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Molecular Interaction Maps

K. W. Kohn et alt. MIM of bioregulatory networks: A general rubric for systems biology. Mol. Bio. of the Cell, 2006.
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Interpretations

Explicit

A:B
B:C
pB

Combinatorial

pB
A:B
B:C
A:B:C
A:pB
pB:C
A:pB:C
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Combinatorial explosion

Explicit
1 reaction

A + B → A:B

Combinatorial
4 reactions

A + B → A:B
A + pB → A:pB
A + B:C → A:B:C
A + pB:C → A:pB:C
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Contingencies
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Ambiguity in MIMs

Interpretation 6= formal semantic
MIMs are inherently ambiguous.
We identified some cases of ambiguity and defined a set of
Graph Rewriting Rules to disambiguate them.
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Concurrent Constraint Programming

Constraint Store
In this process algebra, the main object are constraints , which are
formulae over an interpreted first order language (i.e. X = 10,
Y > X − 3).

Constraints can be added to a "container", the constraint store, but can
never be removed.

Agents
Agents can perform two basic operations on this
store (asynchronously):

Add a constraint (tell ask)

Ask if a certain relation is entailed by the
current configuration (ask instruction)

V. Saraswat, Concurrent Constraint Programming, MIT press, 1993

Syntax of CCP

Program = Decl.A

D = ε | Decl.Decl | p(x) : −A

A = 0
| tell(c).A
| ask(c1).A1 + ask(c2).A2
| A1 ‖ A2 | ∃x A | p(x)
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Syntax of sCCP

Syntax of Stochastic CCP

Program = D.A

D = ε | D.D | p(
−→x ) : −A

A = 0 | tell∞(c).A | M | ∃x A | A ‖ A
M = π.G | M + M

π = tellλ(c) | askλ(c)

G = 0 | tell∞(c).G | p(
−→y ) | M | ∃x G | G ‖ G

L. Bortolussi, Stochastic Concurrent Constraint Programming, QAPL, 2006

Stochastic Rates
Rates are functions from the constraint store C to positive reals:

λ : C −→ R+.
Rates can be thought as speed or duration of communications.
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sCCP – technical details

Operational Semantics Show Details

There are two transition relations, one instantaneous (finite and
confluent) and one stochastic.

Traces are sequences of events with variable time delays among them.

Discrete vs. Continuous Semantics Show Details

The operational semantics is abstract w.r.t. the notion of time: we can
map the labeled transition system into a discrete or a continuous time
Markov Chain.

Implementation

We have an interpreter written in
Prolog, using the CLP engine of
SICStus to manage the
constraint store.

Efficiency issues.

Stream Variables
Quantities varying over time can
be represented in sCCP as
unbounded lists.

Hereafter: special meaning of
X = X + 1.
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Continuous Time Markov Chains

A Continuous Time Markov Chain (CTMC) is a direct graph with edges
labeled by a real number, called the rate of the transition (representing the
speed or the frequency at which the transition occurs).

In each state, we select the next state
according to a probability distribution
obtained normalizing rates (from S to S1

with prob. r1
r1+r2

).

The time spent in a state is given by an
exponentially distributed random variable,
with rate given by the sum of outgoing
transitions from the actual node (r1 + r2).
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Encoding — target

Implicit simulation of MIMs
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Encoding — overview

interaction sites = ports
(boolean state);

molecules = collection of ports;
complexes = graphs:

vertices are molecules;
edges connect two ports;



Molecular Interaction Maps sCCP Encoding MIMs in sCCP

Encoding — description

Static description
Port types (constraint store);

Molecular types (constraint store);

Contingencies (constraint store);

Interactions (sCCP agents);

Dynamic description
Instances of port and molecular types (constraint store);

Complex types (constraint store);

Counters of the number of each port and complex type
(constraint store).



Molecular Interaction Maps sCCP Encoding MIMs in sCCP

Encoding — store predicates

molecular_type(molecular_type_id,
port_list, contingency_list)

node(molecular_type_id, mol_id)

edge([mol_id1, port_id1], [mol_id2,
port_id2])

complex_type(complex_id, node_list,
edge_list, contingency_list)

complex_number(complex_type_id, Num)

port_number(port_id, Num)
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Encoding — contingencies

Contingencies are logical rules
IF (there are some edges)

THEN (inhibit or allow some other
ports of edges)

IF (there is y ) THEN (inhibit z)
IF (there is y ) THEN (allow x)
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Encoding — dynamics

Each arrow (interaction capability) in the MIM is associated
to an sCCP agent.

These agents modify the store according to the
prescriptions of the MIM.

There are also other agents, like port_ managers ,
performing minor tasks (e.g. bookkeeping).
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Simulation in sCCP

1 choose reaction
Interaction agents compete stochastically to determine next
reaction
reactions act on port (types)

2 choose actual complexes involved
Each port type has a port manager agent doing this

3 build product and apply enabled contingencies
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A simple example

Mammalian G1/S cell
cycle phase transition
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Conclusions

sCCP allows an implicit simulation of MIMs

the key ingredient is the use of the constraint store to
represent and manage graph-based representation of
complexes

the encoding is compositional and linear in the size of
MIMs

the stochastic simulation is a natural consequence of the
semantics of sCCP

Future work: a more efficient implementation
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Operational Semantic: Instantaneous Transition

Instantaneous Transition

(IR1) 〈tell∞(c), d, V〉 −→ 〈0, d t c, V〉

(IR2)
D

p(
−→x ), d, V

E
−→

D
A[
−→x /

−→y ], d, V
E

if p(
−→y ) : −A

(IR3) 〈∃x A, d, V〉 −→ 〈A[y/x ], d, V ∪ {y}〉 with y ∈ V2 \ V

(IR4)
〈A1, d, V〉 −→



A′1, d′, V ′

�
〈A1.A2, d, V〉 −→



A′1.A2, d′, V ′

�

(IR5)
〈A1, d, V〉 −→



A′1, d′, V ′

�
〈A1 ‖ A2, d, V〉 −→



A′1 ‖ A2, d′, V ′

�

Theorem
The instantaneous transition −→ is confluent and can be
applied only a finite number of steps to each configuration C.

Return
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Operational Semantic: Stochastic Transition

Stochastic Transition

(SR1) 〈tellλ(c), d, V〉 =⇒(1,λ(d)) 〈0, d t c, V〉 if d t c 6= false

(SR2) 〈askλ(c), d, V〉 =⇒(1,λ(d)) 〈0, d, V〉 if d ` c

(SR3)
〈π, d, V〉 =⇒(p,λ)



0, d′, V

�

〈π.A, d, V〉 =⇒(p,λ)

−−−−−−→

A, d′, V

� with π = ask orπ = tell

(SR4)
〈A1, d, V〉 =⇒(p,λ)

−−−−−−−→

A′1, d′, V ′

�

〈A1.A2, d, V〉 =⇒(p,λ)

−−−−−−−−−−→

A′1.A2, d′, V ′

�

(SR5)
〈M1, d, V〉 =⇒(p,λ)

−−−−−−−→

A′1, d′, V ′

�

〈M1 + M2, d, V〉 =⇒(p′,λ′)
−−−−−−−→

A′1, d′, V ′

�

with p′ = pλ
λ+rate(〈M2,d,V〉) andλ′ = λ + rate(〈M2, d, V〉)

(SR6)
〈A1, d, V〉 =⇒(p,λ)

−−−−−−−→

A′1, d′, V ′

�

〈A1 ‖ A2, d, V〉 =⇒(p′,λ′)
−−−−−−−−−−−→

A′1 ‖ A2, d′, V ′

�

with p′ = pλ
λ+rate(〈A2,d,V〉) andλ′ = λ + rate(〈A2, d, V〉)

rate returns the sum of rates of all active agents.

Return
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Operational Semantic: Stochastic Transition

Theorem
Let 〈A, d , V 〉 ∈ C be the current configuration. Then the next
stochastic transition executes one of the agents prefixed by a
guard belonging to the set exec(〈A, d , V 〉), call it A. Moreover,
the probability of the transition (i.e. the first label in =⇒) is

rate(
〈
A, d , V

〉
)

rate(exec(〈A, d , V 〉))
,

and the rate associated to the transition (the second label in
=⇒) is

rate(exec(〈A, d , V 〉)) .

Return
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Rates

Rates can be interpreted as priorities or as frequencies.

Rates as Priorities
A rate can represent the priority of execution of a process.

There is a global scheduler choosing probabilistically
between active processes, according to their priority.

Discrete time evolution.

Rates as Frequencies
A rate can represent the frequency or speed of a process.

The higher the speed, the higher the probability of seeing a
certain process executed.

Continuous time evolution.

Return
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Discrete and Continuous Time

Discrete time
Discrete time transition can be recovered from stochastic
transition =⇒(p,λ) by dropping the second label. Hence we
leave only the probability associated to transitions, obtaining a
Discrete time Markov Chain.

Continuous Time
Continuous time transition can be recovered from stochastic
transition =⇒(p,λ) by multiplying the two labels. Hence we
consider the rate associated to the transition, obtaining a
Continuous time Markov Chain.

Return
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Discrete and Continuous Time Observables

Discrete time I/O observables

Od (〈A, d〉) =
{
(d ′, p) | p = Prob

(
〈A, d〉 −→

〈
0, d ′

〉)}
.

Continuous time I/O observables

Oc(〈A, d〉)(t) =
{
(d ′, p) | p = Prob

(
〈A, d〉 −→

〈
0, d ′

〉)
(t)

}
.

Theorem

lim
t→∞

Oc(〈A, d〉)(t) = Od(〈A, d〉).

Return
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