SCCP

Encoding MIMs in sCCP

Constraint-based simulation of biological systems described by Molecular Interaction Maps

Luca Bortolussi¹ Simone Fonda⁴ Alberto Policriti^{2,3}

¹Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it
²Dipartimento di Matematica ed Informatica Università degli studi di Udine ³Istituto di Genomica Applicata Parco Scientifico Tecnologico, Udine. ⁴Dipartimento di Informatica Università degli studi di Pisa.

WCB 2007, Porto, 13th September 2007

Views of Computational Systems Biology

Encoding MIMs in sCCP

Views of Computational Systems Biology

Molecular	Interaction	Maps
00000		

Molecular	Interaction	Maps
00000		

Encoding MIMs in sCCP

Molecular Interaction Maps

Molecular	Interaction	Maps
00000		

Encoding MIMs in sCCP

Molecular Interaction Maps

Molecular In	teraction	Maps
00000		

Encoding MIMs in sCCP

Molecular Interaction Maps

Molecular	Interaction	Maps
00000		

Encoding MIMs in sCCP

Molecular Interaction Maps

Molecular Interaction Maps	
00000	

Interpretations

Molecular Interaction Maps

sCCP

Encoding MIMs in sCCP

Combinatorial explosion

Explicit 1 reaction	
$A + B \rightarrow A:B$	

Combinatorial 4 reactions

$$\begin{array}{l} A+B \rightarrow A{:}B\\ A+pB \rightarrow A{:}pB\\ A+B{:}C \rightarrow A{:}B{:}C\\ A+pB{:}C \rightarrow A{:}pB{:}C \end{array}$$

Molecular Interaction Maps	
00000	

Encoding MIMs in sCCP

Contingencies

рВ	
B:C	
A:pB	
рВ	
B:C	
A:pB	

Molecular	Interaction	Maps
00000		

Encoding MIMs in sCCP

Contingencies

Explicit	
pB B:C A:pB	

Combinatorial	
pB B:C A:pB	

Molecular Interaction Maps

sCCP

Encoding MIMs in sCCP

Ambiguity in MIMs

Interpretation \neq formal semantic

MIMs are inherently ambiguous. We identified some cases of ambiguity and defined a set of Graph Rewriting Rules to disambiguate them.

Concurrent Constraint Programming

Constraint Store

- In this process algebra, the main object are constraints, which are formulae over an interpreted first order language (i.e. X = 10, Y > X 3).
- Constraints can be added to a "container", the constraint store, but can never be removed.

Agents

Agents can perform two basic operations on this store (asynchronously):

- Add a constraint (tell ask)
- Ask if a certain relation is entailed by the current configuration (ask instruction)

Syntax of CCP

$$D = \varepsilon \mid Decl.Decl \mid p(x) : -A$$

$$A = \mathbf{0}$$

tell(c).A
ask(c_1).A_1 + ask(c_2).A_2
$$A_1 \parallel A_2 \mid \exists_X A \mid p(x)$$

Syntax of sCCP

Syntax of Stochastic CCP

Program = D.A $D = \varepsilon \mid D.D \mid p(\overrightarrow{x}) : -A$ $A = \mathbf{0} \mid \text{tell}_{\infty}(c).A \mid M \mid \exists_{x}A \mid A \parallel A$ $M = \pi.G \mid M + M$ $\pi = \text{tell}_{\lambda}(c) \mid \text{ask}_{\lambda}(c)$ $G = \mathbf{0} \mid \text{tell}_{\infty}(c).G \mid p(\overrightarrow{y}) \mid M \mid \exists_{x}G \mid G \parallel G$

L. Bortolussi, Stochastic Concurrent Constraint Programming, QAPL, 2006

Stochastic Rates

Rates are functions from the constraint store C to positive reals: $\lambda : C \longrightarrow \mathbb{R}^+.$

Rates can be thought as speed or duration of communications.

sCCP - technical details

Operational Semantics

- There are *two transition relations*, one instantaneous (finite and confluent) and one stochastic.
- Traces are sequences of events with variable time delays among them.

Discrete vs. Continuous Semantics

Show Details

Show Details

• The operational semantics is *abstract w.r.t. the notion of time*: we can map the labeled transition system into a discrete or a continuous time Markov Chain.

Implementation

- We have an interpreter written in Prolog, using the *CLP engine of SICStus* to manage the constraint store.
- Efficiency issues.

Stream Variables

- Quantities varying over time can be represented in sCCP as unbounded lists.
- Hereafter: special meaning of X = X + 1.

Continuous Time Markov Chains

A **Continuous Time Markov Chain** (CTMC) is a direct graph with edges labeled by a real number, called the rate of the transition (representing the speed or the frequency at which the transition occurs).

- In each state, we select the next state according to a *probability distribution* obtained normalizing rates (from *S* to *S*₁ with prob. $\frac{r_1}{r_1+r_2}$).
- The time spent in a state is given by an exponentially distributed random variable, with rate given by the sum of outgoing transitions from the actual node $(r_1 + r_2)$.

Molecular Interaction Maps

sCCP

Encoding MIMs in sCCP

Encoding — target

Implicit simulation of MIMs

Encoding MIMs in sCCP

Encoding — overview

- interaction sites = ports (boolean state);
- molecules = collection of ports;
- complexes = graphs:
 - vertices are molecules;
 - edges connect two ports;

Encoding — description

Static description

- Port types (constraint store);
- Molecular types (constraint store);
- Contingencies (constraint store);
- Interactions (sCCP agents);

Dynamic description

- Instances of port and molecular types (constraint store);
- Complex types (constraint store);
- Counters of the number of each port and complex type (constraint store).

Encoding — store predicates

- molecular_type(molecular_type_id, port_list, contingency_list)
- node(molecular_type_id, mol_id)
- edge([mol_id1, port_id1], [mol_id2, port_id2])
- ocomplex_type(complex_id, node_list, edge_list, contingency_list)
- ocomplex_number(complex_type_id, Num)
- port_number(port_id, Num)

Encoding MIMs in sCCP

Encoding — contingencies

IF (there are some edges) THEN (inhibit or allow some other ports of edges)

IF (there is y) THEN (inhibit z) IF (there is y) THEN (allow x)

Encoding — dynamics

- Each arrow (*interaction capability*) in the MIM is associated to an *sCCP agent*.
- These agents modify the store according to the prescriptions of the MIM.
- There are also other agents, like port_ managers, performing minor tasks (e.g. bookkeeping).

Molecular	Interaction	Maps	
00000			

Encoding MIMs in sCCP

Simulation in sCCP

- Interaction agents compete stochastically to determine next reaction
- reactions act on port (types)
- Choose actual complexes involved
 - Each port type has a port manager agent doing this
- build product and apply enabled contingencies

Molecular	Interaction	Maps	
00000			

Encoding MIMs in sCCP

Simulation in sCCP

- Interaction agents compete stochastically to determine next reaction
- reactions act on port (types)
- Choose actual complexes involved
 - Each port type has a port manager agent doing this
- build product and apply enabled contingencies

Molecular	Interaction	Maps	
00000			

Encoding MIMs in sCCP

Simulation in sCCP

- Interaction agents compete stochastically to determine next reaction
- reactions act on port (types)
- Choose actual complexes involved
 - Each port type has a port manager agent doing this
- build product and apply enabled contingencies

Molecular	Interaction	Maps	
00000			

Encoding MIMs in sCCP

Simulation in sCCP

- Interaction agents compete stochastically to determine next reaction
- reactions act on port (types)
- Choose actual complexes involved
 - Each port type has a port manager agent doing this
- build product and apply enabled contingencies

Molecular	Interaction	Maps	
00000			

Encoding MIMs in sCCP

Simulation in sCCP

- Interaction agents compete stochastically to determine next reaction
- reactions act on port (types)
- Choose actual complexes involved
 - Each port type has a port manager agent doing this
- 3 build product and apply enabled contingencies

Molecular	Interaction	Maps	
00000			

Encoding MIMs in sCCP

Simulation in sCCP

- Interaction agents compete stochastically to determine next reaction
- reactions act on port (types)
- Choose actual complexes involved
 - Each port type has a port manager agent doing this
- build product and apply enabled contingencies

Molecular Interaction Maps

sCCP

Encoding MIMs in sCCP

A simple example

Mammalian G1/S cell cycle phase transition

Molecular Interaction Maps

sCCP

Encoding MIMs in sCCP

A simple example

Conclusions

- sCCP allows an implicit simulation of MIMs
- the key ingredient is the use of the constraint store to represent and manage graph-based representation of complexes
- the encoding is compositional and linear in the size of MIMs
- the stochastic simulation is a natural consequence of the semantics of sCCP
- Future work: a more efficient implementation

Operational Semantic: Instantaneous Transition

Instantaneous Transition

$$\begin{array}{ll} (IR1) & \langle \operatorname{tell}_{\infty}(c), d, V \rangle \longrightarrow \langle \mathbf{0}, d \sqcup c, V \rangle \\ (IR2) & \left\langle p(\overrightarrow{x}), d, V \right\rangle \longrightarrow \left\langle A[\overrightarrow{x}/\overrightarrow{y}], d, V \right\rangle & \text{if } p(\overrightarrow{y}) : -A \\ (IR3) & \left\langle \exists_{x}A, d, V \right\rangle \longrightarrow \left\langle A[y/x], d, V \cup \{y\} \right\rangle & \text{with } y \in \mathcal{V}_{2} \setminus V \\ (IR4) & \frac{\langle A_{1}, d, V \rangle \longrightarrow \langle A'_{1}, d', V' \rangle}{\langle A_{1}, A_{2}, d, V \rangle \longrightarrow \langle A'_{1}, A_{2}, d', V' \rangle} \\ (IR5) & \frac{\langle A_{1}, d, V \rangle \longrightarrow \langle A'_{1}, d', V' \rangle}{\langle A_{1} \parallel A_{2}, d, V \rangle \longrightarrow \langle A'_{1} \parallel A_{2}, d', V' \rangle} \end{array}$$

Theorem

The instantaneous transition \longrightarrow is confluent and can be applied only a finite number of steps to each configuration \mathfrak{C} .

Operational Semantic: Stochastic Transition

Stochastic Transition

(SR1)	$\langle \operatorname{tell}_{\lambda}(c), d, V \rangle \Longrightarrow_{(1,\lambda(d))} \langle 0, d \sqcup c, V \rangle$	if $d \sqcup c \neq false$
(SR2)	$\langle \operatorname{ask}_{\lambda}(c), d, V \rangle \Longrightarrow_{(1,\lambda(d))} \langle 0, d, V \rangle$	if $d \vdash c$
(SR3)	$\frac{\langle \pi, d, V \rangle \Longrightarrow_{(p,\lambda)} \langle 0, d', V \rangle}{\langle \pi. A, d, V \rangle \Longrightarrow_{(p,\lambda)} \overline{\langle A, d', V \rangle}}$	with $\pi = ask$ or $\pi = tell$
(SR4)	$\frac{\langle A_1, d, V \rangle \Longrightarrow_{(p,\lambda)} \overline{\langle A'_1, d', V' \rangle}}{\langle A_1, A_2, d, V \rangle \Longrightarrow_{(p,\lambda)} \overline{\langle A'_1, A_2, d', V' \rangle}}$	
(SR5)	$\frac{\langle M_1, d, V \rangle \Longrightarrow_{(p,\lambda)} \overline{\langle A'_1, d', V' \rangle}}{\langle M_1 + M_2, d, V \rangle \Longrightarrow_{(p',\lambda')} \overline{\langle A'_1, d', V' \rangle}}$ with $n' = \frac{p_\lambda}{p_\lambda}$ and $\lambda' = \lambda + \operatorname{rate}(M_2, d, V)$	
(<i>SR</i> 6)	$\frac{\langle A_1, d, V \rangle \Longrightarrow_{(p,\lambda)} \langle \overline{A'_1, d', V'} \rangle}{\langle A_1 \parallel A_2, d, V \rangle \Longrightarrow_{(p,\lambda)} \langle \overline{A'_1, d', V'} \rangle}$ with $p' = \frac{p_\lambda}{\lambda + \text{rate}(\langle A_2, d, V \rangle)}$ and $\lambda' = \lambda + \text{rate}(\langle A_2, d, V \rangle)$	

rate returns the sum of rates of all active agents.

Operational Semantic: Stochastic Transition

Theorem

Let $\langle A, d, V \rangle \in \mathfrak{C}$ be the current configuration. Then the next stochastic transition executes one of the agents prefixed by a guard belonging to the set $\operatorname{exec}(\langle A, d, V \rangle)$, call it \overline{A} . Moreover, the probability of the transition (i.e. the first label in \Longrightarrow) is

$$\frac{\operatorname{rate}(\langle \overline{A}, d, V \rangle)}{\operatorname{rate}(\operatorname{exec}(\langle A, d, V \rangle))},$$

and the rate associated to the transition (the second label in \Longrightarrow) is

rate $(\operatorname{exec}(\langle A, d, V \rangle))$.

Rates

Rates can be interpreted as priorities or as frequencies.

Rates as Priorities

- A rate can represent the *priority of execution* of a process.
- There is a global scheduler choosing probabilistically between active processes, according to their priority.
- Discrete time evolution.

Rates as Frequencies

- A rate can represent the *frequency* or *speed* of a process.
- The higher the speed, the higher the probability of seeing a certain process executed.
- Continuous time evolution.

Discrete and Continuous Time

Discrete time

Discrete time transition can be recovered from stochastic transition $\Longrightarrow_{(p,\lambda)}$ by dropping the second label. Hence we leave only the probability associated to transitions, obtaining a Discrete time Markov Chain.

Continuous Time

Continuous time transition can be recovered from stochastic transition $\Longrightarrow_{(p,\lambda)}$ by multiplying the two labels. Hence we consider the rate associated to the transition, obtaining a Continuous time Markov Chain.

Discrete and Continuous Time Observables

Discrete time I/O observables

$$\mathcal{O}_{\boldsymbol{d}}\left(\langle \boldsymbol{A}, \boldsymbol{d} \rangle\right) = \left\{ (\boldsymbol{d}', \boldsymbol{p}) \mid \boldsymbol{p} = \operatorname{Prob}\left(\langle \boldsymbol{A}, \boldsymbol{d} \rangle \longrightarrow \left\langle \boldsymbol{0}, \boldsymbol{d}' \right\rangle \right) \right\}.$$

Continuous time I/O observables

$$\mathcal{O}_{\boldsymbol{c}}(\langle \boldsymbol{A}, \boldsymbol{d} \rangle)(t) = \left\{ (\boldsymbol{d}', \boldsymbol{p}) \mid \boldsymbol{p} = \operatorname{Prob}\left(\langle \boldsymbol{A}, \boldsymbol{d} \rangle \longrightarrow \left\langle \boldsymbol{0}, \boldsymbol{d}' \right\rangle\right)(t) \right\}.$$

Theorem

$$\lim_{t\to\infty}\mathcal{O}_{c}(\langle A,d\rangle)(t)=\mathcal{O}_{d}(\langle A,d\rangle).$$

