On the Approximation of Stochastic Concurrent Constraint Programming by Master Equation

Luca Bortolussi1,2

1Department of Mathematics and Informatics
University of Trieste
luca@dpi.units.it

2Center for Biomolecular Medicine, Area Science Park, Trieste

QAPL 2008, Budapest, 30th March 2008
INTRODUCTION

BASICS ON sCCP

APPROXIMATIONS AND MASTER EQUATION

EXAMPLES

SEMANTICS FOR SPA

SPA formalism
sCCP

CTMC

ODE

Hybrid Automata
STOCHASTIC CONCURRENT CONSTRAINT PROGRAMMING

CCP = Constraints + Agents

- **Constraints** are *formulae over an interpreted first order language* (i.e. \(X = 10, \ Y > X - 3 \)); they can be added to a "container", the **constraint store**, but can never be removed.

- Agents can perform two basic operations on this store (asynchronously): **tell** or **ask** a constraint.

\[
p :\!-\! A; \ \pi = [g \rightarrow u]_\lambda; \ M = \pi.A \mid M + M \\]
\[
A = 0 \mid M \mid p; \ N = A \mid A \parallel N
\]

\[
\text{rw}(X) :\!-\! [X > 0 \rightarrow X' = X - 1]_\lambda(X).\text{rw}(X)
\]
\[
+ [true \rightarrow X' = X + 1]_\lambda(X).\text{rw}(X)
\]

STOCHASTIC CCP

Each **ask** and **tell** instruction has a rate (function) attached to it:

\[
\lambda : C \longrightarrow \mathbb{R}^+.\]

The semantics of the language is given in terms of a **Continuous Time Markov Chain**.

MODELING IN sCCP

MODELING BIOCHEMICAL REACTIONS

\[R_1 + \ldots + R_n \rightarrow_{f(R,X;K)} P_1 + \ldots + P_m \]

\[f\text{-reaction}(R, X, P, k) :- \]
\[\text{tell}_{f(R,X;K)}(R' = R - 1 \wedge P' = P + 1). \]

\[f\text{-reaction}(R, X, P, k) \]

ANALYSIS TOOLS

- Stochastic simulation (Gillespie algorithm)
- Stochastic model checking and CTMC analysis
- Approximation with ODE’s and Hybrid Automata

OREGONATOR

\begin{align*}
B & \rightarrow_{k_1} A \\
A + B & \rightarrow_{k_2} \emptyset \\
A & \rightarrow_{k_3} 2A + C \\
2A & \rightarrow_{k_4} \emptyset \\
C & \rightarrow_{k_5} B
\end{align*}

Introduction

Basics on SCCP

Approximations and Master Equation

Examples

From SCCP to ODE

\[
\nu = \begin{pmatrix}
X \\
G_1 \\
G_0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & -1 & +1 & 0 \\
0 & +1 & -1 & 0
\end{pmatrix}
\]

\[
\phi = \begin{pmatrix}
k_p G_1 \\
k_b X G_1 \\
k_u G_0 \\
k_d X
\end{pmatrix}
\]

\[
\Phi^1 = \nu \cdot \phi : \begin{align*}
\dot{X} &= k_p G_1 - k_d X \\
\dot{G}_1 &= k_u G_0 - k_b X G_1 \\
\dot{G}_0 &= k_b X G_1 - k_u G_0
\end{align*}
\]
Circadian Clock
Circadian Clock

\[
p_{\text{gate}}(\alpha_A, \alpha'_A, \gamma_A, \theta_A, M_A, A) \parallel \\
p_{\text{gate}}(\alpha_R, \alpha'_R, \gamma_R, \theta_R, M_R, A) \parallel \\
\text{reaction}(\beta_A, [M_A], [A]) \parallel \\
\text{reaction}(\delta_{MA}, [M_A], []) \parallel \\
\text{reaction}(\beta_R, [M_R], [R]) \parallel \\
\text{reaction}(\delta_{MR}, [M_R], []) \parallel \\
\text{reaction}(\gamma_C, [A], [R]) \parallel \\
\text{reaction}(\delta_A, [AR], [R]) \parallel \\
\text{reaction}(\delta_A, [A], []) \parallel \\
\text{reaction}(\delta_R, [R], [])
\]
Circadian Clock

```
p_gate(\alpha_A, \alpha_A', \gamma_A, \theta_A, M_A, A) \parallel 
p_gate(\alpha_R, \alpha_R', \gamma_R, \theta_R, M_R, A) \parallel 
reaction(\beta_A, [M_A], [A]) \parallel 
reaction(\delta_{MA}, [M_A], []) \parallel 
reaction(\beta_R, [M_R], [R]) \parallel 
reaction(\delta_{MR}, [M_R], []) \parallel 
reaction(\gamma_C, [A, R], [AR]) \parallel 
reaction(\delta_A, [AR], [R]) \parallel 
reaction(\delta_A, [A], []) \parallel 
reaction(\delta_R, [R], []).
```
The master equation is equivalent to the Kolmogorov Forward Equation: it is a PDE for the time-evolution of the probability density function $P(X, t)$.

\[
\frac{\partial P(Y, t)}{\partial t} = \sum_j \left(\phi_j(Y - \nu_j)P(Y - \nu_j, t) - \phi_j(Y)P(Y, t) \right)
\]
FIRST-ORDER APPROXIMATION

DIFFERENTIAL EQUATION FOR THE AVERAGE OF sCCP

\[
\frac{d \langle Y_i \rangle_t}{dt} = \langle \Phi^1_i(Y) \rangle_t
\]

TAYLOR EXPANSION OF \(\langle \Phi^1_i(Y) \rangle_t \)

\[
\langle \Phi^1(Y) \rangle_t \approx \Phi^1(\langle Y \rangle_t) + \frac{1}{2} \sum_{h,k=1}^{\vert Y \vert} \partial^2_{hk} \Phi^1(\langle Y \rangle_t) \langle \langle Y_h Y_k \rangle \rangle_t
\]

FIRST-ORDER EQUATION FOR THE AVERAGE

\[
\frac{d \langle Y_i \rangle_t}{dt} = \Phi^1_i(\langle Y \rangle_t)
\]
Second-Order Approximation

Exact Equation for Covariance

\[
\frac{d \langle \langle Y_i Y_k \rangle \rangle_t}{dt} = \langle \Phi^2_{ik}(Y) \rangle_t + \langle (Y_i - \langle Y_i \rangle_t) \Phi^1_k(Y) \rangle_t + \langle (Y_k - \langle Y_k \rangle_t) \Phi^1_i(Y) \rangle_t
\]

Second-Order Equations for Average and Covariance

\[
\frac{d \langle Y_i \rangle_t}{dt} = \Phi^1(\langle Y \rangle_t) + \frac{1}{2} \sum_{h,k=1}^{\lvert T(N) \rvert} \partial^2_{hk} \Phi^1(\langle Y \rangle_t) \langle \langle Y_h Y_k \rangle \rangle_t
\]

\[
\frac{d \langle \langle Y_i Y_k \rangle \rangle_t}{dt} = \Phi^2_{ik}(\langle Y \rangle_t) + \sum_{h=1}^{\lvert Y \rvert} \partial_h \Phi^1_k(\langle Y \rangle_t) \langle \langle Y_i Y_h \rangle \rangle_t
\]

\[+ \sum_{h=1}^{\lvert Y \rvert} \partial_h \Phi^1_i(\langle Y \rangle_t) \langle \langle Y_k Y_h \rangle \rangle_t\]
RANDOM WALK

\[\text{RW}_X \ni [\ast \rightarrow X' = X + 1]_k \cdot \text{RW}_X + [\ast \rightarrow X' = X - 1]_k \cdot \text{RW}_X, \]

\[\Phi^1(X) = 0 \]
\[\Phi^2(X) = 2k \]

\[
\begin{align*}
\langle X \rangle_t &= X_0 \\
\langle \langle X^2 \rangle \rangle_t &= 2kt + \langle \langle X_0^2 \rangle \rangle
\end{align*}
\]

\[
\begin{aligned}
\langle \dot{X} \rangle &= \Phi^1(\langle X \rangle) + \frac{1}{2} \langle \langle X^2 \rangle \rangle \partial_{xx}^2 \Phi^1(\langle X \rangle) = 0 \\
\langle \langle X^2 \rangle \rangle &= \Phi^2(\langle X \rangle) + 2 \langle \langle X^2 \rangle \rangle \partial_x \Phi^1(\langle X \rangle) = 2k
\end{aligned}
\]
Effects of Variance

\[
R_1 : [\star \rightarrow X' = X + 1]_k \cdot R_1; \quad R_2 : [\star \rightarrow Y' = Y + 1]_k \cdot R_2; \quad R_3 : [X > 0 \rightarrow X' = X - 1]_{\alpha_1} \cdot X \cdot R_3
\]

\[
R_4 : [Y > 0 \rightarrow Y' = Y - 1]_{\alpha_2} \cdot Y \cdot R_4; \quad R_5 : [X > 0 \land Y > 0 \rightarrow X' = X - 1 \land Y' = Y + 1]_{k_2} \cdot X \cdot Y \cdot R_5
\]

\[
R_1 \parallel R_2 \parallel R_3 \parallel R_4 \parallel R_5
\]
CIRCADIAN CLOCK
Circadian Clock

Stochastic

FO approximation
Circadian Clock

Stochastic average

FO approximation
Circadian Clock

Stochastic average

SO approximation
Robustness of the system: increase translation rate of R from $\beta_R = 5$ to $\beta_R = 50$.

Stochastic, $\beta_R = 50$

FO approximation, $\beta_R = 50$
Robustness of the system: increase translation rate of R from $\beta_R = 5$ to $\beta_R = 50$.

Stochastic average, $\beta_R = 50$

FO approximation, $\beta_R = 50$
Robustness of the system: increase translation rate of R from $\beta_R = 5$ to $\beta_R = 50$.

Stochastic average, $\beta_R = 50$

SO approximation, $\beta_R = 50$
Many works in statistical mechanics deal with the relation between stochastic and deterministic description of systems. The Master Equation for a SPA is the key to use these methods also for the analysis of quantitative programming languages.

SPA introduce many new challenges: the main one is synchronization, which introduces discontinuities in the expression of rates.

Synchronization is discrete in nature: hybrid schemes of approximation should work better.