EXTREMAL COMPLEX POLYTOPE NORMS
FOR FAMILIES OF REAL MATRICES*
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Abstract. In this paper we consider finite familieg of real nx n-matrices. In particular, we focus on the computation of the
joint spectral radiusp(.%#) via the detection of aextremal nornin the class ofomplex polytope normsvhose unit balls arbalanced
complex polytopesvith a finite essential system of verticeSuch a finiteness property is very useful in view of the awmsibn of
efficient computational algorithms. More precisely, we i the results obtained in our previous paper [GWZ05], relvee gave
some conditions on the family which are sufficient to guarantee the existence of an extreamaplex polytope norm. Unfortunately,
they are such to exclude unnecessarily many interestingsaafsreal families. Therefore, here we relax somehow thelitons given
in [GWZO05], in order to provide a more satisfactory treatinefthe real case.
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1. Introduction. In the last decade, a significant progress has been donenfithitheory of thgoint
spectral radiusof matrix families. As is well known, given a bounded set ddlrer complex matrices#,
its joint spectral radiup (%) determines the maximal growth of all products that can bméaf by taking
factors in.#. Therefore, its knowledge is important in all applicatiomsere the change of status can be
described by more than one matrix. For instance, it chatiaetethe regularity of certain wavelets (see, e.g.,
[DL92, Mae95, Mae98]), the capacity of codes (see, e.g., BaA]), the stability of hybrid systems (see, e.g.,
[Bar88, Wir98]) or of the numerical solution of ordinary fdifential equations (see, e.g., [GZ01b]). Further
references can be found in [DLO1, Wir02].

In the light of this, it clearly appears that efficient metedor the computation of the joint spectral radius
of a given set of matrices would be often very welcome.

Unfortunately, we are still far from the availability of duefficient methods on a general setting basis.
Indeed, the theoretical forecasts in this sense are notdiggbsed at all (see, e.g., [TB97]). Nevertheless,
an algorithm for efficiently computing lower and upper bositap(.%) has been proposed in [Gri96] and,
lately, further promising approaches for the approximatibp(.% ) have been considered (see, e.g., [BNO5b,
BNTO5, BNO5a, Pro05]).

In [GWZ05], also the authors of the present paper have ricgivien a contribution in the direction
of the computation op(.%#) by considering special classes of complex matrix familiesparticular, they
have determined some conditions on the family which arecefft to guarantee the existence of an extremal
complex polytope norpthat is a norm whose unit ball iskelanced complex polytopeth a finite essential
system of verticeee [GZ07, VZss]). Such a finiteness property is very usafulew of the construction
of algorithms aimed at the actual computatiorp¢##) via the detection of an extremal norm, as is done, for
example, in [GZ08].

However, the hypotheses made in [GWZ05] on the family of inasrare such to exclude unnecessarily
many interesting cases of real families. In this paper, wdine ourselves to real matrix families and succeed
in relaxing somehow the sufficient conditions assumed in KB¥], so as to provide a more satisfactory
treatment of the real case. As in [GWZO05], under such relaediitions, we are able to construct the unit
ball of an extremal norm, which is a balanced complex polgtafih a finite essential system of vertices.

The organization of the paper is the following. In Section € meview some of the most important
definitions and results available in the literature regagdhe joint spectral radius of a family of matrices
and the extremal norms. In Section 3 we recall the definitafrisalanced complex polytope and complex
polytope norm, and review some of their most important prioge In Section 4 we resume the definitions
and the results given in [GWZ05]. The main results of thisqrape stated and proved in Section 5. Then,
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in Section 6, we present a new computational algorithm antluestrative example is provided in Section 7.
Finally, in Section 8 we discuss the results of this papeelation to the existing literature.

2. Preliminary results from the literature. For a bounded family of complex x n-matrices.# =
{AD};c », the following definitions are given in the literature.

Let || - || be a given norm on the vector spac® and let the same symbfpt || denote the corresponding
inducednxn-matrix norm, too. Then, for eadt> 1, consider the sét(.#) of all possible products of length
k whose factors are elements.&f, that is

Sk(F) = {A . AW iy e 7Y,
and the number

A(#)= sup [P, (2.1)
PeX(F)

and define thgoint spectral radiuof .# as

p(.7) = limsupp(7)*/*
k—oo
(see [RS60]). Note that the numbgig.%) depend on the particular norin || used in (2.1) whereas, by the
equivalence of all the norms in finite dimensional spap¢s?) is independent of it.
Analogously, leto(-) denote the spectral radius of as n-matrix and then, for eack> 1, consider the
number

p(F)= sup p(P)

Pez(F)
and define th@eneralized spectral radiusf .# as

p(.F) = limsuppy (7))
k*)oo
(see [DL92)).
Recently it has been shown that

p(7) = p(F)

(see [BW92, EIs95, SWP97, Shi99]). This means that the gmidtthe generalized spectral radius%fare
the same number, which we shall simply call #pectral radiusof the family of matrices# and denote by
p(%). Such result generalizes the well-known Gelfand theorara &ingle matrix.

Given a norm| - || on the vector spadg" and the corresponding inducee n-matrix norm, we shall still
use the same notation to define

|7 | = pa(F) = sup|| AV].
ies

The following characterization g#(.%) can be found, for example, in [RS60] and [EIs95].
THEOREM 2.1. The spectral radius of a bounded famify of complex x n-matrices is characterized
by the equality

F)=_inf | F|, 2.2
p(#)= inf |7 22)

where_#" denotes the set of all possible inducedmmatrix norms.
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Given a family.#, an important question to answer is whether or not the inRig)(is actually attained
by some induced matrix norm. To this purpose, we give th@datg definition.
DEFINITION 2.2. We shall say that a norr- || satisfying the condition

171« = p(F)

is extremalfor the family.7.

It is well known that, for a single family{A}, the existence of an extremal norm is equivalent to the
fact that the matripA is nondefectivgi.e., all of the blocks relevant to the eigenvalues of maximmodulus
are diagonal in its Jordan canonical form. Whengugk) > 0, another equivalent property is that, with
A=p(A)1A, the power seE(A) = {AK | k> 1} i |s bounded. These results generalize to a bounded family
Z as follows. Given a bounded famil = {AD},. , of complexn x n-matrices withp(.%) > 0, let us
consider thenormalizedfamily

F ={p(F) AV}ic s,

whose spectral radius j:s(f/;) = 1. Then consider the semigroup of matrices generate@biye.

7) = | (). (2.3)

k>1

DEFINITION 2.3. A bounded family7 of complex nxn-matrices is said to beefectiveif the corre-
sponding normalized famd? is such that the SemIgI’OlEZ(J) is an unbounded set of matrices. Otherwise,
if Z(#) is bounded, then the famil¥ is said to benondefective

Note that we gave the definition of defective family withomtalving directly the spectral properties of
its elements. The following result can be found, for examipl§Koz90] or [BW92].

PROPOSITION2.4. A bounded family# of complex rx n-matrices admits an extremal noff|.. if and
only if it is nondefective.

In order to state another important result about defectivé mondefective families (see [Bar88] or
[Els95]), we give the following definition according to [RB

DEFINITION 2.5. A bounded family? = {A"},c » of complex xn-matrices is said to beeducibleif
there exist a nonsingularsn-matrix M and two integersinn, > 1, n; + np = n, such that, for all ie .7, it
holds that

M—1AOM =

where the blocks (ﬁ Ag'; Ag; are g x ng-, M x Np- and rp x n-matrices, respectively. If a familg is not
reducible, then it is said to biereducible

THEOREM 2.6. If a bounded family? of complex x n-matrices is defective, then it is reducible.

Remark that the opposite implication is not necessarilg.tfeor example, fon > 2 all single families
{A} are clearly reducible, but not necessarily defective.

The following corollary to Theorem 2.6 is obvious.

COROLLARY 2.7.If a bounded familyZ of complex ixn-matrices is irreducible, then it is nondefective.

An important conjecture, the so call&thiteness Conjecturarisen from work in [DL92] and stated in
[LW95], whose validity would be of much help for the actuahgoutation of the spectral radiyg.%#) of
finite families, involves the following definitions.

DEFINITION 2.8 (Finiteness Property finite family of complex Rn-matrices# is said to have the
finiteness propertif, there exist k > 1 and a producP € 3 (.%) such that

P(F) = P (F)VN = p(F)/¥. (2.4)
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DEFINITION 2.9.1f Z is a bounded family of complexxm-matrices, any matrif e (&) satisfying
(2.4)for some k > 1 will be called aspectrum-maximizing produgin short, ans.m.p) for .%.

Observe that the finiteness property means the existenddexst one s.m.pP for finite families. In
[LW95] some sufficient conditions in terms of extremal norgigaranteeing that the finiteness property holds,
have been given. On the contrary, the Finiteness Conjedtatng that all finite sets of matrices have the
finiteness property, was instead recently disproved in [BMOd, later, also in [BTV03].

Now we recall the following definition from [GZ01a].

DEFINITION 2.10. Assume that¥# is a normalized bounded family of complex n-matrices (i.e.,
p(#) = 1) and that there exists a sequence of produ@sQy, (-7 ), dk nondecreasing integers, such that

lim Qi = Q, (2.5)

whereQ e I(F) andp(@) = 1. ThenQ will be called alimit spectrum-maximizing produdin short, an
[.s.m.p) for .#.

Note that, for a normalized family#, an s.m.p.P is an |.s.m.p., too. To see this, just git= P for
all k> 1. Moreover, if the family7 is nondefective, another possibility is to consider the @osequence
{P}k>1 and, sinceZ(.%) is bounded, to extract a SUbSunelﬁE%S}Ql converging to som& € 2(.%),
which obwously SatISer$)(Q) = 1. For the sake of brevity, we shall say that such a limit pointhe
sequence PX}-1 is aninfinite powerof the matrixP. For nondefective families, the following result has
been proved in [GZ03a].

THEOREM 2.11. Let % be a (possibly infinite) nondefective bounded family of dexpx n-matrices.
Then there exists ars.m.p.Q for the normalized family? .

On the contrary, for defective families, some counteredam the existence of l.s.m.p.’s when the
dimension of the matrices is> 4 have been given.

3. Complex polytopes and related norms. In this section we recall from [GZ07] the definition of
balanced complex polytop@hich is the generalization of symmetric real polytope(seg., [Zie95]) to the
complex space, along with some related results.

If 2" ={X }1<i<mis afinite set of vectors, then

X = i/\i X with i|/\i| < 1}. (3.1)

DEFINITION 3.1. We shall say that a bounded sét C C" is a balanced complex polytop.c.p.) if
there exists a finite set of vecto®s = {X; }1<i<m such thasspar{.2") = C" and

abscq2) = {xe c"

& =abscd ). (3.2)

Moreover, ifabscd2™') & abscd.2") forall 27 ¢ 27, thenZ2” will be called anessential system of vertices
for 22, whereas any vector uwith ue C, |u| = 1, will be called avertexof &.

From a geometrical point of view, a b.c.p? is not a classical polytope. In fact, if we identify the
complex spac&€" with the real spac&?", we see that?? is not bounded by hyperplanes. In general, even the
intersectionZZ NR" is not a classical polytope. However, if the b.c4. admits an essential system of real
vertices, then? R" is a classical polytope.

The next proposition states the uniqueness of the esseptildm of vertices (modulo scalar factors of
unitary modulus).

PROPOSITION3.2. Assume that?” = {x1)}1<i<m and 2" = {£V},-;< are two essential systems of
vertices for a b.c.pZ?. Then k=m and, for eachi 1,...,m, there exist;j 1 < ji <m,andu e C, |uj| =1,
such thatk) = ux{ii,

Now we extend the concept pblytope normo the complex case in a straightforward way.
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LEMMA 3.3.Any b.c.p.Z is the unit ball of a nornj| - ||  on C".

DEFINITION 3.4. We shall callcomplex polytope normany norm|| - || %2 whose unit ball is a b.c.pZ?.

The corresponding vector norm is characterized as follows.

PROPOSITION3.5.Let#Z be a b.c.p. and lef - || » be the corresponding complex polytope norm. Then,
for any ze C", it holds that

12| = min{iw ‘ z= i:i/\ixi}, (3.3)

whereZ” = {Xi }1<i<m iS an essential system of vertices fé.

The next theorem shows that the set of the complex polytopasisdensen the set of all norms defined
on C" and that, consequently, the corresponding set of induceédxcamplex polytope norms idensein
the set of all induced x n-matrix norms (see [GWZ05]).

THEOREM3.6. Let| - || be a norm orC". Then for any > O there exists a b.c.p?’; whose correspond-
ing complex polytope nori- || satisfies the inequalities

Il < Ixe < (1+&)[X|| forallxe C™
Moreover, denoting by - || and|| - || also the corresponding induced matrix norms, it holds that

(1+&) YA < ||Alle < (1+¢€)||A| forall AeC™,

4. Thesmall CPE theorem. In this section we resume the main definitions and resulesgiv[GWZ05].

Complex polytope norms play a particular role. In fact, Tite®o 3.6 allows us to refine Theorem 2.1.

PrRoOPOSITION4.1. The spectral radius of a bounded fami# of complex ixn-matrices is characterized
by the equality

p(F) (EP (4.1)

= inf
lI-ll€Apol

where. ;0 denotes the set of all possible inducedmmatrix complex polytope norms.

The natural question arises whether a nondefective fardityits an extremal complex polytope norm.
An important necessary condition for this follows.

THEOREM 4.2. Let . % = {A(i)}lgigm be a finite nondefective family of complex n-matrices and
assume that there exists an extremal complex polytope fiofm. Then has at least an s.m.B.

It would be nice to be able to reverse Theorem 4.2, but this:baget been done unless assuming some
additional conditions on the family.

For any vectox € C" and for any normalized familyﬁ, consider the set

T[F X ={x} U{Px|Pe (%)},

i.e. thetrajectoryobtained by applying all the normalized produlétef matrices of# to the vecto.

The following characterization holds.

PrRoOPOSITION 4.3. Let.# be a bounded family of complexxnn-matrices and let x C". Then
spar(ﬂ[f/;,x]) is the smallest linear subspace V@t containing x such tha# (V) CV.

COROLLARY 4.4. Let.Z be an irreducible bounded family of complex m-matrices and let x C",
x# 0. Then

spar(y[fi,x]) —Cn. (4.2)
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For a general family of matrice%, the sets of the type
SF N = abscc(ﬂ[ﬁ,x]) (4.3)

play an important role.

PROPOSITION4.5. Let.# be a nondefective bounded family of complexmmatrices and, given a
vector xe C", let (4.2) hold. Then the set’[.#,X] is the unit ball of an extremal norm fo#.

By virtue of the foregoing result, it is interesting to findnzbtions under whicp?’[ﬁ,x] is generated by
a finite number of points of the trajectof[.#,x]. So, if (4.2) holds, the se¥[%,X] is a b.c.p. and, thus,
we have an extremal complex polytope norm.

Our attention is focused on families that satisfy some paldr properties.

DEFINITION 4.6. An eigenvector ¥ 0 of a matrix P related to an eigenvaldewith |A| = p(P) is said
to be aleading eigenvectarf P.

DEFINITION 4.7. Let.# be a nondefective bounded family of complexmmatrices. A leading eigen-
vector x+ 0 of either an s.m.pP of % or of an I.s.m.p.Q of the normalized family” is said to beeading
eigenvectoof.# (and of.Z t00).

REMARK 4.1. Because of Theorem 2.11, any nondefective bounded fafniigs at least one leading
eigenvector.

DEFINITION 4.8. Let.# be a family of complex r n-matrices. A sef2” ¢ C" is said to be#-cyclic if
for any pair(x,y) € 2" x 2 there existn, 3 € C with

lal-|Bl=1 (4.4)
and two (finite) normalized product%@ € Z(ﬁ) such that

y=aPx and x= BQy.

REMARK 4.2. Because of (4.4), the normalized produé@ andQP determined in the above definition
are s.m.p. of the normalized familf and the setZ" is necessarily included in the sgf of the leading
eigenvectors of the family.

DEFINITION 4.9. A nondefective bounded famify of complex n< n-matrices is said to basymptot-
ically simpleif the setZ of its leading eigenvectors is finite (modulo scalar nonZantors) and% -cyclic.

As in Section 2, we shall say that a mat€)is aninfinite powerof another matri>e if it is a limit point
of the sequencePk}kzl. Observe that any eigenvaldeof an infinite poweiQ of a matrixP satisfies either
IA| =1 orA =0, since these are the only two possible limit values of thraeric power sequendgp < }i-1
whenevelu| < 1. Moreover, given a nondefective matfxwith p(P) = 1, there exists at least an infinite
powerQ of P with an eigenvalu@ = 1, whose multiplicity is equal to the sum of the multipliesi of all the
eigenvalueg! of P with || = 1. This easily follows from the fact that the power sequefje€} -1 has the
limit point 1 whenevefu| =1 (see, for example, [HW79]).

REMARK 4.3. It follows from the above observations that, for a (nondife¢ asymptotically simple
family .%, each s.m.p.P and each I.s.m.pQ have only one leading eigenvector (modulo scalar nonzero
factors). Otherwise there would exist at least one |.s.wf the normalized family#, obtained as an infinite
power, with an eigenspace of dimensipr? related to the eigenvalud = 1. This would contradict the
finiteness (modulo scalar nonzero factors) of the&etf leading eigenvectors.

Observe that all the cyclic permutations of a proda¢tave the same eigenvalues with the same multi-
plicities. Thus, ifP = Alk) .. Ali1) js an s.m.p. for a familyZ, then each of its cyclic permutations

Als)  Al)Al)  Allsi)  g=1 . k-1
6
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still is an s.m.p. fotZ, along with all the powers d? and their cyclic permutations.

DEFINITION 4.10. Let.Z be a family of complex r n-matrices. An s.m. is said to beminimalif it
is not a power of another s.m.p. &f.

Itis clear that, for any s.m.p° of a family.Z, it holds that eitheP is minimal orP is a power of another
s.m.p., which is minimal.

We have the following characterization of asymptoticaliggle families.

PrRoPOSITION4.11. A nondefective bounded familf of complex nx n-matrices is asymptotically
simple if and only if it has a minimal s.m.@® with only one leading eigenvector (modulo scalar nonzero
factors) such that the se¥ of the leading eigenvectors &f is equal to the set of the leading eigenvectors of
P and of its cyclic permutations.

The following definition selects a particular class of asymtipally simple families.

DEFINITION 4.12. A nondefective bounded famil)f of complex nx n-matrices is said to babso-
lutely asymptotically simpléf it is asymptotically simple and has a unique minimal s.ngmodulo cyclic
permutations).

Itis clear that, for absolutely asymptotically simple féigs, the unique minimal s.m.j® coincides with
the minimal s.m.p. given by the characterizing Proposifidrl. Moreover, the cardinality of the sét of its
leading eigenvectors (modulo scalar nonzero factors)usleq the number of factors &f.

LEMMA 4.13.Let.¥ = {A(U}lgigm be a nondefective finite family of complex n-matrices and, given
a vector xe C", assume that (4.2) is satisfied and that the (bounded).8&t#,x (.7 [-%,x], modulo scalar
factors of unitary modulus, is not finite. Then there existeguence of distinct vectors

x¥ e 9.7 NN 77 X
with X = x such that, for all k> 1,
XD — Al for somety € {1,...,m},
whereAl) = AV /p(.Z) € .#, 1 <i <m, and such that, wheneveekh,

X £ ux forall u e C with |u] = 1.

The following theorem is the main result of [GWZO05].

THEOREM4.14 (small CPE TheoremAssume that a finite familyr = {A(U}lgigm of complex rx n-
matrices is nondefective and asymptotically simple. Megedet x+# 0 be a leading eigenvector oF and
assume that (4.2) is satisfied. Then the set

0.7 XN 77X (4.5)

is finite modulo scalar factors of unitary modulus. As a copssce, there exist a finite number of normalized
productsPM), ... P® € 5(.%) such that

SF X = abscc({x, PUx, ..., If’(S)x}), (4.6)

so that[.#,X] is a b.c.p.

Remark that, if all the matrices of the family are real and if also the starting leading eigenvexgtsr
real, then Theorem 4.14 determines a classical polytof.in

The next results are useful for a deeper understanding ddttheture of the b.c.p.”’[.#,X] obtained
under the hypotheses of Theorem 4.14.

THEOREM4.15. Let the hypotheses of Theorem 4.14 hold. Then each leadjagwctol of .7 in the
set= = ZN0.7[.#,X satisfies one of the following two statements:
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(a) € is a vertex of the b.c.p?[.%, X]; i
(b) there exist s> 2 verticesés, ..., &s of the b.c.p.”[#, x| such that

&,....6€= and &€ abscc({El,...,Es}). (4.7)

COROLLARY 4.16. Let the hypotheses of Theorem 4.14 hold and, moreover,defathily.7 be ab-
solutely asymptotically simple. Then all the leading eigerors of# (in the set= = £ (19.7[.#,X]) are
vertices of the b.c.p¥[.#, X].

5. Improving the small CPE theorem for real families. Unfortunately, the hypotheses assumed by
Theorem 4.14 are such to exclude some cases of real fanhifieson the contrary, clearly admit an extremal
complex polytope norm which could be determined by a sietaidification of the procedure based on the
construction of the trajectory’[.%,x]. We illustrate this fact by means of the following example.

ExampLE 5.1. Consider the real2 2-matrix family.# = {A,B}, where

_ | cog1) —sin(1)

z 27
sin(1)  cog1) ] and B:B{(z) 6}Wlth0<[3§1.

The eigenvalues dk are €' and é with corresponding eigenvectaxs= [1 i]T andx = [1 —i]T, respec-
tively. The eigenvalues @ areBT‘[2 and 0. Thup(A) =1 andp(B) = BT‘[Z Now consider the b.c.p.
P = abscd{x,x}), (5.1)
whose boundarg Z intersectsR? on the unit circle
@ = {[xl xo|T € R2 \ x§+x§:1}. (5.2)
It is immediately seen that
AZ=2 and BZ=abscq[B0]") C 2,
where we mean b & the set{y = Ax: x € & } and similarly byB &?. Consequently
Al =1, [Blz=B, p(F)=IIZ]r=1

Consequently, whenev@r < 1, the matrixA is the unique minimal s.m.p. of and all the I.s.m.p.’s of
Z are (infinite) powers of.

On the contrary, fof3 = 1 it is not difficult to prove that, whereasremains the unique minimal s.m.p.,
there exist some |.s.m.p.’s other than the (infinite) povaés such as the matricés”B andBA™, where

V2 V2

A°— | 2 2
Y2 o2 |
2 2

which is an infinite power oA. In fact, we have

T
el 27|22

-
ve N 00 T — T
> 2 > 2 ] and BA®[10'=[10Q".

Remark that these two |.s.m.p.’s are cyclic permutatioreach other and that they have only one real leading
eigenvector. In any case, for @< 1, according to Remark 4.3, the identity matriis an |.s.m.p., so that all
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the vectors ofC? are leading eigenvectors oF. Moreover, it is clear that the set of leading eigenvectérs o
Z is not.%-cyclic. Therefore, the hypotheses of Theorem 4.14 areitidfirviolated.
Indeed, the se?”’[.%,X] is not a b.c.p. In fact, it holds that

T

and AKBx=

Bx— [@ 0 %[cos{k) sin(k)]T, k> 1.

All these vectors lie on the circle

% B\/§(21+i)<57

where?’ is defined by (5.2), and form a set which is densgjn On the other hand,

K) +sin(k)(L+i) ]
B(cog )+52|n( )(L+1) 0| €abscqp),

BABx =

and, hence, we can conclude that
S|.F x| = abscd {x} U%p},

that is not a b.c.p. Note that infinitely many vectors of ttagetctory.7 [.#, x|, namelyA¥Bx for k > 0, which
are not proportional to one another, lie 80[.%,x]. Analogous conclusions hold for the conjugate set
Z[#,X]. On the other hand, it is interesting to observe that

P = abscc(y[ff,x] U y[y‘,ﬂ) , (5.3)
whereZ is the b.c.p. given by (5.1), and that, in the light of the jpveg analysis, we have
02N (y[ff,x] U ﬂ[ﬁ,ij) = [xX}

(modulo scalar factors of unitary modulus), whenegfet 1. On the contrary, fof = 1 the infinitely many
vectorsABx (andA*Bx), k > 0, which are not proportional to one another, liedh?. O

The foregoing example suggests naturally how to try to rét@xhypotheses of Theorem 4.14 in order
to accommodate the case of a real family such that the mirdmalp.'s have a pair of complex conjugate
leading eigenvectors instead of a single real leading g@xor. In order to do this, we need to modify some
of the definitions given in [GWZ05] and reported in Sectiomad to give some new ones.

DEFINITION 5.1. Let.% be a nondefective bounded family of complesnamatrices and let % 0 be a
leading eigenvector of#. Then x is said to be standard leading eigenvectafr.# (and of.% too) if it is a
leading eigenvector of a minimal s.mPof.%, whereas it is said to be limit leading eigenvectoof .Z if it
is a leading eigenvector of an |.s.m.p. (possibly, an s)mjmf the normalized familyf, but is not a leading
eigenvector of any minimal s.m.p..

Now, we modify Definition 4.9 for real families.

DEFINITION 5.2. Let.# be a nondefective bounded family of readm-matrices and¢’ be the set of its
standard leading eigenvectors. The famifyis said to beasymptotically simpléf & is finite (modulo scalar
nonzero factors) and the following properties hold:

o If &is areal set, then:

(i-r) &is F-cyclic. R

(i-y If Qisanl.s.m.p. of#, then the set of its leading eigenvectors is included in
o If &is notareal set, then:



() &is self-conjugate, that i€’ = & UE, andé&y is F-cyclic.
(i) If Q isanl.s.m.p. o7, then the set of its leading eigenvectors lies in a subspademension
2 and includes a complex conjugate pair of elements.of

Observe that, when the leading eigenvectors are all reak i no change with respect to Definition 4.9.

REMARK 5.1. If a family 7 of real nx n-matrices is asymptotically simple afdis a minimal s.m.p.,
thenP has a unique leading eigenvector if the &66 real, wherea$ has a unique pair of complex conjugate
leading eigenvectors if the sétis not real. A

REMARK 5.2. For a nondefective asymptotically simple normalized far#il such that the sef is not
real, there exists an |.s.m.g, obtained as an infinite power (possibly, a finite power) ofiaimal s.m.pP,
with an eigenspace of dimensi@melated to the eigenvalug = 1.

The following characterization of asymptotically simpéal families holds.

PROPOSITIONS.3. A nondefective bounded family of real nx n-matrices is asymptotically simple if
and only if one of the following situations occurs:

1) % fulfils property (ii-r) of Definition 5.2 and has a minimal spn P with a unique real leading
eigenvector such that the sé&tof the standard leading eigenvectors.#fis equal to the set of the
leading eigenvectors ¢f and of its cyclic permutations.

2) .Z fulfils property (ii) of Definition 5.2 and has a minimal s.m} with a unique pair of complex
conjugate leading eigenvectors such that thessef the standard leading eigenvectors®fis equal
to the set of the leading eigenvectorsoénd of its cyclic permutations.

Proof.

1) The proof of this occurrence is given in [GWZO05].

2) NecessityLetxs,...,Xs,X1,...,%s € C" form a set of distinct representatives (modulo scalar nanze
factors) of all the standard leading eigenvectorszf Since.# is asymptotically simple, they are finitely
many and, forany=1,...;s, there exist, fi € C with |ai|- || = 1 and two (finite) normalized products

P,Q € (%) such that

X+1=0iRx and X = BiQX1
and (by reality of%),

Xir1=0iP% and X = B;QiXit1
where, conventionallyxs;1 = 1. Therefore, we obtain that = aPx = BQx andx; = aPx; = BQxy,
wherea =ay...as, B=B1...Bs andP =P;...P,, Q Ql Qs, with |a| |B| = 1. Now, sincep(P ) <1
andp(Q) < 1, it follows that|a| = |8| = 1, which impliesp(P) = 1 andp(Q) 1.

So we can conclude that the matfx— Ps...P is an s.m.p. of% such that the set of the leading
eigenvectors of and of its cyclic permutations includes (and thus is equipthe set& of the standard
leading eigenvectors o . Since it is not restrictive assumitgto be minimal, the proof is concluded.

SufficiencyAssume that there is a (minimal) s.mPwith only 2 complex conjugate leading eigenvec-
tors and that the set’ of the leading eigenvectors Bfand of its cyclic permutations (modulo scalar nonzero
factors) coincides with the sét of standard leading eigenvectors®f. Therefore, sincé” may be generated
(through multiplication by nonzero complex numbers) hyetements, wherp denotes the number of factors
of P, and since = #; U 74, where the set%; and7; are clearly.Z-cyclic, the proofis complete. [

LEMMA 5.4. Let the nondefective bounded fami#yof real nx n-matrices be asymptotically simple and

let the set’ of its standard leading eigenvectors be non-real. Then ¢heof all the leading eigenvectors
of # is given by

p
2 = Uspari{x,%}),
i=1
10



where{xs,...,Xp} is a set of linearly independent representativeg-pfiintroduced in Definition 5.2 - (i).

Proof. As observed in Remark 5.2, for a nondefective asymptdyisahple normalized famllﬁ there
exists an I.s.m.pQ, which is an infinite power (possibly, a finite power) of a mail s.m.p. P, with an
eigenspace of dimension 2 related to the eigenvaleel. Such eigenspace is clearly spanned by the pair of
complex conjugate leading eigenvectors of the minimal.#. Therefore, by virtue of Proposition 5.3, the
proofis complete. [

The foregoing result implies that the set of the distinctespntatives (modulo scalar nonzero factors) of
all the leading eigenvectors o is not finite.

The definition ofabsolutely asymptotically simpf@mily remains formally unchanged (see Definition 4.12)
and, again, for such kind of families, the unique minimal.g./® coincides with the minimal s.m.p. given by
the characterizing Proposition 5.3.

Moreover, the cardinality of the sét of the standard leading eigenvectors (modulo scalar norfaer
tors) is either the number of factorsBfin the case thaf is real) or twice such a number (in the case #iat
is not real).

In the sequel, for a real family# and for a non-zero complex conjugate pair of vectoise C" (with
0(x) # 0), we will consider therajectory obtained by applying all the normalized prodults Z toxand
X, that is

9[¢,x,>—<]=9[j‘,x]u9[ﬁ*,>—q:{x,x}u{{ﬁxﬁx} | ﬁGZ(j‘)}, (5.4)

and the set

SIF XX = abscc(y[ﬁ,x,x]). (5.5)
Similarly to Proposition 4.5, we have that 4 is nondefective and if
spar(ﬂ[j‘,x,x]) —Cn, (5.6)

the set.”[.%,x,X is the unit ball of an extremal norm. Therefore, our aim is tulfconditions under
which q’[fi,x,x] is generated by a finite number of points of the trajectﬂyf},x,x], in order that the
set.[.#,x,X] be ab.c.p.. .

In any case, since” is real, the set”[.%,x,X] is self-conjugate. Some specific properties of self-
conjugate b.c.p.'s may be found in [VZss].

The proof of the following Iemma is analogous to that of LenBriEd in [GWZO05].

LEMMA 5.5. Let # = {A }1<.<m be a nondefective finite family of reakm-matrices and, given a
non-real non-zero vectorg C", assume that (5.6) holds and that the (bounded&%t/ X XN ﬂ[y X, X
is not finite (modulo scalar factors of unitary modulus). iiieere exist two conjugate sequences of distinct
vectors{x®} and {x®} with XV = x andx¥) = x such that, for all k> 1,

x0 XK ¢ 3.7, x X 7[F,%¥
and
Xk = Alx®  and x*kD = AWK for somet € {1,...,m},

whereA®) = AV /p(.7) € .#, 1 <i <m, and such that, wheneverkh,
W £uxM and x® £ ux" forallue Cwith |u] = 1.

Eventually, we are in a position to state the main result &f flaper, which extends the validity of the
Small CPE Theorem proved in [GWZ05]. However, so far we weseable to prove it unless under the
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following technical hypothesis, even if we strongly beédtat it holds even without assuming it (see also the
forthcoming Example 5.2).

HYPOTHESISS.1. If the set& of the standard leading eigenvectors of the faniflyis non-real, then
the pair of leading eigenvalugg’® e-1¢) of any minimal s.m.p. of the normalized famifyis such that the
numbersd and T are rationally independent.

The next proposition illustrates the practical meaning ppéthesis 5.1.

PROPOSITIONS.6. Let the finite family# of real nx n-matrices be asymptotically simple and let the set
& of its standard leading eigenvectors be non-real. Then lthgsis 5.1 is equivalent to requiring that every
s.m.p. of# (even if non-minimal) only has a pair of complex conjugaa@dard leading eigenvectors.

Proof. Given a minimal s.m.pP of .#, we have thab and T are rationally dependent if and only if
there exists a positive integkisuch that the powe?¥, which is an s.m.p. of7, has the eigenvalue = 1 of
multiplicity 2 with infinitely many corresponding eigenvtecs (i.e., all the vectors belonging to sféx x}),

x andx being the leading eigenvectorsy. a

The following lemma plays an important role in the proof o Bubsequent main result (Theorem 5.8).

LEMMA 5.7. Assume that a nondefective finite fanmify= {A(U}lgigm of real nx n-matrices is asymp-
totically simple, let Hypothesis 5.1 hold and {et X} be a pair of complex conjugate standard leading eigen-
vectors of%. Moreover, assume that, for some mafix ¥ (ﬁ) the vectors y= Sx andy = & are leading
eigenvectors aof7.

Theny and are leading eigenvectors of standard type.

Proof. We observe thaty € 0.7[.%,x,X] and that, by Lemma 5.4,y € spar{{zz}) for some standard
leading eigenvecta, that is

y=az+Bz y=Pz+0z (5.7)

for suitablea,3 € C. Moreover, we can assume tmz_g ay[ﬁ,x,x] and, by virtue of% -ciclicity, that
there exist® € 2 (.#) (for some integek) such thak = Qz so that

y=0z y=%52 (5.8)

Then consider a linear transformation (represented by ehesmgular matrixt € C™") which transforms
into e andzinto e?, 1) ande(? being the first two vectors of the canonical basi€bf After setting

ch=TADT-1,

we introduce the family of complex matric&s= {COY 1 icm, which is such thap(¥) = p(.#), and denote
by ¢ the associated normalized family. By formulae (5.7), wechiinat

Ty=[a B 0 .. 0]" and Ty=[B @ 0 ... 0]

and, therefore, by setting = T SQ T2, formulae (5.8) imply

o Q™|

a
B
0

3
I

O 0 0 - O
If |a|+|B| < 1, theny,y are strictly internal to abs¢z,2}) C .#[.#,x,X], which gives a contradiction. Thus

lal+|B| > 1. (5.9)
12



According to Proposition 5.%,andz are the leading eigenvectors of a minimal s.m.p%fsayﬁo € Zp(fi),
with leading eigenvalues®. Now consider the corresponding prodiiot 3(%) defined alN = TP, T2

dbo 0 0O --- 0

0 eifb o ... 0
N = 0 0 e

0 0

and the power sequend¥. By Hypothesis 5.1, we can conclude (see, e.g., [HW79)) thate exists a
suitable subsequendém which converges to the matrix

giarg(a) 0 0 -~ 0

0 dag@ o ... 0
N, = 0 0 0o - 0
0 0 0 0
Then we consider the matrix

|a| e—iarg(a)ﬁ

eiarg(a)[_; |a|

O=fR.M=| O 0 0 - 0

0 0 o --- 0

which belongs t(%) and whose eigenvalues dref + |8|. Since¥ is normalized, it follows that
jal+|B| < 1. (5.10)

In conclusion, combining (5.9) and (5.10), we ¢rt+ |3| = 1. ThereforeQis an |.s.m.p. fo## and, hence,
the corresponding matri® =T~ 18T isanl.s.m. p. forZ. Finally, property (ii) in Definition 5.2 yields

laj=1 and B=0.

Therefore, by (5.7)y andy are standard leading eigenvectdais.

THEOREMS5.8 (extended small CPE theoremssume that a nondefective finite fanity= {A(i)}lgigm
of real nx n-matrices is asymptotically simple. If the gebf its standard leading eigenvectors is real, then
Theorem 4.14 applies. Otherwise, let Hypothesis 5.1 holtilan{x,X} be a pair of complex conjugate
standard leading eigenvectors &f such that (5.6) holds. Then the set

0.7(F xX(7F . xX (5.11)

is finite modulo scalar factors of unitary modulus. As a copsece, there exist a finite number of normalized
productsP) ... P € (%) such that

SF XX = abscr({x, %, PUx, PUx, ... POX, P(s>>_<}) , (5.12)

so that¥’[.#,x,X] is a b.c.p.
13



Proof. Assume that the set of the standard leading eigenvectors is not real an{idet} be a complex
conjugate pair of them. According to Proposition & andx are the leading eigenvectors of a minimal s.m.p.
P of .#. Now consider

==¢()07]7 xX. (5.13)

Since the family.# is asymptotically simple andiﬂ[j,x,x] is the unit ball of a norm, the sét is finite
modulo scalar factors of unitary modulus and not empty. Nssuene, by contradiction, that the set

0717 xX(71F xX,

even if considered modulo scalar factors of unitary modususot finite, so that Lemma 5.5 can be applied to
obtain the sequence®),x¥ ¢ 9.7[.% ,x, XN .7 [#,x,X] with xV) = x andx!) = . Therefore, there exists
j > 1 such that

Xt ¢= and xVe=z(7[Z,X foralli<], (5.14)
and, similarly,
ItV ¢= and xVez7[#,X foralli<]j.

SinceZ(.#) is bounded, the resulting sequence of normalized matrigymsB® = Alk-1) ... Alli+2)

such thax® = BKx(+1) has a subsequen¢B(s) } -1 that converges to a limit poifkin =(.%). Therefore,
also the subsequences of vectfx&s) } .1 and{x(%)}¢.1 have limit points

v=BxI*D) =BAY)...Alx  and v=BxItY =AY ...AlD)x, (5.15)
For eachs > 1 there exists a matriR®® € £(.%) such that

Blkei1) _ ROBK)

Again by the boundedness ﬁfy) the sequenc@R )}s>1 has a limit pointR in (% 7). By passing to the
limit, we can conclude tha = RB and, thusy = Rvandv = Rv.

In other wordsR is an l.s.m.p. of# andv andv are leading eigenvectors of. Thus, withy =v
andS=BAU)...AlD Lemma 5.7 implies that andV are standard leading eigenvectors. Therefore, by
the assumed?-ciclicity and sincev,v € 6y[ﬁ,x,>‘<], there exist® € 2, (for some integek) and some
¢ € (0,27 such that

x=€%Qv  or x=¢€?%Ov.
Consequently, by (5.15), we obtain

D) — AL . AWEBKITD o X(J’+1):(A@j)...A(fl)Qé)ZX(Hl).

Therefore, sincd(‘) ... ADQOB € 5(.%), in both cases the vectati ™) is a leading eigenvector oF .
Thus, withy = xU+D andS= Al)...Al Lemma 5.7 can be applied again to conclude #&tY is a
standard leading eigenvector, which contradicts (5.14).0

Observe that the family? = {A,B} of Example 5.1 fits perfectly the hypotheses of Theorem 5.&lo
B <1, butnotforB = 1. In fact, forB = 1 the set (5.11) is not finite modulo scalar factors of unitandulus,
even if (5.12) holds all the same.

The next example illustrates the case of a family that sasigfie hypotheses of Lemma 5.7 and Theo-
rem 5.8 but Hypothesis 5.1. It shows that, whereas the tbétismma 5.7 fails to hold, that of Theorem 5.8
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is satisfied. Therefore, we suspect that the thesis of Thebr8 could be obtained in another way, without
passing necessarily through Lemma 5.7.
ExAMPLE 5.2. Consider the real2 2-matrix family.# = {A,B}, where

-
A= 1
2

-1 i 11
isz and B= { A ] :
2 20

The eigenvalues oA are &% and é3' with corresponding eigenvectoxs= [1 i|T andx = [1 —i]T, re-
spectively, so that Hypothesis 5.1 clearly does not holdweéler, it is easy to see tha¥ is absolutely

asymptotically simple wittp(.%#) = 1, A being the unique minimal s.m.p., th&”[.7 x| J[.Z, X is finite
(modulus scalar factors of unitary modulus) and that

SF X = abscr({x, X, Bx, ABX, AZBX}) .

For this purpose, note thaf = | (identity matrix) andB? = O (zero matrix) and that the range Bfis a
one-dimensional subspace proportional to the real vé%op %]T.

Thus, since all nonzero vectors 6f are leading eigenvectors of and sinceBx, ABx and A’Bx are
not of standard type, we can conclude that Lemma 5.7 is netdnd that, on the contrary, the thesis of
Theorem 5.8 does hold all the same. ¢

The next results, analogous to Theorem 4.15 and to Corallag, respectively, provide a deeper under-
standing of the structure of the b.c.g’[.%#,x,X] obtained under the hypotheses of Theorem 5.8.

THEOREM5.9. Let the hypotheses of Theorem 5.8 hold and let thé’sitthe standard leading eigen-
vectors of# be non-real. Then each eigenvecfoe = = & 0.7 [F,X,X| satisfies one of the following two
statements: .

(a) & is a vertex of the b.c.p?[.7, x,X]. .

(b) There exist &> 2 verticeséy, ..., &s of the b.c.p.[.%, x,X] such that

&,....& €= and Eeabscc({fl,...,fs}). (5.16)

Proof. Consider a standard leading eigenvedat = and assume that it is not a vertex of the b.c.p.
S[#,%,X]. Then there must exist> 2 verticest, .. ., & of Z[%#,x,X] such that

S S
E=S A& with A#£0,i=1..s and S |A|=1 (5.17)
I; 1S1 I I; |

Sinceé is a standard leading eigenvector.sf, there exists an s.m.;ﬁ of Z such thatPé = ué with
|u| = 1. Thus, denoting by - || the complex polytope norm determined (.7, x,X], for anyk > 1 we have

1= €]l =[P < ;I)\il P&l

Since||PX&|| < 1, in view of (5.17) we can claim thgPX& || = 1, that is
P& € 0.7(Z xX, i=1,....s

By Theorem 5.8, for any fixed, the set of vector:{FN"‘Ei}f:O is finite (modulo scalar factors of unitary
modulus). Hence there exist integérm such that

PUAME = yP &, with |y|=1.
15



This implies thaP’ & is a standard leading elgenvectom
Moreover, since all the vertices of the b.c..[.%,x,X| obviously belong to7 [#,x,X] (modulo scalar
factors of unitary modulus), there exist finite normalizedductsS € £(.%) such that

&=Sx

This assumption is not restrictive because the other pilissitthat is & = §%, would lead to the same
conclusions.

Furthermore,Z-cyclicity implies that there exist finite normalized pratsiR;, U; € Z(fi) and complex
numberg; andu; with |ri| = |uj| = 1 such that

{ & = rnSR¢
or o (5.18)
é = nSR¢,
& = ulUP'g
or B (5.19)
& = uGp'g.

Using the first of (5.18) and the first of (5.19) we obtain taits a standard leading eigenvector.&f
whereas, using the second of (5.18) and the second of (s&3btain thatf; (and thusé;) is a standard
leading eigenvector of#. Similarly, using the first of (5.18) and the second of (5.(®) specularly, the
second of (5.18) and the first of (5.19)) we obtdin= y S R U; P’ & for somey; with |y| = 1 and then, in
turn, & = (SR U; P)2 &, which means again thdt is a standard leading eigenvector.@t Therefore, we
conclude thag; € =. a

COROLLARY 5.10. Let the hypotheses of Theorem 5.8 hold and let th&’seft the standard leading
eigenvectors oﬁ be non-real. Moreover, let the family be absolutely asymptotically simple. Then each
eigenvectof € = = £Nd.7[.#,x,X| is a vertex of the b.c.p?[.#,x,X|.

Proof. Assume, by contradiction, that there exists a standartirigaeigenvectog € = which is not a
vertex of the b.c.p.”[-#,x,X]. Then it necessarily satisfies statement (b) of Theorem 5.9.

On the other hand, there exists a unique normalized minimaps P such thatPé = ué with |u| = 1
(see Proposition 5.3). Therefore, for edglappearing in statement (b) there exists a proper normalight
factorB of the s.m.pP such tha&; = uR ¢ or & = uR& with |u| = 1.

Thus we obtain

& eabscc({ﬁfl,...,lﬁ.fs}) or § eabscc({f’.f_l,...,ﬁf_s}).

Now, since the essential system of vertices of a b.c.p. iguenmodulo scalar factors of unitary modulus
and since; is a vertex of7[.#,x, X, it necessarily holds that, for gll=1,...,s,

& =vjR& or Ei:vjlﬁfj with |vj| = 1.
In particular, forj =i, we obtain
&=viR& with [v| =1 or &=P?§,
which, in both cases, implies that the proper normalizetitrigctor B of P is itself an s.m.p., against the

uniqueness o (modulo cyclic permutations). [

6. Applications of the extended small CPE theorem. Although our results are mostly theoretical in
nature, they have potential impact on applications. On&e$¢ would lie in the fact that, if there is prior
knowledge that a certain séf has an extremal complex polytope norm, then one could delgesithms for
the computation 0p(.%) that rely on the computation of the extremal points of the ball of the norm.
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Now we propose a suitable modification of the algorithm pméee:in [GZ08], which was based on the
small CPE theorem proved in [GWZO05]. This new version allowdo construct the unit ball of an extremal
complex polytope norm for a nondefective finite real fam#y—= {A(i)}lgigm which satisfies the hypotheses
of Theorem 5.8 in the case that the geof the standard leading eigenvectors is not real.

ALGORITHM 6.1.

(Step 1) Choose a candidate s.mR. € % (%) (for somek), which we assume to have a pdi, x} of
complex conjugate leading eigenvectors.
(Step 2) Computp = p(R)Y/k and define the scaled family

F*=p LZ (which is such thap(.7*) > 1).
(Step3) Sew' O =0 = 20 = (xx}, 0 = absco(%(‘))) ands= 1.

(Step 4) Compute the set of vectors
7O =7 (W),

(Step 5) If¥® ¢ (51 then STOP
(Step 6) Setz(d = absc(% EDyy <5>) and compute an essential system of verti@é$) of 2(9 such
that
29 c gEhyy®,
(Step7) Sew'® = 27Ny s=s+1 and Goto (Step 4).
The procedure produces a (possibly finite) sequence otseejfigate absolutely convex sef8(. If it
halts at (Step 5) for soms and if spaf.2 (¢ ~1)) = C", then necessarilp(.#*) = 1, so that#* is nothing

but the normalized family? Moreover, the self-conjugate b.c.p?¢ 1V is equal toY[ﬁ,x,Y], which
determines an extremal norm f&f, and we have that

p(F) = p(R)YX
We conclude the paper by illustrating the foregoing aldgwnitvith an example.
7. Anillustrative example. We consider the realX44-matrix family.# = {A,B}, where

3 -2 1 2 1 0 -3 -1
2 0 -2 1 4 —2 -1 —4
A=l 1 3 1 5| @dB=| , 4 7
-3 -3 -2 -1 -1 -2 -1 2

Step 1.0n the basis of a preliminary computational investigatioe guess tha®, = ABis a reasonable
candidate s.m.p. for the family. We compute the two leading complex conjugate eigenpais,dhat is

A12=10.87428670616243528917.646835410096406617 i

and

[ 0.727929777812542907820.34062961167742906135)
0.203900802019083398510.41457724740357478799

X= —0.566138469582716452831.2278515180664638032|i ’
1
[ 0.727929777812542907820.34062961167742906135]
e 0.203900802019083398510.41457724740357478799

—0.566138469582716452831.2278515180664638032|i
1
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Step 2.We scale the familyZ by p(P2)%/2 = |A;5|'/? = 4.5528302832023213335, s0 as to obtain
A B
F*={A",B*} = { , } .
{ } p(Pz)l/z p(Pz)l/z

Step 3.The two starting vectors arg = x andv; = X.
We set#’ (O = 70 = 270 = {y; v1} and 20 = abSC((%(O)).
Step 4.By applying.Z7* to #(9 we obtain

¥ = {va,v3,V2,V3},
wherev, = A*vy, vz = B*vy. A 4-digit approximation of the computed vectors follows:

Vo = [ —0.25434+0.3120i Q1486—0.3897i —0.6796—0.07133i —0.5850— 0.5881i ]T,
V3= [ 0.3133—-0.8839i —1.483—0.1530i 04038—0.1949i 03142—0.3770i ]T.

Step 5.1t is immediate to see that (V) is not included in2(©.
Step 6.We set?(b) = absm(% Ouyy (l>) and compute the essential system of vertices

2V = {v1,vz,v3,V1,V,v3} = 2 QO Uy ®.
Step 7.We set
D =2V0y® = v v3,v5,V3}

and go back to (Step 4).
Step 4.By applying.Z7* to #'(Y) we obtain

7/(2> = {V47V57V67V77\747\757\767\77}5
wherev, = A*vy, V5 = A*vs, Vg = B*vp, vz = B*vz. A 4-digit approximation of the computed vectors follows:

[ ~0.3039-0.3084i 02818-0.2349i 08337+0.4733i Q4967+0.2117i]",

[ 0.6719+0.4410i —0.2460+0.3911i —1.3423+0.1622i 05246+0.8513i]",
[ 0.5205+0.2447i 08214+ 0.4294i —0.0518—0.3112i —0.1171-0.1400i]",
— [ —0.2662+0.0171i Q0117+ 12176i —0.01948+0.07134i 06321+0.1383i] .

Va
\
Ve
V7

Step 5.By computing the norm- || 1) of the elements of ), ||va|| ) > 1, [|Vs|| s = 1, [|V6|l 5w >
1,||v7]l » > 1, we see thar'? is not included inz? ().
Step 6.We set??® = absm(% Duy (2>) and compute the essential system of vertices

Step 7.We set
W(Z) - %(2) n 7/(2> - {V4aV67V77\747\767\77}

and go back to (Step 4).
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Step 4.By applying.Z7* to #(2) we obtain
¥3) = {Vg, Vo, V10, V11, V12, V13, Vg, Vo, V10, V11, V12, Vi3},
wherevg = A*vy, Vg = A*Vg, Vg = A*V7,V11 = B*vg, V12 = B*vg,vi3 = B*v7. A 4-digit approximation of the

computed vectors follows:

0.4778+0.5034i —0.12363—0.02591i —0.6097—0.5590i —0.4607+ 0.1036i ]T ,

[
Vg = [ —0.7666—0.4798i —0.2316—0.0015i Q7955+ 0.5588i —0.8357—0.2768i ]T,
= [ 0.4437—0.4697i Q02644—0.0084i —0.7407+0.6385i Q0375—0.8753i ]T,
Vi1 = [ —0.7252—0.4261i —0.4762+0.0842i Q10183+ 0.05680i —0.0220+ 0.1600i ]T,
Vig = [ 0.1742+0.2896i —0.7038—0.2123i —0.1544—0.0469i —0.5152—0.2355i }T )
Viz = [ —0.1845-0.0736i —0.3223—0.6871i Q03404+ 0.0414i (03353—0.4935i ]T

Step 5.By computing the normg- || ;) of the elements of (¥ V8l 2 > 1, (IVol| so2) > 1, || Vaol| o) >
1, Vi1l p@ > 1, Va2l o > 1, [[Vasl| iz < 1, we see that'® is not included inz?(2),

Step 6.We setz(d) = absco(% @uy (3>) and compute the essential system of vertices

————————— 3
23 = {v1,V2,V3, V4, Ve, V7, V8, Vg, V10, V11, V12, V1, V2, V3, Va, Ve, V7, Vg, Vig, V10, V11, Vi2} € 2P U7 ().
Step 7.We set
3
W( ) — %( )mqj/ {V87V97VlO;VllvV127V87V97V10;V117V12}

and go back to (Step 4).
Step 4.By applying.Z* to #(3 we obtain

¥4 = {V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V14, V15, V6, V17, Vig, V19, V20, V21, V22, V23}
wherevig = A"vg,Vi5 = A*Vg, V16 = A"V10, V17 = A"V11,Vig = A"V, Vig = B*Vg, Voo = B*Vg, Vo1 = B*V10, Voo =
B*v11, Vo3 = B*vio. A 4-digit approximation of the computed vectors follows:
[ —0.5968—0.3976i —0.04327+0.04719i 06634+ 0.1025i Q1356—0.0918i }T,
[ 0.4145+0.3180i —0.1963—0.0955i 04220+0.0748i Q4918+ 0.1324i ]T,
[ —0.55484-0.0689i Q1387—0.2664i 039324-0.7123i —0.1494+0.2268i ]T
[ 0.6998+0.3265i 02690+ 0.19741i —0.4714—0.2263i Q7518+ 0.1652i ]T,
[ —0.0658—-0.2113i —0.1219-0.1583i 0Q1742+0.1927i Q52994 0.0214i ]T,

0.6079+0.4561i Q1732—0.3991i —0.1734+0.0577i —0.11912+0.06911i } T ,
—0.5090—-0.4128i 13354 0.5430i —0.3735—-0.1389i —0.2717—0.1383i } T ,

0.5773—0.3316i —0.3762+1.0451i Q0817—0.4216i —0.0344—0.4179i ]T ,
—0.2216—-0.1662i Q08433+0.1843i Q1273+ 0.1514i 03365+ 0.1144i ]T,

0.2531+0.1462i 06427+ 0.0561i —0.2307—0.1568i Q07851— 0.06352i }T

V22 =
Vo3 =
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Step 5. By computing the normg - || ;.3 of the elements ofy (4 ||v14||@<3 > 1, ||vasl| »e < 1,
[Visll @ <1, [V17ll o > 1, [[Vasll o) < 1o [[Vaoll o) > 1 [[Vaoll i > 1, IV21ll @) > 1 [zl g < 1,
([Vas|| e < 1, we see that'™ is not included in?(®

Step 6.We setz) = absco(% ®Guy (4>) and compute the essential system of vertices

4
PALE {VlaV27V37V47V67V77V87V97V107 V11,V127V14, V17,V197V20, Vo1,

Step 7.We set
WD = 2@ Y@ = {v14,v17,V10,V20, V21, V14, V17, V19, V20, V21 }

and go back to (Step 4).
Step 4.By applying.Z7* to #'(*) we obtain

5 o o
v = {V24, V25, Vo6, V27, Vog, V29, V30, V31, V32, V33, V24, Vo5, V26, Vo7, V28, V29, V30, V31, V32, V33}

wherevag = AV14, V25 = A™V17,V26 = A'V19, Vo7 = A"V20, Vg = A"V21, Vo9 = B*Vi14, V30 = B*V17,V31 = B*V1g, V32 =
B*vo0,V33 = B*vp1. A 4-digit approximation of the computed vectors follows:
=[ 0.6176+0.2234i 000056+ 0.10946i —0.4543+0.0221i Q1006+ 0.2060i }T ,
=[ —0.3526—0.2790i Q06477—0.00775i —0.3911+0.0701i —0.5965—0.2821i ]T,
[ —0.5671-0.0822i —0.2170—0.2106i Q4166—0.2514i —0.4123—-0.0781i }T ,
[ —0.4523—-0.05761 03280+0.2120i 11481+ 0.4492i —0.3203+ 0.0059i ]T ,
[ —0.2123—-0.5168i —0.2971+0.2391i —0.1012+1.1673i —0.1609—0.1932i }T,
Vog = [ —0.5980—-0.1347i Q2785+0.3867i 0044974 0.02448i 006398+ 0.00375i ]T ,
=[ 0.2992+0.1845i —1.2900—0.4690i 02801+ 0.0505i Q1619 0.0361i ]T,
[ 0.2740+0.0470i —0.4674—0.2988i —0.1478—0.0825i —0.2238+ 0.0928i }T ,
[ 0.1940+0.0313i Q01817+ 0.2763i Q07446+ 0.06045i —0.5118—0.1779i }T ,
= [ 0.0805+0.2967i —0.3297+0.2919i —0.1599—0.0181i Q0054— 0.4772i ]T
Step 5. By computing the normg - || ;4 of the elements of ), ||vad| , 2@ <1, [[vas|| pa) < 1,

V2|l i) < 1, [[V27ll gpiay > 1, [|[V2sll oy > 1, [Vl oy < 1, [IVaoll i) <1 IVaill ) < 1, [[Va2ll oy < 1,
([Vas|| pe < 1, we see that'® is not included in?4

Step 6.We setz(®) = absco(% @Wuy (5>) and compute the essential system of vertices

5
PAE {Vl,V2,V3,V4,V6,V7,V8,V9,V10, V11, V12,V14, V17, V19,Vzo, V21, V27,V28

Step 6.We set
WO = 20 09O = {vo7,va8, Vo7, V28}

and go back to (Step 4).
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Step 4.By applying.Z7* to #(® we obtain
#(®) = {Va4, V35, V36, Va7, Va4, Vs, V36, Va7}

wherevss = A*Vo7,V35 = A*Vag, Vag = B*Va7,V37 = B*vag. A 4-digit approximation of the computed vectors
follows:

V34 = [ 0.2654+0.0461i —0.3760—0.1707i Q2164+ 0.0219i —0.3521—-0.3004i ]T,

V35 = [ 0.1775+0.4070i Q1024—0.3282i —0.04349-0.00020i 04155—0.2874i ]T,

V36 =

)

—0.7855—0.3099i 02826—0.1464i —0.2935—0.0834i —0.4376—0.1766i ]T
vz7 = | 0.0554—0.8403i Q4806+ 0.2623i —0.0018—0.2278i 01287—0.3328i }T .

Step 5.By computing the normg - ||, of the elements of/'®), |[vaa|| ,s > 1, [[Vas|| pis) < 1,
([Vasl| s < 1, [[Va7]l ps) < 1, we see that(® is not included in%?(®).

Step 6.We setz(®) = absco(% Guy (6>) and compute the essential system of vertices

6
2 ®) = {v1,V2,V3,Va, Ve, V7, V8, Vo, V10, V11, V12, V14, V17, V10, V20, V21, V27, Vag, V34

Step 7.We set
w8 = 270 Ny 6 = fyzy Vay)

and go back to (Step 4).
Step 4.By applying.Z7* to #/(®) we obtain

¥ = {V3g, V3, V3s, Vao}
wherevzg = A*vay, V39 = B*vz4. A 4-digit approximation of the computed vectors follows:

vag=[ —0.1168—0.0825i —0.2890—0.0958i Q1496+ 0.2227i Q0552+ 0.1385i }T,
Vzg=[ —0.00696+0.06167i 01938+ 0.2936i —0.2605—0.1469i —0.09530-0.07188i ]T.

Step 5.By computing the normg- || ;. of the elements o (7), ||vag| ) < 1, ||Vaol| e < 1, We see
that

v c 20,

Hence, the algorithm halts.

Since spav<<@<6>) = C*, we can conclude tha#?®) = abscc(%(f’)) is a self-conjugate b.c.p. which

determines an extremal norm f&f and thato(.%) = |A12|Y/? = 4.5528302832023213335.
The computations have been performed using the softiatbematica(see [Wol05]) with a 30-digit
accuracy. For the computation of the polytope norms at (Stepe used the functioNMinimize
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8. Concluding discussion. In this section we discuss the results of this paper in the bfithe existing
literature.

First of all, we observe that there exist families of realricas which have an extremal complex polytope
norm but do not admit any extremal real polytope norm. Fomeda, any family.# = {Ag} consisting of a
single rotation matrix

cog6B) —sin(0)
Ao = sin) cogd) |’

with 6 rationally independent om, does not admit any extremal real polytope norm (see [BW3wever,
it admits a complex polytope norm with unit ball given B¥ = abscd{zy,zs}), Zg being a leading eigen-
vector of Ag. This justifies the use of complex polytope norms and relatgdrithms also for families of real
matrices.

Concerning our main result, that is Theorem 5.8, we remakttte proof is based on Lemma 5.5, which
makes use of Hypothesis 5.1 in an essential way. Since thadamnot valid if Hypothesis 5.1 does not hold
(see Example 5.2), it seems that, in order to extend theityatill Theorem 5.8 to the this case, a different
proof should be found. On the other hand, Hypothesis 5.1appe be generic in the sense that the measure
of the set of excluded cases is zero. Nevertheless, we @rsidh an extension of the theorem an important
theoretical issue.

Our approach for the computation of the joint spectral ragiasses through the construction of the unit
ball of a polytope extremal norm. In order to illustrate heoretical relevance, we recall its applications to
the zero-stability analysis of variable stepsize BDF folae{tZ01b] and to the asymptotic stability analysis
of one-step methods for the numerical approximation ofyddiierential equations [GZ03b]. Finally, in the
recent paper [GCCZ], we have proved that every pair af2binary sign-matrices, that is, with entries in
{-1,0,1}, has the finiteness property. This supports the conjectudndel and Jungers [JBss] that this
holds in general for all pairs of sign-matrices of any dimensin turn, this fact would have the consequence
that the finiteness property holds true for all families afoaal matrices.

Now we discuss the computational relevance of Algorithm 6tis clear that, at its current state, the
algorithm is designed to verify that a candidate prodtet (%) is an s.m.p. for a non-defective family
Z. This is possible under certain assumptions, the main o€lwis asymptotic simplicity, which cannot
be checked a priori. NeverthelessPifis an s.m.p., the algorithm always converges. Indeed, theiomed
assumptions provide sufficient conditions for convergeneefinite number of steps.

We conclude by remarking that a different, quite interegtapproach in order to approximate the joint
spectral radius of a finite family? of real matrices has been proposed recently by Protaso96PRro05].
The main idea is still based on the property that any irrddladamily .# has an extremal norm and that its
unit ball is a centrally symmetric invariant compact set.fér The algorithm constructs aimost invariant
setZ, that is, such that

min dist(co(.% (%)), A %)

A>0
be sufficiently small, where dist denotes some distancedssigets and o7 (%)) denotes the convex hull
of the union of the setd.% for all A € .#. If this holds, the minimizeA* provides a good approximation of
P(F).

Protasov’s algorithm is able to reach a given accumady polynomial time with respect to/E. Its
implementation is based on the recursive applicatioffdb a sequence of real polytopes which are defined
in the following way. The first polytop&7y is chosen, for example, as the unit ball of the 1-norm. Then th
polytopeZm.1 is given either by c0% (Zm)) if the number of its vertices does not exceed a certain bound
v(g)) or, otherwise, by a polytope with at maste) vertices chosen in such a way that

(14 ¢&)co(F (#m)) C X1 C CO(F (%m)) -
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At the m-th step the approximation fo(.%) is given byW/dy,, wheredn, is the radius of the smallest circle
includingZm.

Differently from our approach, in general the algorithmpueeed by Protasov does not show convergence
in a finite number of steps but, on the other hand, it does mptire a guess for an s.m.p. (which is crucial
for Algorithm 6.1) and also provides estimates of the accyicdbtained at every iteration.
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