory of ordinary differential equations (see,
e.g., [30]) guarantees that the function Φ(t, ζ) = (t, φ(t, ζ)) is a C∞-smooth
diffeomorphism between Γ and its image Φ(Γ).
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Lemma 6.4. Φ(Γ) = G].

Proof. We know that Φ(Γ) ⊆ G], by the very definition of the set Γ. To
prove the opposite inclusion, let (t0, z0) be an element of G]. If t0 = 0, then
surely (0, z0) ∈ Γ, and Φ(0, z0) = (0, z0), so that (0, z0) ∈ Φ(Γ). Assume now
t0 ∈ ]0, T ]. If z is the solution of (HS) with z(t0) = z0, we can go back in time
until we find z(0) = ζ0, for some ζ0 ∈ R2N . Notice that, by Lemma 6.2, one has
that (s, z(s)) ∈ G], for every s ∈ [0, t0]. So, (t0, ζ0) ∈ Γ, and Φ(t0, ζ0) = (t0, z0).
Hence, (t0, z0) ∈ Φ(Γ), and the equality is proved.

We now consider the function r] : [0, T ]× R2N → R defined by

r](t, ξ, η) = r(t, η) ,

and we define R : [0, T ]× R2N → R as

R(t, z) =

{
r](Φ

−1(t, z)) , if (t, z) ∈ G] ,
0 , otherwise .

It can be checked that R is C1-smooth. Let

H̃(t, z) = H(t, z) + λR(t, z) ,

where λ > 0 is a constant, to be determined later. We observe that, for |y|
large enough,

H̃(t, x, y) = λR(t, x, y) = λr(t, y) = λh(y) ,

and in view of assumption (iii) in page 13, ∇H̃(t, x, y) − λAy is bounded
on [0, T ] × R2N . Thus, we may apply Szulkin’s Theorem 6.1 with S = λA
to the perturbed Hamiltonian system (H̃S) associated to H̃, to get at least

N + 1 geometrically distinct T -periodic solutions of (H̃S), or 2N of them if
the Hamiltonian is twice continuously differentiable with respect to (x, y) and
the periodic solutions are nondegenerate. In what follows, we will prove that,
if λ is chosen large enough, these are actually T -periodic solutions of (HS);
indeed, they do not cross G]. In view of Lemma 6.2 we only have to show that
they must depart from some initial condition z̃(0) = (x̃(0), ỹ(0)) ∈ RN ×D∗.

Thus, from now on we fix some solution z̃ = (x̃, ỹ) : [0, T ]→ R2N of (H̃S),
with ỹ(0) /∈ D∗. We will show that such a solution cannot be T -periodic. We
observe that (0, z̃(0)) ∈ G] and define

ω = sup
{
t ∈ [0, T ] : (t, z̃(t)) ∈ G]

}
.

Since G] was open relative to [0, T ] we see that ω ∈ ]0, T ]. Moreover, in view
of Lemma 6.2,

(t, z̃(t)) ∈ G] , for any t ∈ [0, ω[ , (t, z̃(t)) ∈ Ω] , for any t ∈ ]ω, T ] .
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Remembering Lemma 6.4, we can now define the curve ζ : [0, ω[→ R2N by

(t, ζ(t)) = Φ−1(t, z̃(t)) .

In this way,

(t, ζ(t)) ∈ Γ , and z̃(t) = φ(t, ζ(t)) , for every t ∈ [0, ω[ . (19)

Observe also that ζ(0) = z̃(0). Hence, writing ζ = (ξ, η), we have that η(0) ∈
RN\D∗.

Lemma 6.5. The function ζ : [0, ω[→ R2N is a solution of the Hamiltonian
system

ζ̇ = λJ∇r](t, ζ) . (20)

Proof. The map Φ : Γ → G] being a diffeomorphism, ζ is continuously differ-
entiable. Differentiating in the equality z̃(t) = φ(t, ζ(t)) we get

˙̃z =
∂φ

∂t
(t, ζ) +

∂φ

∂ζ
(t, ζ)ζ̇ ,

so that
∂φ

∂ζ
(t, ζ)ζ̇ = J∇H̃(t, z̃)− J∇H(t, z̃) = λJ∇R(t, z̃) . (21)

Being φ the flow map associated with a Hamiltonian system, φ(t, ·) is canonical,
i.e., (∂φ

∂ζ
(t, ζ(t))

)∗
J
∂φ

∂ζ
(t, ζ(t)) = J ,

for every t ∈ [0, ω̃[ . Recalling that R(t, φ(t, ζ)) = r](t, ζ), multiplying both

sides of (21) by −J
(
∂φ
∂ζ

(t, ζ(t))
)∗
J we get

ζ̇ = λJ
(∂φ
∂ζ

(t, ζ)
)∗
∇R(t, φ(t, ζ)) = λJ∇r](t, ζ) .

The lemma is thus proved.

Since sup[0,T ]×RN |∇r(t, η)− Aη| <∞, we see that our solution ζ : [0, ω[→
R2N of (20) can be (uniquely) extended to a solution ζ : [0, T ] → R2N of the
same system. We now explore the behavior of this solution at times t ≥ ω.

Lemma 6.6. Either ω = T , or (ω, ζ(ω)) /∈ Γ. In this last case,

ζ(t) = ζ(ω) , for every t ∈ [ω, T ] .

Proof. Let us assume instead that (ω, ζ(ω)) ∈ Γ. Then, by continuity argu-
ments,

(ω, z̃(ω)) = lim
t→ω−

(t, z̃(t)) = lim
t→ω−

Φ(t, ζ(t)) = Φ(ω, ζ(ω)) ,
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and Lemma 6.4 states that (ω, z̃(ω)) ∈ G]. Since G] is open, the definition
of ω then implies that ω = T , and the proof of the first part is completed.
Concerning the second part, we observe that, as a consequence of its definition,
the set Γ has the following property:

(t0, ζ0) 6∈ Γ⇒ (t, ζ0) 6∈ Γ for every t ≥ t0 .

The result now follows from the fact that r vanishes outside Γ.

In particular, ζ(T ) = ζ(ω). In the following lemma we compare our solution
z̃ = (x̃, ỹ) with a solution z = (x, y) of (HS) which arrives at the same position
at time T .

Lemma 6.7. There exists a solution z = (x, y) : [0, T ] → R2N of (HS) for
which

(x(0), y(0)) = (x̃(0) + λT∇h(ỹ(0)) , ỹ(0)) , (x(T ), y(T )) = (x̃(T ), ỹ(T )) .

Proof. Since r(t, ζ) does not depend on ξ, we see that, for the solution ζ =
(ξ, η) of (20) defined above,

η(·) is constant ,

and we denote by η0 its constant value. So, η0 = ỹ(0) ∈ RN\D. On the other
hand, by Lemma 6.3,

ξ(ω)− ξ(0) = ξ(T )− ξ(0) = λ

∫ T

0

∂r

∂η
(t, ξ(t), η(t)) dt

= λ

∫ T

0

∂r

∂η
(t, η(t)) dt = λ

∂

∂η

∫ T

0

r(t, η) dt

∣∣∣∣
η=η0

= λT∇h(η0) .

Choose an increasing sequence (ωn)n in ]0, ω[ such that ωn → ω. In view
of (19), we have that (ωn, ζ(ωn)) ∈ Γ, for every n, and it makes sense to
consider the functions zn = φ(·, ζ(ωn)), defined on [0, ωn], which are solutions
of (HS). We observe that zn(0) = ζ(ωn)→ ζ(ω), and zn(ωn) = φ(ωn, ζ(ωn)) =
z̃(ωn)→ z̃(ω). Since ∇H is bounded, after passing to a subsequence we have
that (zn)n converges, uniformly on compact subsets of [0, ω[ , to some solution
z : [0, ω] → R2N of (HS). Moreover, z(0) = ζ(ω) and z(ω) = z̃(ω). If ω < T ,
we extend z to [0, T ] by setting

z(t) = z̃(t) , if ω < t ≤ T .

In this way, z is a solution of (HS) because z̃ is a solution of (HS) on [ω, T ].
So, in any case, z(T ) = z̃(T ), and

z(0)− z̃(0) = ζ(ω̃)− ζ(0) = (λT∇h(η0), 0) ,

thus concluding the proof.
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The next lemma leads to the conclusion of the proof.

Lemma 6.8. If λ > 0 is large enough (uniformly with respect to z̃), we have

〈x̃(T )− x̃(0), F̃(ỹ(0))〉 > 0 .

Proof. According to Lemma 6.7, we can write

x̃(T )− x̃(0) = x(T )− x(0) + λT∇h(ỹ(0)) .

We will now make use of item (ii) in the definition of feasible vector fields. We
distinguish three cases.

Case 1 : dist(ỹ(0), ∂D) < %.

In this case, by (17),

〈x̃(T )− x̃(0), F̃(ỹ(0))〉 = 〈x(T )−x(0), F̃(ỹ(0))〉+λT 〈∇h(ỹ(0)), F̃(ỹ(0))〉 > 0 .

Case 2 : |ỹ(0)| > R.

In this case, since H(t, x, y) = 0 for |y| ≥ R, we have that x(T ) = x(0), so

〈x̃(T )− x̃(0), F̃(ỹ(0))〉 = λT 〈∇h(ỹ(0)), F̃(ỹ(0))〉 > 0 .

Case 3 : dist(ỹ(0), ∂D) ≥ % and |ỹ(0)| ≤ R.

By compactness, there are two real constants c, c′ such that, if y ∈ RN\D
satisfies dist(y, ∂D) ≥ % and |y| ≤ R, then

|F̃(y)| ≤ c ,

∣∣∣∣∂H∂y (t, x, y)

∣∣∣∣ ≤ c , for every (t, x) ∈ [0, T ]× RN ,

and

〈∇h(y), F̃(y)〉 ≥ c′ > 0 .

Then, |x(T )− x(0)| ≤ Tc, so that, taking λ > c2/c′,

〈x̃(T )− x̃(0), F̃(ỹ(0))〉 ≥ λT 〈∇h(ỹ(0)), F̃(ỹ(0))〉−|x(T )−x(0)| |F̃(ỹ(0))| > 0 .

The lemma is therefore proved.

A particular consequence of Lemma 6.8 is that z̃ cannot be T -periodic. The
proof of Theorem 4.1 for strongly admissible Hamiltonians is thus concluded.

6.2 From the strongly admissible case to the general
result: approximation arguments

We are finally ready to complete the proofs of Theorems 4.1 and 2.1.
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Proof of Theorem 4.1. Let the admissible Hamiltonian H : [0, T ] × R2N → R
and the convex body D ⊆ RN be such that the flow of (HS) is guided by some
feasible vector field F on ∂D. Then we use Proposition 5.1, with U = D and
some small ε > 0, and find a Hamiltonian Ĥ, which is strongly admissible with
respect to D, in such a way that all T -periodic solutions ẑ(t) = (x̂(t), ŷ(t)) of

the corresponding Hamiltonian system (ĤS) departing with ŷ(0) ∈ D are also

solutions of (HS). Moreover, if ε is small enough, the flow of (ĤS) will still be
guided by the feasible vector field F on ∂D. For this new Hamiltonian system,
we have the desired conclusion, as shown in the previous subsection. Since the
T -periodic solutions found are also solutions of (HS), we have thus concluded
the proof.

Proof of Theorem 2.1. Let the admissible Hamiltonian H : [0, T ] × R2N → R
and the convex body D ⊆ RN satisfy either condition (a) or condition (b) of
Theorem 2.1. Observe that we cannot directly apply Theorem 4.1, because D
may not be strongly convex, and thus we cannot ensure that the vector field
which guides our flow is feasible. So, we need to find a strongly convex set D∗,
contained in D, for which the same assumptions hold.

With this purpose we first observe that in case (a) we may find some ρ∗ > 0
such that

〈x(T )− x(0),Bν(y(0))〉 ≥ ρ∗ ,

for every solution (x(t), y(t)) of (HS) departing with y(0) ∈ ∂D. Similarly, in
case (b) we may find some ρ∗ > 0 such that

〈x(T )− x(0),B(y(0)− d0)〉 ≥ ρ∗ ,

for every solution (x(t), y(t)) of (HS) departing with y(0) ∈ ∂D. Both things
follow from the combination of Lemma 5.2 and the Ascoli – Arzelà Theorem.

Then, we may apply Lemma 5.3 with U = D, Ĥ = H and some small ε > 0,
and we find that there exists some δ > 0 with the property that, whenever a
smooth convex body D∗ is such that

• {y ∈ D : dist(y, ∂D) ≥ δ} ⊆ D∗ ⊆ D,

and, in case of assumption (a),

• for every q ∈ ∂D∗ there exists some p ∈ ∂D with |p − q| < δ and
|ν(p)− ν∗(q)| < δ,

then our assumption (a) or (b) keeps its validity for D∗ instead of D. Remem-
bering Lemma 3.1, we can actually find a strongly convex set D∗ satisfying the
conditions above. But then, as shown in (I) and (II) of Section 4, our Hamil-
tonian flow is guided by a feasible vector field on ∂D∗. The result follows now
from Theorem 4.1.
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7 Nonsmooth sets and the theorem for

tubes

In this section we are going to prove Theorem 2.2 and the associated Theo-
rem 1.2. With this goal we shall first extend Theorem 2.1(a) in two directions.
Firstly, we would like to have a version of this result for general convex bodies,
not necessarily C1-smooth ones. With this aim, we will have to replace the
outer normal vector field ν = ν(y) by the outer normal cone N (y) at each
point y ∈ ∂D. Secondly, we would like to generalize the notion of admissible
Hamiltonians to allow them to be periodic in the x variable with respect to
some basis of RN which is not necessarily the usual one. More specifically, we
shall say that the Hamiltonian function H : [0, T ]×R2N → R, H = H(t, x, y)
is admissible with respect to the basis B = {b1, . . . , bN} of RN provided that,
besides the usual regularity assumption, it satisfies

H(t, x+ bi, y) = H(t, x, y) , for every (t, x, y) ∈ [0, T ]× R2N .

We are now prepared to show the following

Theorem 7.1. Let the Hamiltonian H = H(t, x, y) be admissible with respect
to some basis of RN . Let the N × N matrix B be regular and symmetric, let
D ⊂ RN be a convex body, and assume that every solution z(t) = (x(t), y(t))
of (HS) departing with y(0) ∈ ∂D is defined for every t ∈ [0, T ] and satisfies

〈x(T )− x(0),Bw〉 > 0 , for every w ∈ N (y(0))\{0} . (22)

Then, the same conclusion of Theorem 2.1 holds.

Proof. We first prove the result in case D is smooth but the Hamiltonian H
is admissible with respect to some basis B of RN . In this case, (22) becomes
the usual condition 〈x(T ) − x(0),Bν(y(0))〉 > 0. Let P be the (nonsingular)
matrix whose columns are the elements of B and consider the canonical change
of variables

x1 = P−1x, y1 = P ∗y . (23)

It transforms (HS) into another Hamiltonian system (HS1), whose associated
Hamiltonian

H1(t, x1, y1) := H(t, Px1, (P
∗)−1y1) , (24)

is now admissible with respect to the usual basis. Moreover, the set D1 :=
P ∗(D) is again a smooth convex body, with unit normal vector

ν1(y1) =
P−1ν((P ∗)−1y1)

|P−1ν((P ∗)−1y1)|
,

and one easily checks that every solution (x1(t), y1(t)) of (HS1) departing with
y1(0) ∈ ∂D1 is defined for every t ∈ [0, T ] and satisfies

〈x1(T )− x1(0),B1ν1(y1(0))〉 > 0 ,

where ν1 denotes the unit outward normal field on ∂D1, and B1 = P ∗BP .
Thus, since B1 is symmetric, the result follows from Theorem 2.1.
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In the general case, the convex body could be nonsmooth; however, we
observe first that there must exist some positive constant ρ∗ > 0 such that
〈x(T ) − x(0),Bw〉 ≥ ρ∗ for every solution (x(t), y(t)) of (HS) departing with
y(0) ∈ ∂D and every w ∈ N (y(0)) with |w| = 1. This is a consequence
of Lemma 5.2 and the Ascoli – Arzelà Theorem. The result follows from an
approximation argument similar to the one used in the final part of the proof
of Theorem 2.1 (page 30). We omit the details, for briefness.

Proof of Theorem 2.2. We first assume that T = RN× ]− 1, 1[N is twisted by
the flow of H, i.e., that a1 ≡ −1 and bi ≡ 1, for every i = 1, . . . , N . Then, if
(x(t), y(t)) is a solution of (HS) starting with y(0) on the boundary of ]−1, 1[N ,
we see that

〈x(T )− x(0),Bv〉 > 0 , for every v ∈ N (y(0)) \ {0} ,

where B is a diagonal matrix, whose elements on the diagonal are +1 or −1.
The result then follows from Theorem 7.1. (Indeed, we have thus proved a
slightly more general result than the one claimed, namely, that it holds for
Hamiltonians H which are admissible with respect to some basis B.)

We now treat the general case. After an approximation argument based on
the Féjer Theorem and Lemma 5.3, there is no loss of generality in assuming
that the functions ai, bi are C∞-smooth. We define the functions ci, li : R→ R
by

ci(s) =
ai(s) + bi(s)

2
, li(s) =

bi(s)− ai(s)
2

,

for i = 1, . . . , N , and let Ψ : R2N → R2N be defined by

Ψ(x, y) =

(∫ x1

0

l1(s) ds , . . . ,

∫ xN

0

lN(s) ds ,
y1 − c1(x1)
l1(x1)

, . . . ,
yN − cN(xN)

lN(xN)

)
.

It can be verified that Ψ is a symplectic diffeomorphism. Hence, the change
of variables (x̂, ŷ) = Ψ(x, y) (which, for N = 1 was proposed in [61, Exercise
1, p. 132]), transforms our Hamiltonian system (HS) into a new one, with
Hamiltonian function

Ĥ(t, ẑ) = H(t,Ψ−1(ẑ)) .

The new Hamiltonian is still periodic in the variables x1, . . . , xN , but the cor-
responding periods have changed and are now T1 =

∫ p1
0
l1(s) ds, . . . , TN =∫ pN

0
lN(s) ds, respectively. With other words, Ĥ is now admissible with re-

spect to the basis B = {T1b1, . . . , TNbn}, where {b1, . . . , bN} is the canonical
basis of RN . Moreover, the change of variables transforms the tube T into
RN× ] − 1, 1[N , which is now twisted by the flow of Ĥ. We are thus reduced
to the first step, and the result follows.
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8 Applications

In this section, we illustrate how our theorems may be applied to two types
of situations, which we call pendulum-like systems, and weakly-coupled super-
linear systems. For briefness, we only concentrate in the search of T -periodic
solutions, but the experienced reader will recognize the possibility of proving
the existence of periodic solutions of the second kind, for the pendulum-like
systems, and of subharmonic solutions, for the superlinear systems. The stated
results provide existence of N + 1 solutions. Needless to say, the number of
solutions we find will be 2N in the nondegenerate situation.

8.1 Pendulum-like systems

One year after the publication of the 1983 paper by Conley and Zehnder [21],
Mawhin and Willem [55] studied some pendulum-like scalar second order dif-
ferential equations, by the use of a variational method. They proved that, if
the T -periodic forcing term has zero mean value, then there are at least two
T -periodic solutions. They thus improved previous results by Hamel [42],
Dancer [22] and Willem [71], where the existence of one periodic solution
had been proved, in the same setting. The papers by Conley – Zehnder and
Mawhin – Willem attracted a lot of attention. They were further extended
in [6, 16, 29, 32, 33, 44, 50, 53, 54, 66, 68], always using variational methods.
As observed by Rabinowitz [66] in 1988, the Mawhin – Willem result could have
been obtained (in the smooth case) from the Conley – Zehnder theorem, after a
suitable modification of the nonlinearity. Alternatively, as noticed in [35, 37],
it could also have been obtained directly from some generalized version of the
Poincaré – Birkhoff theorem.

In this subsection, we exploit this idea and study Hamiltonian systems
whose behavior reminds that of pendulum-like equations. Our main result will
be the following

Theorem 8.1. Let the Hamiltonian H : [0, T ]× R2N → R be admissible, and
assume that

lim
|y|→∞

∇xH(t, x, y)

|y|
= 0 , uniformly in (t, x) ∈ [0, T ]× RN . (25)

If, moreover, there are two positive constants r, ρ and a regular N ×N matrix
A, having only real eigenvalues, such that

|y| ≥ r ⇒ 〈∇yH(t, x, y),Ay〉 > ρ |∇yH(t, x, y)| |y| , (26)

then the Hamiltonian system (HS) has at least N + 1 distinct T -periodic so-
lutions.

Proof. Let z(t) = (x(t), y(t)) be a solution of (HS), with z(0) = z0 = (x0, y0).
Even if no uniqueness is assumed, we will denote such a solution by z(t; z0),
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and similarly for its components. By (25) and the periodicity of H in the xi
variables, such a solution has to be globally defined on [0, T ]. Let us first prove
that

lim
|y0|→∞

y(t;x0, y0)− y0
|y0|

= 0 , uniformly in (t, x0) ∈ [0, T ]× RN . (27)

Fix ε > 0. By (25), there is a ᾱ > 0 such that

|y| ≥ ᾱ ⇒ |∇xH(t, x, y)| ≤ ε|y| , for every (t, x) ∈ [0, T ]× RN .

Since the solutions of the initial value problems are globally defined, we can
find a β̄ > ᾱ such that, if |y0| ≥ β̄, then |y(t;x0, y0)| ≥ ᾱ, for every t ∈ [0, T ]
and x0 ∈ RN . Hence,

|y0| ≥ β̄ ⇒ |ẏ(t;x0, y0)| ≤ ε|y(t;x0, y0)| ,

for every (t, x0) ∈ [0, T ]× RN .Then,

|y(t;x0, y0)| ≤ |y0|+
∫ t

0

|ẏ(s;x0, y0)| ds ≤ |y0|+ ε

∫ t

0

|y(s;x0, y0)| ds ,

so that, by the Gronwall Lemma,

|y(t;x0, y0)| ≤ |y0|eεt ≤ |y0|eεT , for every (t, x0) ∈ [0, T ]× RN .

Then,

|y(t;x0, y0)− y0| ≤
∫ t

0

|ẏ(s)| ds ≤ ε

∫ t

0

|y(s)| ds ≤ εTeεT |y0| ,

for every (t, x0) ∈ [0, T ]× RN , thus proving (27). We can then easily see that

lim
|y0|→∞

(
y(t;x0, y0)

|y(t;x0, y0)|
− y0
|y0|

)
= 0 , uniformly in (t, x0) ∈ [0, T ]× RN . (28)

We now first assume the matrix A to be symmetric. Since the solutions of
the initial value problems are globally defined, we can find an R > r such that,
if (x(t), y(t)) is a solution of (HS) with (x(0), y(0)) = (x0, y0) and |y0| ≥ R,
then |y(t)| ≥ r, for every t ∈ [0, T ]. Then, by (26) and (28), if R is sufficiently
large,〈

∇yH(t, x(t), y(t))

|∇yH(t, x(t), y(t))|
, A

y0
|y0|

〉
=

〈
∇yH(t, x(t), y(t))

|∇yH(t, x(t), y(t))|
,A

y(t)

|y(t)|

〉
+

+

〈
∇yH(t, x(t), y(t))

|∇yH(t, x(t), y(t))|
,A
(
y(t)

|y(t)|
− y0
|y0|

)〉
> 0 .

Consequently,

〈x(T )−x(0),Ay(0)〉 =

∫ T

0

〈∇yH(t, x(t), y(t)),Ay(0)〉 dt

=

∫ T

0

〈
∇yH(t, x(t), y(t))

|∇yH(t, x(t), y(t))|
,A

y0
|y0|

〉
|y0| |∇yH(t, x(t), y(t))| dt > 0 .

The conclusion follows from Theorem 2.1(a), taking D = B(0, R).
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Let us now treat the case when A is diagonalizable. Let Q be a regular
matrix for which Q−1AQ is diagonal, and set P = (Q∗)−1. With the canonical
change of variables (23) we get a new Hamiltonian system, with Hamiltonian
function H1 defined as in (24). It is then easily seen that (25) implies

lim
|y1|→∞

∇x1H1(t, x1, y1)

|y1|
= 0 , uniformly in (t, x1) ∈ [0, T ]× RN . (29)

On the other hand, (26) implies the existence of some positive constants r1, ρ1
such that

|y1| ≥ r1 ⇒ 〈∇y1H1(t, x1, y1), Q
−1AQy1〉 > ρ1 |y1| |∇y1H1(t, x1, y1)| ,

so that we are reduced to the case of a diagonal (hence symmetric) matrix.

Finally, let A be any regular matrix having only real eigenvalues. Then,
A can be approximated by diagonalizable matrices: there is a sequence (An)n
of matrices, all of which are regular and have distinct real eigenvalues, which
converges to A in the usual operator norm topology. This can be easily seen
using the Jordan canonical form (see, e.g., [45, Ch. 3]). Then, if |y| ≥ r, taking
n large enough, we have〈
∇yH(t, x, y),An

y

|y|

〉
=

=

〈
∇yH(t, x, y),A

y

|y|

〉
+

〈
∇yH(t, x, y), (An − A)

y

|y|

〉
>
ρ

2
|∇yH(t, x, y)| ,

so that we are back to the previous case. The proof is thus completed.

As a possible example of application, we can deal with second order systems
of the type

ẍ+∇F (t, x) = e(t) ,

where F (t, x1, . . . , xN) is 2π-periodic with respect to each variable x1, . . . , xN
(so ∇F is bounded), and e : R → RN is a T -periodic forcing with zero mean
value, i.e., ∫ T

0

e(t) dt = 0 . (30)

(As an example, if N = 1, we have in mind the pendulum equation.) Writing
the equivalent Hamiltonian system

ẋ = y + E(t) , ẏ = −∇F (t, x) ,

with E(t) =
∫ t
0
e(s) ds, we see that Theorem 8.1 directly applies, taking as A

the identity matrix. Similar results have been obtained in [53, 66].
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Another example is given by equations of the type

d

dt
(∇Φ ◦ ẋ) +∇F (t, x) = e(t) , (31)

where Φ is a real valued, strictly convex C1-smooth function defined on a
ball B(0, a) ⊆ RN , with ∇Φ : B(0, a) → RN being a homeomorphism, and
∇Φ(0) = 0. Denoting by Φ∗ the Legendre – Fenchel transform of Φ, we can
write the equivalent Hamiltonian system

ẋ = ∇Φ∗(y + E(t)) , ẏ = −∇F (t, x) . (32)

Recall that ∇Φ∗ = (∇Φ)−1 : RN → B(0, a) and, since Φ∗ is strictly convex
and coercive, it satisfies

lim inf
|y|→∞

〈∇Φ∗(y), y〉
|y|

> 0 .

So, assuming (30), Theorem 8.1 easily applies, again with A = IN . We thus
obtain as a corollary a recent result by Mawhin [54], generalizing previous
existence results in [6, 16]. As a particular case, one can take Φ(y) = 1 −√

1− |y|2 (leading to the so-called ‘relativistic operator’).

A rather similar situation is encountered in a result by Golé [38, Theorem
42.2], where the Hamiltonian function is assumed to be uniformly optical.
Under his assumptions, the gradient of the Hamiltonian with respect to the
first state variable turns out to be bounded, while the gradient with respect to
the second one satisfies our condition (26), for some positive definite matrix
A. Hence, his result can also be obtained from our theorem.

A variant of the above concerns the case when Φ is a strictly convex C1-
smooth function defined on the whole RN , with ∇Φ : RN → B(0, a) being a
homeomorphism, and ∇Φ(0) = 0. As a particular case, one can take Φ(y) =
1 −

√
1 + |y|2 (leading to the so-called ‘mean curvature operator’). Let h :

[0, T ]→ R be such that

|∇F (t, x)| ≤ h(t) , for every t ∈ [0, T ] and x ∈ RN .

Writing equation (31) as the equivalent system (32), if we want to apply
Theorem 2.1, with D = B(0, 1

2
a), we must be careful that the solutions

z(t) = (x(t), y(t)) starting with y(0) ∈ D remain with y(t) in a compact
set contained in B(0, a), for t ∈ [0, T ], so that the Hamiltonian function can
be modified outside this set and extended to the whole space. This will be
guaranteed if

2(‖h‖1 + ‖E‖∞) < a .

We thus generalize a result obtained in [35] for the scalar equation (see also [63],
where bounded variation solutions are obtained).
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To conclude this subsection, we observe that Theorem 2.1 can also be
applied to recover a result by Josellis [47] where, besides (25), it was assumed
that

lim
|y|→∞

∇yH(t, x, y)− A(t)y

|y|
= 0 , uniformly in (t, x) ∈ [0, T ]× RN ,

and that the matrix A :=
∫ T
0
A(t) dt be regular and symmetric. We omit the

details, for briefness.

8.2 Generalized annuli and weakly-coupled superlinear
systems

In this last part of the paper we present a theorem involving a generalized annu-
lus, i.e., a product of planar annuli. We start recalling that, if z : [t1, t2]→ R2

is a continuous path such that z(t) 6= (0, 0) for every t ∈ [t1, t2], its (counter-
clockwise) rotation number around the origin is defined as

Rot (z(t); [t1, t2]) =
θ(t1)− θ(t2)

2π
,

where −θ : [t1, t2]→ R is a continuous determination of the argument along z,
i.e. z(t) = |z(t)|(cos θ(t),− sin θ(t)). Since we are dealing with curves which
are not closed in general, the rotation number may not be integer and can
instead take arbitrary real values.

We shall work with Hamiltonian systems (HS) where the (continuous)
Hamiltonian function H : R × R2N → R, H = H(t, x, y) is T -periodic in
time and continuously differentiable with respect to the state variables (x, y);
however, in contrast with what was our framework until now, we shall not
assume any periodicity in the state variables xi. Instead, we assume that for
each i = 1, . . . , N we have selected two strictly star-shaped Jordan curves
around the origin Γi1,Γ

i
2 ⊆ R2, such that

0 ∈ D(Γi1) ⊆ D(Γi1) ⊆ D(Γi2) .

Here we denote by D(Γ) the open bounded region delimited by the Jordan
curve Γ. We consider the generalized annular region

A =
[
D(Γ1

2) \ D(Γ1
1)
]
× · · · ×

[
D(ΓN2 ) \ D(ΓN1 )

]
⊂ R2N .

Theorem 8.2. Under the framework above, denoting zi(t) = (xi(t), yi(t)),
assume that every solution z(t) = (z1(t), . . . , . . . zN(t)) of (HS) departing from
z(0) ∈ ∂A, is defined on [0, T ] and satisfies

zi(t) 6= (0, 0) for every t ∈ [0, T ] and i = 1, . . . , N .
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Assume finally that there are integer numbers ν1, . . . , νN ∈ Z such that, for
each i = 1, . . . , N either

Rot (zi(t); [0, T ])

{
< νi , if zi(0) ∈ Γi1 ,

> νi , if zi(0) ∈ Γi2 ,
(33)

or

Rot (zi(t); [0, T ])

{
> νi , if zi(0) ∈ Γi1 ,

< νi , if zi(0) ∈ Γi2 .
(34)

Then, the Hamiltonian system (HS) has at least N + 1 distinct T -periodic
solutions z0(t), . . . , zN(t), with z0(0), . . . , zN(0) ∈ A, such that

Rot (zki (t); [0, T ]) = νi , for every k = 0, . . . , N and i = 1, . . . , N .

Proof. Since the solutions z(t) departing from z(0) ∈ A are defined on [0, T ]
and none of their components attain the origin, we can find a constant δ0 > 0
such that |zi(t)| > 2δ0, for every t ∈ [0, T ] and i = 1, . . . , N , for each of those
solutions. We now modify the Hamiltonian function near the origin, as follows.
Let ω : R→ R be a C∞-smooth function such that

ω(r) =

{
0 , if r ≤ δ0 ,

1 , if r ≥ 2δ0 .

Then, we consider the new Hamiltonian system

ż = J∇H̄(t, z) ,

with

H̄(t, z) = ω
(

min{|zi| : i = 1, . . . , N}
)
H(t, z) ,

so that H̄(t, z) = 0 when one of the components of z is too near the origin.
This will not affect the solutions starting from A. We now consider the (time-
dependent) change of variables

xi =
√

2ρi cos
(
θi − (2π/T )νit

)
, yi = −

√
2ρi sin

(
θi − (2π/T )νit

)
, (35)

so to get the Hamiltonian system

θ̇i =
∂H
∂ρi

(t, ρ, θ) , ρ̇i = −∂H
∂θi

(t, ρ, θ) ,

defined for θ = (θ1, . . . , θN) ∈ (R/2πZ)N and ρ = (ρ1, . . . , ρN) ∈ RN with
ρi > 0 for every i. Here,

H(t, θ, ρ) := H̄(t, x, y) +
N∑
i=1

(2π/T )νiρi ,
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the variables x, y in the argument of H̄ being related to θ, ρ by (35). Notice
that the change of variables is justified if z(0) ∈ A, since then zi(t) 6= (0, 0) for
every t ∈ [0, T ] and i = 1, . . . , N . This system can now be extended also when
ρi ≤ 0 for some i, by simply setting H(t, θ, ρ) :=

∑N
i=1(2π/T )νiρi there. Now,

Theorem 2.2 applies. Indeed, the star-shaped curves Γi1,Γ
i
2 are transformed

into the continuous and 2π-periodic functions ai, bi, and the twist condition
follows from (33), (34). Going back to the original variables, the proof is easily
concluded.

As an application, we consider the system
ẍ1 + g1(x1) =

∂U
∂x1

(t, x1, . . . , xN) ,

· · ·

ẍN + gN(xN) =
∂U
∂xN

(t, x1, . . . , xN) ,

(36)

where the continuous function U : [0, T ] × RN → R is continuously differ-
entiable in x1, . . . , xN . The result presented below generalizes the first part
of [15, Theorem 3.1]. It can also be seen as a version for systems of the main
theorem of [26]. Possibly, it can be adapted to situations where the retractive
forces g1, . . . , gN can have one or two singularities (cf. [31]).

Theorem 8.3. Assume that

lim
|s|→∞

gi(s)

s
= +∞ ,

and that there is a constant K > 0 such that∣∣∣∣ ∂U∂xi (t, x1, . . . , xN)

∣∣∣∣ ≤ K ,

for every i = 1, . . . , N and (t, x1, . . . , xN) ∈ [0, T ]×RN . Then, there is a posi-
tive integer ν̄ with the following property: for any fixed integers ν1, . . . , νN ≥ ν̄,
system (36) has at least N + 1 distinct T -periodic solutions

x(k)(t) = (x
(k)
1 (t), . . . , x

(k)
N (t)) , k = 0, . . . , N ,

such that each x
(k)
i (t) has exactly 2νi simple zeros in [0, T [ .

Proof. We consider the equivalent Hamiltonian system

ẋi = yi , ẏi = − ∂U
∂xi

(t, x1, . . . , xN) , i = 1, . . . , N , (37)

corresponding to the Hamiltonian function H(t, x, y) := 1
2
|y|2 + U(t, x, y). Us-

ing the arguments from [19, Lemma 1], one checks that the solutions of our
system are globally defined. Moreover, following the lines in [19, Lemma 2]
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one checks that, for every r > 0 there is some R(r) > r such that, if a solution
z(t) = (x(t), y(t)) of (37) satisfies xi(0)2 +yi(0)2 ≥ R(r) for some i = 1, . . . , N ,
then xi(t)

2 + yi(t)
2 ≥ r for every t ∈ [0, T ]. In particular, zi(t) 6= (0, 0), for

every t ∈ [0, T ] (i.e., the zeroes of xi are simple), and we can therefore compute
the rotation number Rot (zi(t); [0, T ]). It is standard to show (see [19, Lemma
3]) that the superlinear growth of gi implies that the negative angular speed
of zi(t) grows to infinity as the amplitude |zi(t)| increases. Thus, arguing as
in [19, Lemma 4], taking e.g. R̄ = R(1), there is an integer ν̄ ≥ 1 such that

(i) if |zi(0)| = R̄, then −Rot (zi(t); [0, T ]) < ν̄, i = 1, . . . , N .

Choose numbers ν1, . . . , νN ≥ ν̄; there is a constant R̂ > R̄ such that

(ii) if |zi(0)| = R̂, then −Rot (zi(t); [0, T ]) > νi, i = 1, . . . , N .

Applying Theorem 8.2, we find N + 1 distinct T -periodic solutions whose i-th
component satisfies Rot (zi(t); [0, T ]) = −νi, for every i = 1, . . . , N . It implies
that xi has 2νi simple zeroes on [0, T [ , thus concluding the proof.
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Amer. Math. Soc. 138 (2010), 703–715.

[53] J. Mawhin, Forced second order conservative systems with periodic nonlinearity. Anal-
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