
EXTREMAL COMPLEX POLYTOPE NORMS
FOR FAMILIES OF REAL MATRICES∗

N. GUGLIELMI† AND M. ZENNARO‡

Abstract. In this paper we consider finite familiesF of real n×n-matrices. In particular, we focus on the computation of the
joint spectral radiusρ(F ) via the detection of anextremal normin the class ofcomplex polytope norms, whose unit balls arebalanced
complex polytopeswith a finite essential system of vertices. Such a finiteness property is very useful in view of the construction of
efficient computational algorithms. More precisely, we improve the results obtained in our previous paper [GWZ05], where we gave
some conditions on the familyF which are sufficient to guarantee the existence of an extremal complex polytope norm. Unfortunately,
they are such to exclude unnecessarily many interesting cases of real families. Therefore, here we relax somehow the conditions given
in [GWZ05], in order to provide a more satisfactory treatment of the real case.
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1. Introduction. In the last decade, a significant progress has been done within the theory of thejoint
spectral radiusof matrix families. As is well known, given a bounded set of real or complex matricesF ,
its joint spectral radiusρ(F ) determines the maximal growth of all products that can be formed by taking
factors inF . Therefore, its knowledge is important in all applicationswhere the change of status can be
described by more than one matrix. For instance, it characterizes the regularity of certain wavelets (see, e.g.,
[DL92, Mae95, Mae98]), the capacity of codes (see, e.g., [MAS01]), the stability of hybrid systems (see, e.g.,
[Bar88, Wir98]) or of the numerical solution of ordinary differential equations (see, e.g., [GZ01b]). Further
references can be found in [DL01, Wir02].

In the light of this, it clearly appears that efficient methods for the computation of the joint spectral radius
of a given set of matrices would be often very welcome.

Unfortunately, we are still far from the availability of such efficient methods on a general setting basis.
Indeed, the theoretical forecasts in this sense are not well-disposed at all (see, e.g., [TB97]). Nevertheless,
an algorithm for efficiently computing lower and upper bounds to ρ(F ) has been proposed in [Gri96] and,
lately, further promising approaches for the approximation of ρ(F ) have been considered (see, e.g., [BN05b,
BNT05, BN05a, Pro05]).

In [GWZ05], also the authors of the present paper have recently given a contribution in the direction
of the computation ofρ(F ) by considering special classes of complex matrix families.In particular, they
have determined some conditions on the family which are sufficient to guarantee the existence of an extremal
complex polytope norm, that is a norm whose unit ball is abalanced complex polytopewith a finiteessential
system of vertices(see [GZ07, VZss]). Such a finiteness property is very usefulin view of the construction
of algorithms aimed at the actual computation ofρ(F ) via the detection of an extremal norm, as is done, for
example, in [GZ08].

However, the hypotheses made in [GWZ05] on the family of matrices are such to exclude unnecessarily
many interesting cases of real families. In this paper, we confine ourselves to real matrix families and succeed
in relaxing somehow the sufficient conditions assumed in [GWZ05], so as to provide a more satisfactory
treatment of the real case. As in [GWZ05], under such relaxedconditions, we are able to construct the unit
ball of an extremal norm, which is a balanced complex polytope with a finite essential system of vertices.

The organization of the paper is the following. In Section 2 we review some of the most important
definitions and results available in the literature regarding the joint spectral radius of a family of matrices
and the extremal norms. In Section 3 we recall the definitionsof balanced complex polytope and complex
polytope norm, and review some of their most important properties. In Section 4 we resume the definitions
and the results given in [GWZ05]. The main results of this paper are stated and proved in Section 5. Then,
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‡Dipartimento di Matematica e Informatica, Università di Trieste, I-34100 Trieste (Italy),e-mail: zennaro@units.it

1



in Section 6, we present a new computational algorithm and anillustrative example is provided in Section 7.
Finally, in Section 8 we discuss the results of this paper in relation to the existing literature.

2. Preliminary results from the literature. For a bounded family of complexn×n-matricesF =
{A(i)}i∈I , the following definitions are given in the literature.

Let ‖ · ‖ be a given norm on the vector spaceCn and let the same symbol‖ · ‖ denote the corresponding
inducedn×n-matrix norm, too. Then, for eachk≥ 1, consider the setΣk(F ) of all possible products of length
k whose factors are elements ofF , that is

Σk(F ) = {A(i1) · · ·A(ik)
∣

∣

∣
i1, . . . , ik ∈ I },

and the number

ρ̂k(F ) = sup
P∈Σk(F )

‖P‖, (2.1)

and define thejoint spectral radiusof F as

ρ̂(F ) = limsup
k→∞

ρ̂k(F )1/k

(see [RS60]). Note that the numbersρ̂k(F ) depend on the particular norm‖ · ‖ used in (2.1) whereas, by the
equivalence of all the norms in finite dimensional spaces,ρ̂(F ) is independent of it.

Analogously, letρ(·) denote the spectral radius of ann×n-matrix and then, for eachk≥ 1, consider the
number

ρ̄k(F ) = sup
P∈Σk(F )

ρ(P)

and define thegeneralized spectral radiusof F as

ρ̄(F ) = limsup
k→∞

ρ̄k(F )1/k

(see [DL92]).
Recently it has been shown that

ρ̂(F ) = ρ̄(F )

(see [BW92, Els95, SWP97, Shi99]). This means that the jointand the generalized spectral radius ofF are
the same number, which we shall simply call thespectral radiusof the family of matricesF and denote by
ρ(F ). Such result generalizes the well-known Gelfand theorem for a single matrix.

Given a norm‖ ·‖ on the vector spaceCn and the corresponding inducedn×n-matrix norm, we shall still
use the same notation to define

‖F‖ = ρ̂1(F ) = sup
i∈I

‖A(i)‖.

The following characterization ofρ(F ) can be found, for example, in [RS60] and [Els95].
THEOREM 2.1. The spectral radius of a bounded familyF of complex n×n-matrices is characterized

by the equality

ρ(F ) = inf
‖·‖∈N

‖F‖, (2.2)

whereN denotes the set of all possible induced n×n-matrix norms.
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Given a familyF , an important question to answer is whether or not the inf in (2.2) is actually attained
by some induced matrix norm. To this purpose, we give the following definition.

DEFINITION 2.2. We shall say that a norm‖ · ‖∗ satisfying the condition

‖F‖∗ = ρ(F )

is extremalfor the familyF .
It is well known that, for a single family{A}, the existence of an extremal norm is equivalent to the

fact that the matrixA is nondefective, i.e., all of the blocks relevant to the eigenvalues of maximum modulus
are diagonal in its Jordan canonical form. Wheneverρ(A) > 0, another equivalent property is that, with
Â = ρ(A)−1A, the power setΣ(Â) = {Âk | k ≥ 1} is bounded. These results generalize to a bounded family
F as follows. Given a bounded familyF = {A(i)}i∈I of complexn× n-matrices withρ(F ) > 0, let us
consider thenormalizedfamily

F̂ = {ρ(F )−1A(i)}i∈I ,

whose spectral radius isρ(F̂ ) = 1. Then consider the semigroup of matrices generated byF̂ , i.e.

Σ(F̂ ) =
⋃

k≥1

Σk(F̂ ). (2.3)

DEFINITION 2.3. A bounded familyF of complex n×n-matrices is said to bedefectiveif the corre-
sponding normalized familŷF is such that the semigroupΣ(F̂ ) is an unbounded set of matrices. Otherwise,
if Σ(F̂ ) is bounded, then the familyF is said to benondefective.

Note that we gave the definition of defective family without involving directly the spectral properties of
its elements. The following result can be found, for example, in [Koz90] or [BW92].

PROPOSITION2.4. A bounded familyF of complex n×n-matrices admits an extremal norm‖ ·‖∗ if and
only if it is nondefective.

In order to state another important result about defective and nondefective families (see [Bar88] or
[Els95]), we give the following definition according to [RR00].

DEFINITION 2.5. A bounded familyF = {A(i)}i∈I of complex n×n-matrices is said to bereducibleif
there exist a nonsingular n×n-matrix M and two integers n1,n2 ≥ 1, n1 +n2 = n, such that, for all i∈ I , it
holds that

M−1A(i)M =

[

A(i)
11 A(i)

12

O A(i)
22

]

,

where the blocks A(i)11, A(i)
12, A(i)

22 are n1×n1-, n1×n2- and n2×n2-matrices, respectively. If a familyF is not
reducible, then it is said to beirreducible.

THEOREM 2.6. If a bounded familyF of complex n×n-matrices is defective, then it is reducible.
Remark that the opposite implication is not necessarily true. For example, forn≥ 2 all single families

{A} are clearly reducible, but not necessarily defective.
The following corollary to Theorem 2.6 is obvious.
COROLLARY 2.7. If a bounded familyF of complex n×n-matrices is irreducible, then it is nondefective.

An important conjecture, the so calledFiniteness Conjecture, arisen from work in [DL92] and stated in
[LW95], whose validity would be of much help for the actual computation of the spectral radiusρ(F ) of
finite families, involves the following definitions.

DEFINITION 2.8 (Finiteness Property).A finite family of complex n×n-matricesF is said to have the
finiteness propertyif, there exist k∗ ≥ 1 and a productP̃∈ Σk∗(F ) such that

ρ(F ) = ρ̄k∗(F )1/k∗ = ρ(P̃)1/k∗ . (2.4)
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DEFINITION 2.9. If F is a bounded family of complex n×n-matrices, any matrix̃P∈ Σk∗(F ) satisfying
(2.4) for some k∗ ≥ 1 will be called aspectrum-maximizing product(in short, ans.m.p.) for F .

Observe that the finiteness property means the existence of at least one s.m.p.̃P for finite families. In
[LW95] some sufficient conditions in terms of extremal norms, guaranteeing that the finiteness property holds,
have been given. On the contrary, the Finiteness Conjecture, stating that all finite sets of matrices have the
finiteness property, was instead recently disproved in [BM02] and, later, also in [BTV03].

Now we recall the following definition from [GZ01a].
DEFINITION 2.10. Assume thatF is a normalized bounded family of complex n×n-matrices (i.e.,

ρ(F ) = 1) and that there exists a sequence of products Qk ∈ Σdk(F ), dk nondecreasing integers, such that

lim
k→∞

Qk = Q̃, (2.5)

whereQ̃ ∈ Σ(F ) and ρ(Q̃) = 1. ThenQ̃ will be called alimit spectrum-maximizing product(in short, an
l.s.m.p.) for F .

Note that, for a normalized familyF , an s.m.p.P̃ is an l.s.m.p., too. To see this, just putPk = P̃ for
all k ≥ 1. Moreover, if the familyF is nondefective, another possibility is to consider the power sequence
{P̃k}k≥1 and, sinceΣ(F ) is bounded, to extract a subsequence{P̃ks}s≥1 converging to somẽQ ∈ Σ(F ),
which obviously satisfiesρ(Q̃) = 1. For the sake of brevity, we shall say that such a limit pointof the
sequence{P̃k}k≥1 is an infinite powerof the matrixP̃. For nondefective families, the following result has
been proved in [GZ03a].

THEOREM 2.11. Let F be a (possibly infinite) nondefective bounded family of complex n×n-matrices.
Then there exists anl.s.m.p.Q̃ for the normalized familyF̂ .

On the contrary, for defective families, some counterexamples to the existence of l.s.m.p.’s when the
dimension of the matrices isn≥ 4 have been given.

3. Complex polytopes and related norms. In this section we recall from [GZ07] the definition of
balanced complex polytope, which is the generalization of symmetric real polytope (see, e.g., [Zie95]) to the
complex space, along with some related results.

If X = {xi}1≤i≤m is a finite set of vectors, then

absco(X ) =
{

x∈ Cn
∣

∣

∣
x =

m

∑
i=1

λi xi with
m

∑
i=1

|λi | ≤ 1
}

. (3.1)

DEFINITION 3.1. We shall say that a bounded setP ⊂ Cn is a balanced complex polytope(b.c.p.) if
there exists a finite set of vectorsX = {xi}1≤i≤m such thatspan(X ) = Cn and

P = absco(X ). (3.2)

Moreover, ifabsco(X ′) absco(X ) for all X ′  X , thenX will be called anessential system of vertices
for P, whereas any vector uxi with u∈ C, |u| = 1, will be called avertexof P.

From a geometrical point of view, a b.c.p.P is not a classical polytope. In fact, if we identify the
complex spaceCn with the real spaceR2n, we see thatP is not bounded by hyperplanes. In general, even the
intersectionP

⋂

Rn is not a classical polytope. However, if the b.c.p.P admits an essential system of real
vertices, thenP

⋂

Rn is a classical polytope.
The next proposition states the uniqueness of the essentialsystem of vertices (modulo scalar factors of

unitary modulus).
PROPOSITION 3.2. Assume thatX = {x(i)}1≤i≤m and X̂ = {x̂(i)}1≤i≤k are two essential systems of

vertices for a b.c.p.P. Then k= m and, for each i= 1, . . . ,m, there exist ji , 1≤ j i ≤ m, and ui ∈C, |ui | = 1,
such thatx̂(i) = uix( j i).

Now we extend the concept ofpolytope normto the complex case in a straightforward way.
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LEMMA 3.3. Any b.c.p.P is the unit ball of a norm‖ · ‖P onCn.
DEFINITION 3.4. We shall callcomplex polytope normany norm‖ · ‖P whose unit ball is a b.c.p.P.
The corresponding vector norm is characterized as follows.
PROPOSITION3.5. LetP be a b.c.p. and let‖ ·‖P be the corresponding complex polytope norm. Then,

for any z∈ Cn, it holds that

‖z‖P = min
{ m

∑
i=1

|λi |
∣

∣

∣
z=

m

∑
i=1

λi xi

}

, (3.3)

whereX = {xi}1≤i≤m is an essential system of vertices forP.
The next theorem shows that the set of the complex polytope norms isdensein the set of all norms defined

onCn and that, consequently, the corresponding set of induced matrix complex polytope norms isdensein
the set of all inducedn×n-matrix norms (see [GWZ05]).

THEOREM 3.6. Let‖ ·‖ be a norm onCn. Then for anyε > 0 there exists a b.c.p.Pε whose correspond-
ing complex polytope norm‖ · ‖ε satisfies the inequalities

‖x‖ ≤ ‖x‖ε ≤ (1+ ε)‖x‖ for all x∈ Cn.

Moreover, denoting by‖ · ‖ and‖ · ‖ε also the corresponding induced matrix norms, it holds that

(1+ ε)−1‖A‖ ≤ ‖A‖ε ≤ (1+ ε)‖A‖ for all A∈Cn×n.

4. The small CPE theorem. In this section we resume the main definitions and results given in [GWZ05].
Complex polytope norms play a particular role. In fact, Theorem 3.6 allows us to refine Theorem 2.1.
PROPOSITION4.1. The spectral radius of a bounded familyF of complex n×n-matrices is characterized

by the equality

ρ(F ) = inf
‖·‖∈Npol

‖F‖, (4.1)

whereNpol denotes the set of all possible induced n×n-matrix complex polytope norms.
The natural question arises whether a nondefective family admits an extremal complex polytope norm.

An important necessary condition for this follows.
THEOREM 4.2. Let F = {A(i)}1≤i≤m be a finite nondefective family of complex n×n-matrices and

assume that there exists an extremal complex polytope norm‖ · ‖P. ThenF has at least an s.m.p.̃P.
It would be nice to be able to reverse Theorem 4.2, but this hasnot yet been done unless assuming some

additional conditions on the familyF .
For any vectorx∈ Cn and for any normalized familyF̂ , consider the set

T [F̂ ,x] = {x}∪{P̂x | P̂∈ Σ(F̂ )},

i.e. thetrajectoryobtained by applying all the normalized productsP̂ of matrices ofF̂ to the vectorx.
The following characterization holds.
PROPOSITION 4.3. Let F be a bounded family of complex n× n-matrices and let x∈ Cn. Then

span
(

T [F̂ ,x]
)

is the smallest linear subspace V ofCn containing x such thatF (V) ⊆V.

COROLLARY 4.4. Let F be an irreducible bounded family of complex n×n-matrices and let x∈ Cn,
x 6= 0. Then

span
(

T [F̂ ,x]
)

= Cn. (4.2)
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For a general family of matricesF , the sets of the type

S [F̂ ,x] = absco
(

T [F̂ ,x]
)

(4.3)

play an important role.
PROPOSITION 4.5. Let F be a nondefective bounded family of complex n× n-matrices and, given a

vector x∈ Cn, let (4.2) hold. Then the setS [F̂ ,x] is the unit ball of an extremal norm forF .
By virtue of the foregoing result, it is interesting to find conditions under whichS [F̂ ,x] is generated by

a finite number of points of the trajectoryT [F̂ ,x]. So, if (4.2) holds, the setS [F̂ ,x] is a b.c.p. and, thus,
we have an extremal complex polytope norm.

Our attention is focused on families that satisfy some particular properties.
DEFINITION 4.6. An eigenvector x6= 0 of a matrix P related to an eigenvalueλ with |λ | = ρ(P) is said

to be aleading eigenvectorof P.
DEFINITION 4.7. LetF be a nondefective bounded family of complex n×n-matrices. A leading eigen-

vector x6= 0 of either an s.m.p.̃P ofF or of an l.s.m.p.Q̃ of the normalized familyF̂ is said to beleading
eigenvectorof F (and ofF̂ too).

REMARK 4.1. Because of Theorem 2.11, any nondefective bounded familyF has at least one leading
eigenvector.

DEFINITION 4.8. LetF be a family of complex n×n-matrices. A setX ⊂ Cn is said to beF -cyclic if
for any pair(x,y) ∈ X ×X there existα,β ∈ C with

|α| · |β | = 1 (4.4)

and two (finite) normalized productŝP,Q̂∈ Σ(F̂ ) such that

y = αP̂x and x = β Q̂y.

REMARK 4.2. Because of (4.4), the normalized productsP̂Q̂ andQ̂P̂ determined in the above definition
are s.m.p. of the normalized familŷF and the setX is necessarily included in the setL of the leading
eigenvectors of the familyF .

DEFINITION 4.9. A nondefective bounded familyF of complex n×n-matrices is said to beasymptot-
ically simpleif the setL of its leading eigenvectors is finite (modulo scalar nonzerofactors) andF -cyclic.

As in Section 2, we shall say that a matrixQ is aninfinite powerof another matrixP if it is a limit point
of the sequence{Pk}k≥1. Observe that any eigenvalueλ of an infinite powerQ of a matrixP satisfies either
|λ | = 1 or λ = 0, since these are the only two possible limit values of the numeric power sequence{|µ |k}k≥1
whenever|µ | ≤ 1. Moreover, given a nondefective matrixP with ρ(P) = 1, there exists at least an infinite
powerQ of P with an eigenvalueλ = 1, whose multiplicity is equal to the sum of the multiplicities of all the
eigenvaluesµ of P with |µ | = 1. This easily follows from the fact that the power sequence{µk}k≥1 has the
limit point 1 whenever|µ | = 1 (see, for example, [HW79]).

REMARK 4.3. It follows from the above observations that, for a (nondefective) asymptotically simple
family F , each s.m.p.P̃ and each l.s.m.p.Q̃ have only one leading eigenvector (modulo scalar nonzero
factors). Otherwise there would exist at least one l.s.m.p.of the normalized familyF̂ , obtained as an infinite
power, with an eigenspace of dimension≥ 2 related to the eigenvalueλ = 1. This would contradict the
finiteness (modulo scalar nonzero factors) of the setL of leading eigenvectors.

Observe that all the cyclic permutations of a productP have the same eigenvalues with the same multi-
plicities. Thus, ifP̃ = A(ik∗) . . .A(i1) is an s.m.p. for a familyF , then each of its cyclic permutations

A(is) . . .A(i1)A(ik∗ ) . . .A(is+1), s= 1, . . . ,k∗−1,
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still is an s.m.p. forF , along with all the powers of̃P and their cyclic permutations.
DEFINITION 4.10. LetF be a family of complex n×n-matrices. An s.m.p.̃P is said to beminimal if it

is not a power of another s.m.p. ofF .
It is clear that, for any s.m.p.̃P of a familyF , it holds that either̃P is minimal orP̃ is a power of another

s.m.p., which is minimal.
We have the following characterization of asymptotically simple families.
PROPOSITION 4.11. A nondefective bounded familyF of complex n× n-matrices is asymptotically

simple if and only if it has a minimal s.m.p.̃P with only one leading eigenvector (modulo scalar nonzero
factors) such that the setL of the leading eigenvectors ofF is equal to the set of the leading eigenvectors of
P̃ and of its cyclic permutations.

The following definition selects a particular class of asymptotically simple families.
DEFINITION 4.12. A nondefective bounded familyF of complex n× n-matrices is said to beabso-

lutely asymptotically simpleif it is asymptotically simple and has a unique minimal s.m.p. P̃ (modulo cyclic
permutations).

It is clear that, for absolutely asymptotically simple families, the unique minimal s.m.p.̃P coincides with
the minimal s.m.p. given by the characterizing Proposition4.11. Moreover, the cardinality of the setL of its
leading eigenvectors (modulo scalar nonzero factors) is equal to the number of factors of̃P.

LEMMA 4.13.LetF = {A(i)}1≤i≤m be a nondefective finite family of complex n×n-matrices and, given
a vector x∈Cn, assume that (4.2) is satisfied and that the (bounded) set∂S [F̂ ,x]

⋂

T [F̂ ,x], modulo scalar
factors of unitary modulus, is not finite. Then there exists asequence of distinct vectors

x(k) ∈ ∂S [F̂ ,x]
⋂

T [F̂ ,x]

with x(1) = x such that, for all k≥ 1,

x(k+1) = Â(ℓk)x(k) for someℓk ∈ {1, . . . ,m},

whereÂ(i) = A(i)/ρ(F ) ∈ F̂ , 1≤ i ≤ m, and such that, whenever k6= h,

x(k) 6= ux(h) for all u∈C with |u| = 1.

The following theorem is the main result of [GWZ05].
THEOREM 4.14 (small CPE Theorem).Assume that a finite familyF = {A(i)}1≤i≤m of complex n×n-

matrices is nondefective and asymptotically simple. Moreover, let x 6= 0 be a leading eigenvector ofF and
assume that (4.2) is satisfied. Then the set

∂S [F̂ ,x]
⋂

T [F̂ ,x] (4.5)

is finite modulo scalar factors of unitary modulus. As a consequence, there exist a finite number of normalized
productsP̂(1), . . . , P̂(s) ∈ Σ(F̂ ) such that

S [F̂ ,x] = absco
(

{x, P̂(1)x, . . . , P̂(s)x}
)

, (4.6)

so thatS [F̂ ,x] is a b.c.p.
Remark that, if all the matrices of the familyF are real and if also the starting leading eigenvectorx is

real, then Theorem 4.14 determines a classical polytope inRn.
The next results are useful for a deeper understanding of thestructure of the b.c.p.S [F̂ ,x] obtained

under the hypotheses of Theorem 4.14.
THEOREM 4.15.Let the hypotheses of Theorem 4.14 hold. Then each leading eigenvectorξ of F in the

setΞ = L
⋂

∂S [F̂ ,x] satisfies one of the following two statements:
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(a) ξ is a vertex of the b.c.p.S [F̂ ,x];
(b) there exist s≥ 2 verticesξ1, . . . ,ξs of the b.c.p.S [F̂ ,x] such that

ξ1, . . . ,ξs ∈ Ξ and ξ ∈ absco
(

{ξ1, . . . ,ξs}
)

. (4.7)

COROLLARY 4.16. Let the hypotheses of Theorem 4.14 hold and, moreover, let the familyF be ab-
solutely asymptotically simple. Then all the leading eigenvectors ofF (in the setΞ = L

⋂

∂S [F̂ ,x]) are
vertices of the b.c.p.S [F̂ ,x].

5. Improving the small CPE theorem for real families. Unfortunately, the hypotheses assumed by
Theorem 4.14 are such to exclude some cases of real families that, on the contrary, clearly admit an extremal
complex polytope norm which could be determined by a suitable modification of the procedure based on the
construction of the trajectoryT [F̂ ,x]. We illustrate this fact by means of the following example.

EXAMPLE 5.1. Consider the real 2×2-matrix familyF = {A,B}, where

A =

[

cos(1) −sin(1)
sin(1) cos(1)

]

and B = β
[

√
2

2

√
2

2
0 0

]

with 0 < β ≤ 1.

The eigenvalues ofA are e−i and ei with corresponding eigenvectorsx = [1 i]T andx = [1 − i]T, respec-

tively. The eigenvalues ofB are β
√

2
2 and 0. Thusρ(A) = 1 andρ(B) = β

√
2

2 . Now consider the b.c.p.

P = absco({x, x̄}), (5.1)

whose boundary∂P intersectsR2 on the unit circle

C =
{

[x1 x2]
T ∈ R2

∣

∣

∣
x2

1 +x2
2 = 1

}

. (5.2)

It is immediately seen that

AP = P and BP = absco
(

[β 0]T
)

⊂ P,

where we mean byAP the set{y = Ax : x∈ P } and similarly byBP. Consequently

‖A‖P = 1, ‖B‖P = β , ρ(F ) = ‖F‖P = 1.

Consequently, wheneverβ < 1, the matrixA is the unique minimal s.m.p. ofF and all the l.s.m.p.’s of
F are (infinite) powers ofA.

On the contrary, forβ = 1 it is not difficult to prove that, whereasA remains the unique minimal s.m.p.,
there exist some l.s.m.p.’s other than the (infinite) powersof A such as the matricesA∞B andBA∞, where

A∞ =

[ √
2

2 −
√

2
2√

2
2

√
2

2

]

,

which is an infinite power ofA. In fact, we have

A∞B

[√
2

2

√
2

2

]T

=

[√
2

2

√
2

2

]T

and BA∞[1 0]T = [1 0]T.

Remark that these two l.s.m.p.’s are cyclic permutations ofeach other and that they have only one real leading
eigenvector. In any case, for allβ ≤ 1, according to Remark 4.3, the identity matrixI is an l.s.m.p., so that all
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the vectors ofC2 are leading eigenvectors ofF . Moreover, it is clear that the set of leading eigenvectors of
F is notF -cyclic. Therefore, the hypotheses of Theorem 4.14 are definitely violated.

Indeed, the setS [F ,x] is not a b.c.p. In fact, it holds that

Bx=

[

β
√

2(1+ i)
2

0

]T

and AkBx=
β
√

2(1+ i)
2

[cos(k) sin(k)]T, k≥ 1.

All these vectors lie on the circle

Cβ =
β
√

2(1+ i)
2

C ,

whereC is defined by (5.2), and form a set which is dense inCβ . On the other hand,

BAkBx=

[

β (cos(k)+sin(k))(1+ i)
2

0

]T

∈ absco
(

Cβ
)

,

and, hence, we can conclude that

S [F ,x] = absco{{x}∪Cβ},

that is not a b.c.p. Note that infinitely many vectors of the trajectoryT [F ,x], namelyAkBx for k≥ 0, which
are not proportional to one another, lie on∂S [F ,x]. Analogous conclusions hold for the conjugate set
S [F ,x]. On the other hand, it is interesting to observe that

P = absco
(

T [F ,x]∪T [F , x̄]
)

, (5.3)

whereP is the b.c.p. given by (5.1), and that, in the light of the previous analysis, we have

∂P ∩
(

T [F ,x]∪T [F , x̄]
)

= {x,x}

(modulo scalar factors of unitary modulus), wheneverβ < 1. On the contrary, forβ = 1 the infinitely many
vectorsAkBx (andAkBx), k≥ 0, which are not proportional to one another, lie on∂P. ♦

The foregoing example suggests naturally how to try to relaxthe hypotheses of Theorem 4.14 in order
to accommodate the case of a real family such that the minimals.m.p.’s have a pair of complex conjugate
leading eigenvectors instead of a single real leading eigenvector. In order to do this, we need to modify some
of the definitions given in [GWZ05] and reported in Section 2,and to give some new ones.

DEFINITION 5.1. LetF be a nondefective bounded family of complex n×n-matrices and let x6= 0 be a
leading eigenvector ofF . Then x is said to be astandard leading eigenvectorof F (and ofF̂ too) if it is a
leading eigenvector of a minimal s.m.p.P̃ ofF , whereas it is said to be alimit leading eigenvectorof F if it
is a leading eigenvector of an l.s.m.p. (possibly, an s.m.p.) Q̃ of the normalized familyF̂ , but is not a leading
eigenvector of any minimal s.m.p..

Now, we modify Definition 4.9 for real families.
DEFINITION 5.2. LetF be a nondefective bounded family of real n×n-matrices andE be the set of its

standard leading eigenvectors. The familyF is said to beasymptotically simpleif E is finite (modulo scalar
nonzero factors) and the following properties hold:

◦ If E is a real set, then:
(i-r) E is F -cyclic.
(ii-r) If Q̃ is an l.s.m.p. ofF̂ , then the set of its leading eigenvectors is included inE .

◦ If E is not a real set, then:

9



(i) E is self-conjugate, that isE = E1∪E 1, andE1 is F -cyclic.
(ii) If Q̃ is an l.s.m.p. ofF̂ , then the set of its leading eigenvectors lies in a subspace of dimension

2 and includes a complex conjugate pair of elements ofE .

Observe that, when the leading eigenvectors are all real, there is no change with respect to Definition 4.9.
REMARK 5.1. If a family F of real n×n-matrices is asymptotically simple andP̃ is a minimal s.m.p.,

thenP̃ has a unique leading eigenvector if the setE is real, whereas̃P has a unique pair of complex conjugate
leading eigenvectors if the setE is not real.

REMARK 5.2. For a nondefective asymptotically simple normalized family F̂ such that the setE is not
real, there exists an l.s.m.p.̃Q, obtained as an infinite power (possibly, a finite power) of aminimal s.m.p.P̃,
with an eigenspace of dimension2 related to the eigenvalueλ = 1.

The following characterization of asymptotically simple real families holds.
PROPOSITION5.3. A nondefective bounded familyF of real n×n-matrices is asymptotically simple if

and only if one of the following situations occurs:
1) F fulfils property (ii-r) of Definition 5.2 and has a minimal s.m.p. P̃ with a unique real leading

eigenvector such that the setE of the standard leading eigenvectors ofF is equal to the set of the
leading eigenvectors of̃P and of its cyclic permutations.

2) F fulfils property (ii) of Definition 5.2 and has a minimal s.m.p. P̃ with a unique pair of complex
conjugate leading eigenvectors such that the setE of the standard leading eigenvectors ofF is equal
to the set of the leading eigenvectors ofP̃ and of its cyclic permutations.

Proof.
1) The proof of this occurrence is given in [GWZ05].
2) Necessity.Let x1, . . . ,xs,x1, . . . ,xs ∈ Cn form a set of distinct representatives (modulo scalar nonzero

factors) of all the standard leading eigenvectors ofF . SinceF is asymptotically simple, they are finitely
many and, for anyi = 1, . . . ,s, there existαi ,βi ∈ C with |αi | · |βi| = 1 and two (finite) normalized products
P̂i ,Q̂i ∈ Σ(F̂ ) such that

xi+1 = αi P̂ixi and xi = βiQ̂ixi+1

and (by reality ofF ),

xi+1 = α iP̂ixi and xi = β iQ̂ixi+1

where, conventionally,xs+1 = x1. Therefore, we obtain thatx1 = αP̂x1 = β Q̂x1 andx1 = αP̂x1 = βQ̂x1,
whereα = α1 . . .αs, β = β1 . . .βs andP̂ = P̂s. . . P̂1, Q̂ = Q̂1 . . . Q̂s, with |α| · |β | = 1. Now, sinceρ(P̂) ≤ 1
andρ(Q̂) ≤ 1, it follows that|α| = |β | = 1, which impliesρ(P̂) = 1 andρ(Q̂) = 1.

So we can conclude that the matrix̃P = P̂s. . . P̂1 is an s.m.p. ofF̂ such that the set of the leading
eigenvectors ofP̃ and of its cyclic permutations includes (and thus is equal to) the setE of the standard
leading eigenvectors ofF . Since it is not restrictive assuming̃P to be minimal, the proof is concluded.

Sufficiency.Assume that there is a (minimal) s.m.p.P̃ with only 2 complex conjugate leading eigenvec-
tors and that the setV of the leading eigenvectors ofP̃ and of its cyclic permutations (modulo scalar nonzero
factors) coincides with the setE of standard leading eigenvectors ofF . Therefore, sinceV may be generated
(through multiplication by nonzero complex numbers) by 2p elements, wherep denotes the number of factors
of P̃, and sinceV = V1∪V1, where the setsV1 andV1 are clearlyF -cyclic, the proof is complete.

LEMMA 5.4. Let the nondefective bounded familyF of real n×n-matrices be asymptotically simple and
let the setE of its standard leading eigenvectors be non-real. Then the set L of all the leading eigenvectors
of F is given by

L =
p

⋃

i=1

span({xi ,xi}),
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where{x1, . . . ,xp} is a set of linearly independent representatives ofE1, introduced in Definition 5.2 - (i).
Proof. As observed in Remark 5.2, for a nondefective asymptotically simple normalized familyF̂ , there

exists an l.s.m.p.Q̃, which is an infinite power (possibly, a finite power) of a minimal s.m.p. P̃, with an
eigenspace of dimension 2 related to the eigenvalueλ = 1. Such eigenspace is clearly spanned by the pair of
complex conjugate leading eigenvectors of the minimal s.m.p. P̃. Therefore, by virtue of Proposition 5.3, the
proof is complete.

The foregoing result implies that the set of the distinct representatives (modulo scalar nonzero factors) of
all the leading eigenvectors ofF is not finite.

The definition ofabsolutely asymptotically simplefamily remains formally unchanged (see Definition 4.12)
and, again, for such kind of families, the unique minimal s.m.p. P̃ coincides with the minimal s.m.p. given by
the characterizing Proposition 5.3.

Moreover, the cardinality of the setE of the standard leading eigenvectors (modulo scalar nonzero fac-
tors) is either the number of factors ofP̃ (in the case thatE is real) or twice such a number (in the case thatE

is not real).
In the sequel, for a real familyF and for a non-zero complex conjugate pair of vectorsx,x ∈ Cn (with

ℑ(x) 6= 0), we will consider thetrajectoryobtained by applying all the normalized productsP̂∈ F̂ to x and
x, that is

T [F̂ ,x,x] = T [F̂ ,x]∪T [F̂ ,x] = {x,x}∪
{

{P̂x, P̂x} | P̂∈ Σ(F̂ )
}

, (5.4)

and the set

S [F̂ ,x,x] = absco
(

T [F̂ ,x,x]
)

. (5.5)

Similarly to Proposition 4.5, we have that, ifF is nondefective and if

span
(

T [F̂ ,x,x]
)

= Cn, (5.6)

the setS [F̂ ,x,x] is the unit ball of an extremal norm. Therefore, our aim is to find conditions under
which S [F̂ ,x,x] is generated by a finite number of points of the trajectoryT [F̂ ,x,x], in order that the
setS [F̂ ,x,x] be a b.c.p..

In any case, sinceF is real, the setS [F̂ ,x,x] is self-conjugate. Some specific properties of self-
conjugate b.c.p.’s may be found in [VZss].

The proof of the following lemma is analogous to that of Lemma5.19 in [GWZ05].
LEMMA 5.5. Let F = {A(i)}1≤i≤m be a nondefective finite family of real n×n-matrices and, given a

non-real non-zero vector x∈Cn, assume that (5.6) holds and that the (bounded) set∂S [F̂ ,x,x]
⋂

T [F̂ ,x,x]
is not finite (modulo scalar factors of unitary modulus). Then there exist two conjugate sequences of distinct
vectors{x(k)} and{x(k)} with x(1) = x andx(1) = x such that, for all k≥ 1,

x(k),x(k) ∈ ∂S [F̂ ,x,x]
⋂

T [F̂ ,x,x]

and

x(k+1) = Â(ℓk)x(k) and x(k+1) = Â(ℓk)x(k) for someℓk ∈ {1, . . . ,m},

whereÂ(i) = A(i)/ρ(F ) ∈ F̂ , 1≤ i ≤ m, and such that, whenever k6= h,

x(k) 6= ux(h) and x(k) 6= ux(h) for all u∈ C with |u| = 1.

Eventually, we are in a position to state the main result of this paper, which extends the validity of the
Small CPE Theorem proved in [GWZ05]. However, so far we were not able to prove it unless under the
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following technical hypothesis, even if we strongly believe that it holds even without assuming it (see also the
forthcoming Example 5.2).

HYPOTHESIS5.1. If the setE of the standard leading eigenvectors of the familyF is non-real, then
the pair of leading eigenvalues(eiθ ,e−iθ ) of any minimal s.m.p. of the normalized familŷF is such that the
numbersθ andπ are rationally independent.

The next proposition illustrates the practical meaning of Hypothesis 5.1.
PROPOSITION5.6. Let the finite familyF of real n×n-matrices be asymptotically simple and let the set

E of its standard leading eigenvectors be non-real. Then Hypothesis 5.1 is equivalent to requiring that every
s.m.p. ofF (even if non-minimal) only has a pair of complex conjugate standard leading eigenvectors.

Proof. Given a minimal s.m.p.P̂ of F̂ , we have thatθ andπ are rationally dependent if and only if
there exists a positive integerk such that the power̂Pk, which is an s.m.p. ofF̂ , has the eigenvalueλ = 1 of
multiplicity 2 with infinitely many corresponding eigenvectors (i.e., all the vectors belonging to span({x,x}),
x andx being the leading eigenvectors ofP̂).

The following lemma plays an important role in the proof of the subsequent main result (Theorem 5.8).
LEMMA 5.7. Assume that a nondefective finite familyF = {A(i)}1≤i≤m of real n×n-matrices is asymp-

totically simple, let Hypothesis 5.1 hold and let{x,x} be a pair of complex conjugate standard leading eigen-

vectors ofF . Moreover, assume that, for some matrixŜ∈ Σ
(

F̂
)

, the vectors y= Ŝx andy = Ŝx are leading
eigenvectors ofF .

Then y andy are leading eigenvectors of standard type.
Proof. We observe thaty,y∈ ∂S [F̂ ,x,x] and that, by Lemma 5.4,y,y∈ span({z,z}) for some standard

leading eigenvectorz, that is

y = αz+ βz, y = βz+ αz, (5.7)

for suitableα,β ∈ C. Moreover, we can assume thatz, z̄∈ ∂S [F̂ ,x,x] and, by virtue ofF -ciclicity, that
there existsQ̂∈ Σk(F̂ ) (for some integerk) such thatx = Q̂z, so that

y = ŜQ̂z, y = ŜQ̂z. (5.8)

Then consider a linear transformation (represented by the non-singular matrixT ∈ Cn,n) which transformsz
into e(1) andz̄ into e(2), e(1) ande(2) being the first two vectors of the canonical basis ofCn. After setting

C(i) = T A(i) T−1,

we introduce the family of complex matricesG = {C(i)}1≤i≤m, which is such thatρ(G ) = ρ(F ), and denote
by Ĝ the associated normalized family. By formulae (5.7), we have that

T y=
[

α β 0 . . . 0
]T

and T y =
[

β α 0 . . . 0
]T

and, therefore, by settinĝM = T ŜQ̂T−1, formulæ (5.8) imply

M̂ =















α β · · · · ·
β α · · · · ·
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0















.

If |α|+ |β |< 1, theny,y are strictly internal to absco({z,z})⊆ S [F̂ ,x,x], which gives a contradiction. Thus

|α|+ |β | ≥ 1. (5.9)
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According to Proposition 5.3,zandzare the leading eigenvectors of a minimal s.m.p. ofF̂ , sayP̂◦ ∈ Σp(F̂ ),
with leading eigenvalues e±i θ0. Now consider the corresponding productN̂ ∈ Σp(Ĝ ) defined aŝN = T P̂◦T−1,

N̂ =















ei θ0 0 0 · · · 0
0 e−i θ0 0 · · · 0
0 0 · · · · ·
...

...
...

...
...

0 0 · · · · ·















,

and the power sequencêNℓ. By Hypothesis 5.1, we can conclude (see, e.g., [HW79]) thatthere exists a
suitable subsequencêNℓm which converges to the matrix

N̂∞ =















e−i arg(α) 0 0 · · · 0
0 ei arg(α) 0 · · · 0
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0















.

Then we consider the matrix

Ô = N̂∞ M̂ =















|α| e−i arg(α) β · · · · ·
ei arg(α) β |α| · · · · ·

0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0















,

which belongs toΣ(Ĝ ) and whose eigenvalues are|α|± |β |. SinceĜ is normalized, it follows that

|α|+ |β | ≤ 1. (5.10)

In conclusion, combining (5.9) and (5.10), we get|α|+ |β | = 1. Therefore,Ô is an l.s.m.p. forG and, hence,
the corresponding matrixO = T−1ÔT is an l.s.m.p. forF . Finally, property (ii) in Definition 5.2 yields

|α| = 1 and β = 0.

Therefore, by (5.7),y andy are standard leading eigenvectors.
THEOREM5.8 (extended small CPE theorem).Assume that a nondefective finite familyF = {A(i)}1≤i≤m

of real n×n-matrices is asymptotically simple. If the setE of its standard leading eigenvectors is real, then
Theorem 4.14 applies. Otherwise, let Hypothesis 5.1 hold and let {x,x} be a pair of complex conjugate
standard leading eigenvectors ofF such that (5.6) holds. Then the set

∂S [F̂ ,x,x]
⋂

T [F̂ ,x,x] (5.11)

is finite modulo scalar factors of unitary modulus. As a consequence, there exist a finite number of normalized
productsP̂(1), . . . , P̂(s) ∈ Σ(F̂ ) such that

S [F̂ ,x,x] = absco
(

{x,x, P̂(1)x, P̂(1)x, . . . , P̂(s)x, P̂(s)x}
)

, (5.12)

so thatS [F̂ ,x,x] is a b.c.p.
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Proof. Assume that the setE of the standard leading eigenvectors is not real and let{x,x} be a complex
conjugate pair of them. According to Proposition 5.3,x andx are the leading eigenvectors of a minimal s.m.p.
P̂ of F̂ . Now consider

Ξ = E
⋂

∂S [F̂ ,x,x]. (5.13)

Since the familyF is asymptotically simple andS [F̂ ,x,x] is the unit ball of a norm, the setΞ is finite
modulo scalar factors of unitary modulus and not empty. Now assume, by contradiction, that the set

∂S [F̂ ,x,x]
⋂

T [F̂ ,x,x],

even if considered modulo scalar factors of unitary modulus, is not finite, so that Lemma 5.5 can be applied to
obtain the sequencesx(k),x(k) ∈ ∂S [F̂ ,x,x]

⋂

T [F̂ ,x,x] with x(1) = x andx(1) = x. Therefore, there exists
j ≥ 1 such that

x( j+1) /∈ Ξ and x(i) ∈ Ξ
⋂

T [F̂ ,x] for all i ≤ j, (5.14)

and, similarly,

x( j+1) /∈ Ξ and x(i) ∈ Ξ
⋂

T [F̂ ,x] for all i ≤ j.

SinceΣ(F̂ ) is bounded, the resulting sequence of normalized matrix productsB̂(k) = Â(ℓk−1) · · · Â(ℓ j+1)

such thatx(k) = B̂(k)x( j+1) has a subsequence{B̂(ks)}s≥1 that converges to a limit point̂B in Σ(F̂ ). Therefore,
also the subsequences of vectors{x(ks)}s≥1 and{x(ks)}s≥1 have limit points

v = B̂x( j+1) = B̂Â(ℓ j) · · · Â(ℓ1)x and v = B̂x̄( j+1) = B̂Â(ℓ j ) · · · Â(ℓ1)x. (5.15)

For eachs≥ 1 there exists a matrix̂R(s) ∈ Σ(F̂ ) such that

B̂(ks+1) = R̂(s)B̂(ks).

Again by the boundedness ofΣ(F̂ ), the sequence{R̂(s)}s≥1 has a limit pointR̂ in Σ(F̂ ). By passing to the
limit, we can conclude that̂B = R̂B̂ and, thus,v = R̂vandv = R̂v.

In other words,R̂ is an l.s.m.p. ofF̂ andv andv are leading eigenvectors ofF . Thus, withy = v
and Ŝ= B̂Â(ℓ j ) · · · Â(ℓ1), Lemma 5.7 implies thatv andv are standard leading eigenvectors. Therefore, by
the assumedF -ciclicity and sincev, v̄ ∈ ∂S [F̂ ,x,x], there existsQ̂ ∈ Σk (for some integerk) and some
ϕ ∈ (0,2π ] such that

x = ei ϕQ̂v or x = ei ϕQ̂v̄.

Consequently, by (5.15), we obtain

x( j+1) = ei ϕ Â(ℓ j ) · · · Â(ℓ1)Q̂B̂x( j+1) or x( j+1) =
(

Â(ℓ j ) · · · Â(ℓ1)Q̂B̂
)2

x( j+1).

Therefore, sincêA(ℓ j ) · · · Â(ℓ1)Q̂B̂∈ Σ(F̂ ), in both cases the vectorx( j+1) is a leading eigenvector ofF .
Thus, withy = x( j+1) and Ŝ= Â(ℓ j ) · · · Â(ℓ1), Lemma 5.7 can be applied again to conclude thatx( j+1) is a
standard leading eigenvector, which contradicts (5.14).

Observe that the familyF = {A,B} of Example 5.1 fits perfectly the hypotheses of Theorem 5.8 for all
β < 1, but not forβ = 1. In fact, forβ = 1 the set (5.11) is not finite modulo scalar factors of unitarymodulus,
even if (5.12) holds all the same.

The next example illustrates the case of a family that satisfies the hypotheses of Lemma 5.7 and Theo-
rem 5.8 but Hypothesis 5.1. It shows that, whereas the thesisof Lemma 5.7 fails to hold, that of Theorem 5.8
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is satisfied. Therefore, we suspect that the thesis of Theorem 5.8 could be obtained in another way, without
passing necessarily through Lemma 5.7.

EXAMPLE 5.2. Consider the real 2×2-matrix familyF = {A,B}, where

A =

[

− 1
2 −

√
3

2√
3

2 − 1
2

]

and B =

[ 11
20

11
20

− 11
20 − 11

20

]

.

The eigenvalues ofA are e−i 2π
3 and ei

2π
3 with corresponding eigenvectorsx = [1 i]T andx = [1 − i]T, re-

spectively, so that Hypothesis 5.1 clearly does not hold. However, it is easy to see thatF is absolutely
asymptotically simple withρ(F ) = 1, A being the unique minimal s.m.p., that∂S [F ,x]

⋂

T [F ,x] is finite
(modulus scalar factors of unitary modulus) and that

S [F ,x,x] = absco
(

{x,x,Bx,ABx,A2Bx}
)

.

For this purpose, note thatA3 = I (identity matrix) andB2 = O (zero matrix) and that the range ofB is a
one-dimensional subspace proportional to the real vector[11

20 − 11
20]

T.
Thus, since all nonzero vectors ofC2 are leading eigenvectors ofF and sinceBx, ABx andA2Bx are

not of standard type, we can conclude that Lemma 5.7 is not true and that, on the contrary, the thesis of
Theorem 5.8 does hold all the same. ♦

The next results, analogous to Theorem 4.15 and to Corollary4.16, respectively, provide a deeper under-
standing of the structure of the b.c.p.S [F̂ ,x,x] obtained under the hypotheses of Theorem 5.8.

THEOREM 5.9. Let the hypotheses of Theorem 5.8 hold and let the setE of the standard leading eigen-
vectors ofF be non-real. Then each eigenvectorξ ∈ Ξ = E

⋂

∂S [F̂ ,x,x] satisfies one of the following two
statements:

(a) ξ is a vertex of the b.c.p.S [F̂ ,x,x].
(b) There exist s≥ 2 verticesξ1, . . . ,ξs of the b.c.p.S [F̂ ,x,x] such that

ξ1, . . . ,ξs ∈ Ξ and ξ ∈ absco
(

{ξ1, . . . ,ξs}
)

. (5.16)

Proof. Consider a standard leading eigenvectorξ ∈ Ξ and assume that it is not a vertex of the b.c.p.
S [F̂ ,x,x]. Then there must exists≥ 2 verticesξ1, . . . ,ξs of S [F̂ ,x,x] such that

ξ =
s

∑
i=1

λiξi with λi 6= 0, i = 1, . . . ,s, and
s

∑
i=1

|λi | = 1. (5.17)

Sinceξ is a standard leading eigenvector ofF , there exists an s.m.p.̃P of F̂ such thatP̃ξ = uξ with
|u| = 1. Thus, denoting by‖ · ‖ the complex polytope norm determined byS [F̂ ,x,x], for anyk≥ 1 we have

1 = ‖ξ‖= ‖P̃kξ‖ ≤
s

∑
i=1

|λi | · ‖P̃kξi‖.

Since‖P̃kξi‖ ≤ 1, in view of (5.17) we can claim that‖P̃kξi‖ = 1, that is

P̃kξi ∈ ∂S [F̂ ,x,x], i = 1, . . . ,s.

By Theorem 5.8, for any fixedi, the set of vectors{P̃kξi}∞
k=0 is finite (modulo scalar factors of unitary

modulus). Hence there exist integersℓ,m such that

P̃ℓ+mξi = γ P̃ℓ ξi , with |γ| = 1.

15



This implies thatP̃ℓ ξi is a standard leading eigenvector ofP̃m.
Moreover, since all the vertices of the b.c.p.S [F̂ ,x,x] obviously belong toT [F̂ ,x,x] (modulo scalar

factors of unitary modulus), there exist finite normalized productsŜi ∈ Σ(F̂ ) such that

ξi = Ŝi x.

This assumption is not restrictive because the other possibility, that is ξi = Ŝi x, would lead to the same
conclusions.

Furthermore,F -cyclicity implies that there exist finite normalized productsR̂i ,Ûi ∈ Σ(F̂ ) and complex
numbersr i andui with |r i | = |ui | = 1 such that







ξi = r i Ŝi R̂i ξ
or
ξi = r i Ŝi R̂i ξ̄ ,

(5.18)







ξ = ui Ûi P̃ℓ ξi

or
ξ = ui Ûi P̃ℓ ξ̄i .

(5.19)

Using the first of (5.18) and the first of (5.19) we obtain thatξi is a standard leading eigenvector ofF

whereas, using the second of (5.18) and the second of (5.19),we obtain thatξ̄i (and thusξi) is a standard
leading eigenvector ofF . Similarly, using the first of (5.18) and the second of (5.19)(or, specularly, the
second of (5.18) and the first of (5.19)) we obtainξi = γi Ŝi R̂i Ûi P̃ℓ ξ̄i for someγi with |γi | = 1 and then, in
turn, ξi = (Ŝi R̂i Ûi P̃ℓ)2 ξi , which means again thatξi is a standard leading eigenvector ofF . Therefore, we
conclude thatξi ∈ Ξ.

COROLLARY 5.10. Let the hypotheses of Theorem 5.8 hold and let the setE of the standard leading
eigenvectors ofF be non-real. Moreover, let the familyF be absolutely asymptotically simple. Then each
eigenvectorξ ∈ Ξ = E

⋂

∂S [F̂ ,x,x] is a vertex of the b.c.p.S [F̂ ,x,x].
Proof. Assume, by contradiction, that there exists a standard leading eigenvectorξ ∈ Ξ which is not a

vertex of the b.c.p.S [F̂ ,x,x]. Then it necessarily satisfies statement (b) of Theorem 5.9.
On the other hand, there exists a unique normalized minimal s.m.p. P̃ such thatP̃ξ = uξ with |u| = 1

(see Proposition 5.3). Therefore, for eachξi appearing in statement (b) there exists a proper normalizedright
factorP̃i of the s.m.p.P̃ such thatξi = uiP̃iξ or ξi = uiP̃i ξ̄ with |ui| = 1.

Thus we obtain

ξi ∈ absco
(

{P̃iξ1, . . . , P̃iξs}
)

or ξi ∈ absco
(

{P̃i ξ̄1, . . . , P̃i ξ̄s}
)

.

Now, since the essential system of vertices of a b.c.p. is unique modulo scalar factors of unitary modulus
and sinceξi is a vertex ofS [F̂ ,x,x], it necessarily holds that, for allj = 1, . . . ,s,

ξi = v j P̃iξ j or ξi = v j P̃iξ j with |v j | = 1.

In particular, for j = i, we obtain

ξi = viP̃iξi with |vi | = 1 or ξi = P̃2
i ξi ,

which, in both cases, implies that the proper normalized right factorP̃i of P̃ is itself an s.m.p., against the
uniqueness of̃P (modulo cyclic permutations).

6. Applications of the extended small CPE theorem. Although our results are mostly theoretical in
nature, they have potential impact on applications. One of these would lie in the fact that, if there is prior
knowledge that a certain setF has an extremal complex polytope norm, then one could devisealgorithms for
the computation ofρ(F ) that rely on the computation of the extremal points of the unit ball of the norm.
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Now we propose a suitable modification of the algorithm presented in [GZ08], which was based on the
small CPE theorem proved in [GWZ05]. This new version allowsus to construct the unit ball of an extremal
complex polytope norm for a nondefective finite real familyF = {A(i)}1≤i≤m which satisfies the hypotheses
of Theorem 5.8 in the case that the setE of the standard leading eigenvectors is not real.

ALGORITHM 6.1.
(Step 1) Choose a candidate s.m.p.Pk ∈ Σk(F ) (for somek), which we assume to have a pair{x, x̄} of

complex conjugate leading eigenvectors.
(Step 2) Computeρ = ρ(Pk)

1/k and define the scaled family

F
∗ = ρ−1

F (which is such thatρ(F ∗) ≥ 1).

(Step 3) SetW (0) = V (0) = X (0) = {x,x}, P(0) = absco
(

X (0)
)

ands= 1.

(Step 4) Compute the set of vectors

V
(s) = F

∗
(

W
(s−1)

)

.

(Step 5) IfV (s) ⊂ P(s−1) then STOP

(Step 6) SetP(s) = absco
(

X (s−1)∪V (s)
)

and compute an essential system of verticesX (s) of P(s) such

that

X
(s) ⊆ X

(s−1)∪V
(s).

(Step 7) SetW (s) = X (s)∩V (s), s= s+1 and Goto (Step 4).

The procedure produces a (possibly finite) sequence of self-conjugate absolutely convex setsP(s). If it
halts at (Step 5) for somes∗ and if span(X (s∗−1)) = Cn, then necessarilyρ(F ∗) = 1, so thatF ∗ is nothing
but the normalized familyF̂ . Moreover, the self-conjugate b.c.p.P(s∗−1) is equal toS [F̂ ,x,x], which
determines an extremal norm forF , and we have that

ρ(F ) = ρ(Pk)
1/k.

We conclude the paper by illustrating the foregoing algorithm with an example.

7. An illustrative example. We consider the real 4×4-matrix familyF = {A,B}, where

A =









−3 −2 1 2
−2 0 −2 1

1 3 −1 −5
−3 −3 −2 −1









and B =









1 0 −3 −1
−4 −2 −1 −4
−1 0 −1 2
−1 −2 −1 2









.

Step 1.On the basis of a preliminary computational investigation,we guess thatP2 = AB is a reasonable
candidate s.m.p. for the familyF . We compute the two leading complex conjugate eigenpairs ofP2, that is

λ1,2 = 10.874286706162435289±17.646835410096406617i

and

x =









0.72792977781254290782−0.34062961167742906135i
0.20390080201908339851+0.41457724740357478799i
−0.56613846958271645283+1.2278515180664638032i

1









,

x̄ =









0.72792977781254290782+0.34062961167742906135i
0.20390080201908339851−0.41457724740357478799i
−0.56613846958271645283−1.2278515180664638032i

1









.
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Step 2.We scale the familyF by ρ(P2)
1/2 = |λ1,2|1/2 = 4.5528302832023213335, so as to obtain

F
∗ = {A∗,B∗} =

{

A

ρ(P2)1/2
,

B

ρ(P2)1/2

}

.

Step 3.The two starting vectors arev1 = x andv̄1 = x.

We setW (0) = V (0) = X (0) = {v1, v̄1} andP(0) = absco
(

X (0)
)

.

Step 4.By applyingF ∗ to W (0) we obtain

V
(1) = {v2,v3, v̄2, v̄3},

wherev2 = A∗v1,v3 = B∗v1. A 4-digit approximation of the computed vectors follows:

v2 =
[

−0.2543+0.3120i 0.1486−0.3897i −0.6796−0.07133i −0.5850−0.5881i
]T

,

v3 =
[

0.3133−0.8839i −1.483−0.1530i 0.4038−0.1949i 0.3142−0.3770i
]T

.

Step 5.It is immediate to see thatV (1) is not included inP(0).

Step 6.We setP(1) = absco
(

X (0)∪V (1)
)

and compute the essential system of vertices

X
(1) = {v1,v2,v3, v̄1, v̄2, v̄3} = X

(0)∪V
(1).

Step 7.We set

W
(1) = X

(1)∩V
(1) = {v2,v3, v̄2, v̄3}

and go back to (Step 4).
Step 4.By applyingF ∗ to W (1) we obtain

V
(2) = {v4,v5,v6,v7, v̄4, v̄5, v̄6, v̄7},

wherev4 = A∗v2,v5 = A∗v3,v6 = B∗v2,v7 = B∗v3. A 4-digit approximation of the computed vectors follows:

v4 =
[

−0.3039−0.3084i 0.2818−0.2349i 0.8337+0.4733i 0.4967+0.2117i
]T

,

v5 =
[

0.6719+0.4410i −0.2460+0.3911i −1.3423+0.1622i 0.5246+0.8513i
]T

,

v6 =
[

0.5205+0.2447i 0.8214+0.4294i −0.0518−0.3112i −0.1171−0.1400i
]T

,

v7 =
[

−0.2662+0.0171i 0.0117+1.2176i −0.01948+0.07134i 0.6321+0.1383i
]T

.

Step 5.By computing the norms‖·‖
P(1) of the elements ofV (2), ‖v4‖P(1) > 1,‖v5‖P(1) = 1,‖v6‖P(1) >

1, ‖v7‖P(1) > 1, we see thatV (2) is not included inP(1).

Step 6.We setP(2) = absco
(

X (1)∪V (2)
)

and compute the essential system of vertices

X
(2) = {v1,v2,v3,v4,v6,v7, v̄1, v̄2, v̄3, v̄4, v̄6, v̄7} ⊂ X

(1)∪V
(2).

Step 7.We set

W
(2) = X

(2)∩V
(2) = {v4,v6,v7, v̄4, v̄6, v̄7}

and go back to (Step 4).
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Step 4.By applyingF ∗ to W (2) we obtain

V
(3) = {v8,v9,v10,v11,v12,v13, v̄8, v̄9, v̄10, v̄11, v̄12, v̄13},

wherev8 = A∗v4,v9 = A∗v6,v10 = A∗v7,v11 = B∗v4,v12 = B∗v6,v13 = B∗v7. A 4-digit approximation of the
computed vectors follows:

v8 =
[

0.4778+0.5034i −0.12363−0.02591i −0.6097−0.5590i −0.4607+0.1036i
]T

,

v9 =
[

−0.7666−0.4798i −0.2316−0.0015i 0.7955+0.5588i −0.8357−0.2768i
]T

,

v10 =
[

0.4437−0.4697i 0.2644−0.0084i −0.7407+0.6385i 0.0375−0.8753i
]T

,

v11 =
[

−0.7252−0.4261i −0.4762+0.0842i 0.10183+0.05680i −0.0220+0.1600i
]T

,

v12 =
[

0.1742+0.2896i −0.7038−0.2123i −0.1544−0.0469i −0.5152−0.2355i
]T

,

v13 =
[

−0.1845−0.0736i −0.3223−0.6871i 0.3404+0.0414i 0.3353−0.4935i
]T

.

Step 5.By computing the norms‖·‖
P(2) of the elements ofV (3), ‖v8‖P(2) > 1,‖v9‖P(2) > 1,‖v10‖P(2) >

1, ‖v11‖P(2) > 1, ‖v12‖P(2) > 1, ‖v13‖P(2) < 1, we see thatV (3) is not included inP(2).

Step 6.We setP(3) = absco
(

X (2)∪V (3)
)

and compute the essential system of vertices

X
(3) = {v1,v2,v3,v4,v6,v7,v8,v9,v10,v11,v12, v̄1, v̄2, v̄3, v̄4, v̄6, v̄7, v̄8, v̄9, v̄10, v̄11, v̄12} ⊂ X

(2)∪V
(3).

Step 7.We set

W
(3) = X

(3)∩V
(3) = {v8,v9,v10,v11,v12, v̄8, v̄9, v̄10, v̄11, v̄12}

and go back to (Step 4).
Step 4.By applyingF ∗ to W (3) we obtain

V
(4) = {v14,v15,v16,v17,v18,v19,v20,v21,v22,v23, v̄14, v̄15, v̄16, v̄17, v̄18, v̄19, v̄20, v̄21, v̄22, v̄23},

wherev14 = A∗v8,v15 = A∗v9,v16 = A∗v10,v17 = A∗v11,v18 = A∗v12,v19 = B∗v8,v20 = B∗v9,v21 = B∗v10,v22 =
B∗v11,v23 = B∗v12. A 4-digit approximation of the computed vectors follows:

v14 =
[

−0.5968−0.3976i −0.04327+0.04719i 0.6634+0.1025i 0.1356−0.0918i
]T

,

v15 =
[

0.4145+0.3180i −0.1963−0.0955i 0.4220+0.0748i 0.4918+0.1324i
]T

,

v16 =
[

−0.5548+0.0689i 0.1387−0.2664i 0.3932+0.7123i −0.1494+0.2268i
]T

,

v17 =
[

0.6998+0.3265i 0.2690+0.1974i −0.4714−0.2263i 0.7518+0.1652i
]T

,

v18 =
[

−0.0658−0.2113i −0.1219−0.1583i 0.1742+0.1927i 0.5299+0.0214i
]T

,

v19 =
[

0.6079+0.4561i 0.1732−0.3991i −0.1734+0.0577i −0.11912+0.06911i
]T

,

v20 =
[

−0.5090−0.4128i 1.335+0.5430i −0.3735−0.1389i −0.2717−0.1383i
]T

,

v21 =
[

0.5773−0.3316i −0.3762+1.0451i 0.0817−0.4216i −0.0344−0.4179i
]T

,

v22 =
[

−0.2216−0.1662i 0.8433+0.1843i 0.1273+0.1514i 0.3365+0.1144i
]T

,

v23 =
[

0.2531+0.1462i 0.6427+0.0561i −0.2307−0.1568i 0.07851−0.06352i
]T

.
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Step 5. By computing the norms‖ · ‖
P(3) of the elements ofV (4), ‖v14‖P(3) > 1, ‖v15‖P(3) < 1,

‖v16‖P(3) < 1, ‖v17‖P(3) > 1, ‖v18‖P(3) < 1, ‖v19‖P(3) > 1, ‖v20‖P(3) > 1, ‖v21‖P(3) > 1, ‖v22‖P(3) < 1,
‖v23‖P(3) < 1, we see thatV (4) is not included inP(3).

Step 6.We setP(4) = absco
(

X (3)∪V (4)
)

and compute the essential system of vertices

X
(4) = {v1,v2,v3,v4,v6,v7,v8,v9,v10,v11,v12,v14,v17,v19,v20,v21,

v̄1, v̄2, v̄3, v̄4, v̄6, v̄7, v̄8, v̄9, v̄10, v̄11, v̄12, v̄14, v̄17, v̄19, v̄20, v̄21} ⊂ X
(3)∪V

(4).

Step 7.We set

W
(4) = X

(4) ∩V
(4) = {v14,v17,v19,v20,v21, v̄14, v̄17, v̄19, v̄20, v̄21}

and go back to (Step 4).
Step 4.By applyingF ∗ to W (4) we obtain

V
(5) = {v24,v25,v26,v27,v28,v29,v30,v31,v32,v33, v̄24, v̄25, v̄26, v̄27, v̄28, v̄29, v̄30, v̄31, v̄32, v̄33},

wherev24= A∗v14,v25 = A∗v17,v26 = A∗v19,v27 = A∗v20,v28= A∗v21,v29= B∗v14,v30= B∗v17,v31= B∗v19,v32=
B∗v20,v33 = B∗v21. A 4-digit approximation of the computed vectors follows:

v24 =
[

0.6176+0.2234i 0.00056+0.10946i −0.4543+0.0221i 0.1006+0.2060i
]T

,

v25 =
[

−0.3526−0.2790i 0.06477−0.00775i −0.3911+0.0701i −0.5965−0.2821i
]T

,

v26 =
[

−0.5671−0.0822i −0.2170−0.2106i 0.4166−0.2514i −0.4123−0.0781i
]T

,

v27 =
[

−0.4523−0.0576i 0.3280+0.2120i 1.1481+0.4492i −0.3203+0.0059i
]T

,

v28 =
[

−0.2123−0.5168i −0.2971+0.2391i −0.1012+1.1673i −0.1609−0.1932i
]T

,

v29 =
[

−0.5980−0.1347i 0.2785+0.3867i 0.04497+0.02448i 0.06398+0.00375i
]T

,

v30 =
[

0.2992+0.1845i −1.2900−0.4690i 0.2801+0.0505i 0.1619−0.0361i
]T

,

v31 =
[

0.2740+0.0470i −0.4674−0.2988i −0.1478−0.0825i −0.2238+0.0928i
]T

,

v32 =
[

0.1940+0.0313i 0.1817+0.2763i 0.07446+0.06045i −0.5118−0.1779i
]T

,

v33 =
[

0.0805+0.2967i −0.3297+0.2919i −0.1599−0.0181i 0.0054−0.4772i
]T

.

Step 5. By computing the norms‖ · ‖
P(4) of the elements ofV (5), ‖v24‖P(4) < 1, ‖v25‖P(4) < 1,

‖v26‖P(4) < 1, ‖v27‖P(4) > 1, ‖v28‖P(4) > 1, ‖v29‖P(4) < 1, ‖v30‖P(4) < 1, ‖v31‖P(4) < 1, ‖v32‖P(4) < 1,
‖v33‖P(4) < 1, we see thatV (5) is not included inP(4).

Step 6.We setP(5) = absco
(

X (4)∪V (5)
)

and compute the essential system of vertices

X
(5) = {v1,v2,v3,v4,v6,v7,v8,v9,v10,v11,v12,v14,v17,v19,v20,v21,v27,v28

v̄1, v̄2, v̄3, v̄4, v̄6, v̄7, v̄8, v̄9, v̄10, v̄11, v̄12, v̄14, v̄17, v̄19, v̄20, v̄21, v̄27, v̄28} ⊂ X
(4)∪V

(5).

Step 6.We set

W
(5) = X

(5) ∩V
(5) = {v27,v28, v̄27, v̄28}

and go back to (Step 4).
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Step 4.By applyingF ∗ to W (5) we obtain

V
(6) = {v34,v35,v36,v37, v̄34, v̄35, v̄36, v̄37},

wherev34 = A∗v27,v35 = A∗v28,v36 = B∗v27,v37 = B∗v28. A 4-digit approximation of the computed vectors
follows:

v34 =
[

0.2654+0.0461i −0.3760−0.1707i 0.2164+0.0219i −0.3521−0.3004i
]T

,

v35 =
[

0.1775+0.4070i 0.1024−0.3282i −0.04349−0.00020i 0.4155−0.2874i
]T

,

v36 =
[

−0.7855−0.3099i 0.2826−0.1464i −0.2935−0.0834i −0.4376−0.1766i
]T

,

v37 =
[

0.0554−0.8403i 0.4806+0.2623i −0.0018−0.2278i 0.1287−0.3328i
]T

.

Step 5. By computing the norms‖ · ‖
P(5) of the elements ofV (6), ‖v34‖P(5) > 1, ‖v35‖P(5) < 1,

‖v36‖P(5) < 1, ‖v37‖P(5) < 1, we see thatV (6) is not included inP(5).

Step 6.We setP(6) = absco
(

X (5)∪V (6)
)

and compute the essential system of vertices

X
(6) = {v1,v2,v3,v4,v6,v7,v8,v9,v10,v11,v12,v14,v17,v19,v20,v21,v27,v28,v34

v̄1, v̄2, v̄3, v̄4, v̄6, v̄7, v̄8, v̄9, v̄10, v̄11, v̄12, v̄14, v̄17, v̄19, v̄20, v̄21, v̄27, v̄28, v̄34} ⊂ X
(5)∪V

(6).

Step 7.We set

W
(6) = X

(6)∩V
(6) = {v34, v̄34}

and go back to (Step 4).

Step 4.By applyingF ∗ to W (6) we obtain

V
(7) = {v38,v39, v̄38, v̄39},

wherev38 = A∗v34,v39 = B∗v34. A 4-digit approximation of the computed vectors follows:

v38 =
[

−0.1168−0.0825i −0.2890−0.0958i 0.1496+0.2227i 0.0552+0.1385i
]T

,

v39 =
[

−0.00696+0.06167i 0.1938+0.2936i −0.2605−0.1469i −0.09530−0.07188i
]T

.

Step 5.By computing the norms‖ · ‖
P(6) of the elements ofV (7), ‖v38‖P(6) < 1, ‖v39‖P(6) < 1, we see

that

V
(7) ⊂ P

(6).

Hence, the algorithm halts.

Since span
(

P(6)
)

= C4, we can conclude thatP(6) = absco
(

X (6)
)

is a self-conjugate b.c.p. which

determines an extremal norm forF and thatρ(F ) = |λ1,2|1/2 = 4.5528302832023213335.
The computations have been performed using the softwareMathematica(see [Wol05]) with a 30-digit

accuracy. For the computation of the polytope norms at (Step5) we used the functionNMinimize.
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8. Concluding discussion. In this section we discuss the results of this paper in the light of the existing
literature.

First of all, we observe that there exist families of real matrices which have an extremal complex polytope
norm but do not admit any extremal real polytope norm. For example, any familyF = {Aθ} consisting of a
single rotation matrix

Aθ =

[

cos(θ ) −sin(θ )
sin(θ ) cos(θ )

]

,

with θ rationally independent onπ , does not admit any extremal real polytope norm (see [BW92]). However,
it admits a complex polytope norm with unit ball given byP = absco({zθ ,zθ}), zθ being a leading eigen-
vector ofAθ . This justifies the use of complex polytope norms and relatedalgorithms also for families of real
matrices.

Concerning our main result, that is Theorem 5.8, we remark that the proof is based on Lemma 5.5, which
makes use of Hypothesis 5.1 in an essential way. Since the lemma is not valid if Hypothesis 5.1 does not hold
(see Example 5.2), it seems that, in order to extend the validity of Theorem 5.8 to the this case, a different
proof should be found. On the other hand, Hypothesis 5.1 appears to be generic in the sense that the measure
of the set of excluded cases is zero. Nevertheless, we consider such an extension of the theorem an important
theoretical issue.

Our approach for the computation of the joint spectral radius passes through the construction of the unit
ball of a polytope extremal norm. In order to illustrate its theoretical relevance, we recall its applications to
the zero-stability analysis of variable stepsize BDF formulæ[GZ01b] and to the asymptotic stability analysis
of one-step methods for the numerical approximation of delay differential equations [GZ03b]. Finally, in the
recent paper [GCCZ], we have proved that every pair of 2× 2 binary sign-matrices, that is, with entries in
{−1,0,1}, has the finiteness property. This supports the conjecture by Blondel and Jüngers [JBss] that this
holds in general for all pairs of sign-matrices of any dimension. In turn, this fact would have the consequence
that the finiteness property holds true for all families of rational matrices.

Now we discuss the computational relevance of Algorithm 6.1. It is clear that, at its current state, the
algorithm is designed to verify that a candidate productP ∈ Σ(F ) is an s.m.p. for a non-defective family
F . This is possible under certain assumptions, the main of which is asymptotic simplicity, which cannot
be checked a priori. Nevertheless, ifP is an s.m.p., the algorithm always converges. Indeed, the mentioned
assumptions provide sufficient conditions for convergencein a finite number of steps.

We conclude by remarking that a different, quite interesting, approach in order to approximate the joint
spectral radius of a finite familyF of real matrices has been proposed recently by Protasov [Pro96, Pro05].
The main idea is still based on the property that any irreducible family F has an extremal norm and that its
unit ball is a centrally symmetric invariant compact set forF . The algorithm constructs analmost invariant
setR, that is, such that

min
λ>0

dist(co(F (R)) ,λ R)

be sufficiently small, where dist denotes some distance between sets and co(F (R)) denotes the convex hull
of the union of the setsAR for all A∈ F . If this holds, the minimizerλ ∗ provides a good approximation of
ρ(F ).

Protasov’s algorithm is able to reach a given accuracyε in polynomial time with respect to 1/ε. Its
implementation is based on the recursive application ofF to a sequence of real polytopes which are defined
in the following way. The first polytopeR0 is chosen, for example, as the unit ball of the 1-norm. Then the
polytopeRm+1 is given either by co(F (Rm)) if the number of its vertices does not exceed a certain bound
ν(ε)) or, otherwise, by a polytope with at mostν(ε) vertices chosen in such a way that

(1+ ε)co(F (Rm)) ⊂ Rm+1 ⊂ co(F (Rm)) .
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At the m-th step the approximation toρ(F ) is given bym
√

dm, wheredm is the radius of the smallest circle
includingRm.

Differently from our approach, in general the algorithm proposed by Protasov does not show convergence
in a finite number of steps but, on the other hand, it does not require a guess for an s.m.p. (which is crucial
for Algorithm 6.1) and also provides estimates of the accuracy obtained at every iteration.
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