
WHEN IS A TOPOLOGY ON A PRODUCT A PRODUCT
TOPOLOGY?

FRANCO OBERSNEL

Abstract. We study the following problem: when is a given topology T on
a cartesian product X × Y a product topology of two topologies TX and TY

on its factors? We are interested in particular in the case when T is a weak
topology.

1. Introduction

By investigating properties of a family F of closed convex subsets of a linear
space X, in the attempt to construct a hypertopology on this family so that the
hyperspace becomes complete and suitable to the construction of a Debreu integral
on it, A. Martellotti [MA] had the idea to consider the cartesian product X×F and
the weak topology on it induced by special real valued functions. To achieve what
she needed, however, she wanted this weak topology on X ×F to be a (Tychonoff)
product topology of two topologies on X and F . This raised the following question:

Problem 1.1. Let X and Y be two sets and consider a topology T on the cartesian
product X ×Y . Are there any topologies TX and TY on X and Y respectively such
that T is the product (Tychonoff) topology TX × TY on X × Y ?

As we shall see soon, trivial examples show that this is not true in general.

Observation 1.2. Assume T = TX × TY . Then the projections πX : X × Y → X
and πY : X × Y → Y are quotient maps, hence TX and TY are the quotient
topologies induced by πX and πY respectively.

Problem 1.1 can therefore be stated as follows:

Problem 1.3. Let X and Y be two sets and consider a topology T on the cartesian
product X × Y . Let TX and TY be the quotient topologies on X and Y induced
respectively by the projections πX and πY . When is T = TX × TY ?

Observation 1.4. For any T on X × Y we always have TX × TY ⊆ T . In fact a
set A ⊆ X is in TX if and only if π−1

X (A) is in T , and a set B ⊆ Y is in TY if and
only if π−1

Y (B) is in T . Therefore all rectangles A × B = π−1
X (A) ∩ π−1

Y (B), with
A ∈ TX and B ∈ TY are in T .

Proposition 1.5. Let T be a compact Hausdorff topology on the set X ×Y . Then
T = TX × TY if and only if TX × TY is Hausdorff.

Proof. By Observation 1.4 TX × TY ⊆ T . Then the identity f : (X × Y, T ) →
(X × Y, TX × TY ) is closed and continuous, hence a homeomorphism.
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An example of a compact Hausdorff topology T on X × Y where T �= TX × TY

is easily given.

Example 1.6. By ]a, b[ ( [a, b[ ) we denote the open (right-open) interval {x ∈ IR :
a < x < b} ({x ∈ IR : a ≤ x < b}). Let X = [0, 1[, Y = {0, 1}. If a < b we define
Ua,b :=]1− b, 1− a[×{0} ∪ [a, b[×{1}, and Vc,d := [c, d[×{0}∪ ]1− d, 1− c[×{1}.

We consider the topology T on X ×Y generated by all sets of the form Ua,b and
Va,b for 0 ≤ a < b ≤ 1.

The space (X × Y, T ) is compact Hausdorff. However TY is the trivial topology
on Y , hence TX × TY is not Hausdorff and T �= TX × TY .

Let us remark that in this example the projections are open maps.

We would like to find conditions so that T = TX × TY . One peculiarity of a
product topology is that in the space (X ×Y, TX ×TY ) all fibers of each projection
are homeomorphic to each other, i.e., π−1

X (x1) � π−1
X (x2) � Y for all x1, x2 ∈ X

and π−1
Y (y1) � π−1

Y (y2) � X for all y1, y2 ∈ Y . This property can be described in
several ways, in particular, at the end of this section, we will give a description in
the case T is seen as a weak topology generated by a family of functions.

Let X be any set, {(Zα, Tα) : α ∈ A} a family of topological spaces, {fα :
X → Zα : α ∈ A} a family of functions. The weak topology on X generated by
{fα : α ∈ A} is the coarsest topology on X for which all functions fα are continuous
(see for example [E] Proposition 1.4.8).

Notation 1.7. Let T be a topology defined on a cartesian product X × Y . For
any point x ∈ X we denote by ix〈Y 〉 the function ix〈Y 〉 : X × Y → X × Y defined by
ix〈Y 〉(u, v) = (x, v), and by ixY the function ixY : Y → X×Y defined by ixY (v) = (x, v).
Similarly for any point y ∈ Y we denote by iy〈X〉 the function iy〈X〉 : X ×Y → X ×Y

defined by iy〈X〉(u, v) = (u, y), and by iyX the function iyX : X → X × Y defined by
iyX(u) = (u, y).

Let X, Y , Z be sets, f : X × Y → Z a function. For any point x ∈ X we
denote by fx

〈Y 〉 the function fx
〈Y 〉 : X × Y → Z defined by fx

〈Y 〉(u, v) = f(x, v) and
by fx

Y the function fx
Y : Y → Z defined by fx

Y (v) = f(x, v) (the function fx
Y is

often denoted by f(x, ·)). Similarly for any point y ∈ Y we denote by fy
〈X〉 the

function fy
〈X〉 : X × Y → Z defined by fy

〈X〉(u, v) = f(u, y), and by fy
X (= f(·, y))

the function fy
X : X → Z defined by fy

X(u) = f(u, y) . By partial functions we will
mean functions of the form fy

〈X〉, fx
〈Y 〉, fy

X or fx
Y .

Proposition 1.8. Let X and Y be sets and T the weak topology induced on X×Y
by a family of partial functions {(fα)x

〈Y 〉 : X × Y → Zα, (fβ)y
〈X〉 : X × Y → Zβ :

α ∈ A, β ∈ B}. Let TX and TY be the quotient topologies induced on X and Y
respectively by the projections πX and πY . Then T = TX × TY .

Proof. We only need to show T ⊆ TX × TY . Since T is the coarsest topology on
X × Y for which all partial functions (fα)x

〈Y 〉 and (fβ)y are continuous it will be
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sufficient to show that all such functions are continuous for TX ×TY . However this
is clear since for any open set U ⊆ Zγ , γ ∈ A (respectively γ ∈ B) the preimage
((fγ)x

〈Y 〉)
−1(U) (respectively ((fγ)y

〈X〉)
−1(U)) are strips on X × Y , i.e. of the form

X × E (respectively F × Y ) with E ∈ TY (F ∈ TX).

Remark 1.9. Any topology T on a set S can be considered as the weak topology
with respect to the identity map id : S → (S, T ). If S = X × Y , with the
Notation 1.7 we have idx

〈Y 〉 = ix〈Y 〉, idx
Y = ixY , idy

〈X〉 = iy〈X〉 and idy
X = iyX for

all (x, y) ∈ S.

Lemma 1.10. Let X and Y be sets, (Z,S) a topological space, T a topology on
X × Y , f : X × Y → Z a continuous function. Let TX and TY be the quotient
topologies induced on X and Y respectively by the projections πX and πY . Then,
for all x ∈ X (y ∈ Y ) the function fx

〈Y 〉 (fy
〈X〉) is continuous if and only if the

function fx
Y (fy

X) is continuous; the function ix〈Y 〉 (iy〈X〉) is continuous if and only
if the function ixY (iyX) is continuous. Moreover all such functions are continuous
if T = TX × TY .

Proof. The first claim derives from the well-known universal property of quotients
(see for example [E] Proposition 2.4.2) and the fact that fy

〈X〉 = fy
X ◦ πX . The rest

is clear.

Lemma 1.11. Let X and Y be sets, {(Zα, Tα) : α ∈ A} a family of topological
spaces, {fα : X × Y → Zα : α ∈ A} a family of functions. Let T be the weak
topology on X × Y induced by the functions {fα : α ∈ A}. Let TX and TY be
topologies on X and Y respectively. Then, for all x ∈ X (y ∈ Y ) the function ixY
(iyX) is continuous if and only if the functions (fα)x

Y ((fα)y
X) are continuous for all

α ∈ A. Moreover all such functions are continuous if T = TX × TY .

Proof. The claim derives from the well-known universal property of weak topologies
(see for example [E] Proposition 1.4.9) and the fact that (fα)y

X = fα ◦ iyX .

Lemmas 1.10 and 1.11 say that continuity of partial functions is a necessary
condition for T = TX × TY . We can observe that this condition is equivalent to
the fact that the projections πX and πY , restricted to any fiber π−1

Y (x) (x ∈ X)
and π−1

X (y) (y ∈ Y ) respectively, are open maps. This is also equivalent to the fact
that all fibers of each projection are homeomorphic to each other. Expecially if we
are interested in weak topologies, it is natural to ask for the continuity of partial
functions. In next section we will see when this condition is sufficient to get the
equality T = TX × TY . In what follows, unless special properties of the functions
generating T as a weak topology are required, we will consider any topology T on
X × Y , and the partial functions to be considered will be of the form iy〈X〉 and ix〈Y 〉.
By Lemma 1.11 this can be done without loss of generality.

2. When continuity of partial functions is sufficient

The following proposition is practically a rewriting of the definition of product
topology:

Proposition 2.1. Let X and Y be sets, and let T be a topology on X ×Y . Let TX

and TY be the quotient topologies induced on X and Y respectively by the projections
πX and πY . Then T = TX ×TY if and only if the following conditions are satisfied:
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1. For all (x, y) ∈ X × Y the functions ix〈Y 〉 and iy〈X〉 are continuous.
2. For any (x, y) ∈ X × Y , any T -neighbourhood U of (x, y), there exists a T -

neighbourhood V of (x, y) such that (x, y) ∈ (iy〈X〉)
−1(V ) ∩ (ix〈Y 〉)

−1(V ) ⊆ U .

As we already remarked, the first condition in Proposition 2.1 is natural to be
considered, expecially if we are interested in weak topologies. On the other hand
the second condition is too complicated and difficult to handle with. Our goal is
to drop the second condition at least in some special cases. It is clear however that
both conditions are necessary in a general setting.

Example 2.2. Consider the Niemytzki plane N (see for example [E] Example
1.2.4). It is easily checked that the quotient topologies TX on X = IR and TY

on Y = IR+ are the Euclidean topologies.
Clearly this is an example where the product topology TX ×TY is strictly coarser

than T .
Observe that the second condition of Proposition 2.1 is satisfied. However the

functions ix〈Y 〉 and iy〈X〉 are not continuous.
Let us remark that in this example the projections πX and πY are open maps.

Example 2.3. Let X = Y = IR. Let Pupper be an upper petal, i.e. a convex
domain contained in the region {(x, y) ∈ IR2 : y > |x|} whose boundary is a
regular curve except in (0, 0) where it has a cuspid. In a similar way we can define
lower, left and right petals. We can consider the flower at (0, 0) defined as the set
F ((0, 0), P ) = {(0, 0)} ∪ int(Pupper) ∪ int(Plower) ∪ int(Pleft) ∪ int(Pright) (where
int denotes the interior in the Euclidean topology of the plane). Let (x, y) ∈ X×Y ;
a flower at (x, y) is defined as F ((0, 0), P ) + (x, y).

The family of all flowers at (x, y), for all (x, y) ∈ X × Y is a base for a topology
T on X × Y , strictly finer than the Euclidean topology.

It is easily checked that the quotient topologies TX on X and TY on Y are both
the Euclidean topology on IR, hence the product topology TX×TY is strictly coarser
than T .

Observe that in this example the functions ix〈Y 〉 and iy〈X〉 are all continuous.
However the second condition of Proposition 2.1 is not satisfied.

Remark 2.4. All examples of topologies T on a product X × Y where the first
condition of Proposition 2.1 is satisfied while the second condition is not satisfied
are constructed essentially as in Example 2.3. The assumption implies that any
T -neighbourhood Ω of a point (x, y) contains a “cross” of the form {x} × B ∪
A × {y} where A = (ix〈Y 〉)

−1(Ω) and B = (iy〈X〉)
−1(Ω). In particular the family of

all “crosses” of this form is a network for T .
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If we remember (see the end of the previous section) that the continuity of
partial functions is equivalent to the fact that any fiber of the projection πX is
homeomorphic to Y and any fiber of the projection πY is homeomorphic to X, and
moreover we observe that the fibers are closed sets in (X × Y, T ) if T is T1 we
immediately obtain the following:

Proposition 2.5. Let X and Y be sets and T a topology on X × Y . Let TX and
TY be the quotient topologies induced on X and Y respectively by the projections
πX and πY . Assume that all partial functions ix〈Y 〉 and iy〈X〉 are continuous and that
(X × Y, T ) has property P where P is any topological property preserved by (closed
if T is T1) subspaces (in particular Ti for i = 0, 1, 2, 3, 3 1

2 and metrizability), or by
continuous open images (for instance separabillity, sequentiality, connectedeness...).
Then the spaces (X, TX) and (Y, TY ) have property P.

Let us remark that the assumption of continuity of partial functions in Proposi-
tion 2.5 cannot be replaced by the condition that requires the projections πX and
πY to be open maps (see Example 1.6).

Corollary 2.6. Let X and Y be sets and T a topology on X × Y . Let TX and TY

be the quotient topologies induced on X and Y respectively by the projections πX

and πY . Assume that (X × Y, T ) is Hausdorff and compact. Then T = TX ×TY if
and only if all partial functions ix〈Y 〉 and iy〈X〉 are continuous.

Proof. This follows immediately from Proposition 1.5 and Proposition 2.5.

The compactness assumption cannot be weakened to local compactness, even
in the realm of metric spaces, or countably compactness as next examples show.
By Remark 2.4 these spaces must be constructed in a way similar to the space in
Example 2.3.

Example 2.7. We construct a metrizable locally compact space (X × Y, T ) for
which all functions ix〈Y 〉 and iy〈X〉 are continuous but T �= TX × TY .

Let X = Y = ω + 1, endowed with the natural order topologies TX and TY . Let
us consider the product space (X × Y, TX × TY ). We define a finer topology T on
X × Y obtained by adding, for any n ∈ ω, the following new neighbourhoods Sn of
the point (ω, ω): Sn := {(ω, ω)} ∪ {(i, j) : i > n, n ≤ j < i} ∪ {(i, j) : i ≥ n, i < j}
(Sn is a square with a deleted diagonal on the bisector).

The topology we obtain in this way is finer than the product topology, the
functions ix〈Y 〉 and iy〈X〉 are all continuous and the quotient topologies are TX and
TY .

Let us show that (X × Y, T ) is locally compact. Clearly we only need to worry
about neighbourhoods of the point (ω, ω). Let us show that any set Sn is compact.
Let U be an open cover of Sn. There must be some U0 ∈ U with (ω, ω) ∈ U0, hence
there is an integer k with Sk ⊆ U0. Only finitely many points of the form (i, ω) or
(ω, j) can belong to Sn \Sk; let U1, U2, . . . Ur ∈ U be such that all such points are
contained in

⋃r
p=1 Up. Since the set Sn \

⋃r
p=0 Up is finite we have completed the

proof.
The space (X × Y, T ) is regular and second countable, hence it is metrizable.

Example 2.8. We construct an example of a (non regular) countably compact
space (X × Y, T ) for which all functions ix〈Y 〉 and iy〈X〉 are continuous but T �=
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TX × TY . The construction is the same as in Example 2.7 except that we replace
ω with ω1.

Let X = Y = ω1 + 1 endowed with the natural order topologies TX and TY .
Let us consider the product space (X × Y, TX × TY ). We define a finer topology
T on X × Y obtained by adding, for any non-limit ordinal α ∈ ω1, the following
new neighbourhoods Sα of the point (ω1, ω1): Sα := {(ω1, ω1)} ∪ {(δ, γ) : α < δ ≤
ω1, α ≤ γ < δ}∪{(δ, γ) : δ ≥ α, δ < γ ≤ ω1} (Sα is a square with a deleted diagonal
on the bisector).

The topology T we obtain in this way is clearly strictly finer than the product
topology TX × TY ; in particular it is not compact any more (and even not regular
since no set Sα can contain the closure of any neighbourhood of (ω1, ω1)). We note
that the functions ix〈Y 〉 and iy〈X〉 are all continuous and the quotient topologies are
TX and TY .

We observe that the topology in all points except (ω1, ω1) has not been altered,
since all sets Sα are open in (X × Y \ {(ω1, ω1)}, TX × TY ).

Let us show that (X × Y, T ) is countably compact. Let U be a countable open
cover of X × Y . Let U0 ∈ U be such that (ω1, ω1) ∈ U0. Let α ∈ ω1 be a non-limit
ordinal such that Sα ⊆ U0. The space X × Y \ U0 can be written as the union of
the two compact subspaces K1 := X×(α+1), K2 := (α+1)×Y and the countably
compact subspace D := {(δ, δ) : α < δ < ω1}, homeomorphic to ω1. The family
U is an open covering of the countably compact K1 ∪ K2 ∪ D, hence we can pick
a finite subcover Ũ ⊂ U . Clearly U0 ∪ Ũ is the required finite subfamily of U that
covers X × Y .

Question 2.9. Can we find a regular (Tychonoff, normal, locally compact...) ex-
ample ?

The space in Example 2.7 is zero dimensional; we see in particular that a locally
connected example of this kind does not exist.

Theorem 2.10. Let X and Y be sets (with more than one point) and T a topology
on X×Y . Let TX and TY be the quotient topologies induced on X and Y respectively
by the projections πX and πY . Assume that (X×Y, T ) is Hausdorff locally compact
and locally connected. Then T = TX × TY if and only if all partial functions ix〈Y 〉
and iy〈X〉 are continuous.

Proof. We show T ⊆ TX × TY . By Proposition 2.5 the spaces (X, TX) and (Y, TY )
are Hausdorff, locally compact and locally connected. Assume by contradiction
that T �⊆ TX × TY . Then we can pick a point (x0, y0) ∈ X × Y and a connected
open neighbourhood Ω ∈ T of (x0, y0) such that Ω is compact, Ω \Ω �= ∅, and such
that for any open sets U ∈ TX and V ∈ TY we never have (x0, y0) ∈ U × V ⊆ Ω.
Let A = πX (X × {y0} ∩ Ω) and B = πY ({x0} × Y ∩ Ω). By Remark 2.4 the set
A × {y0} ∪ {x0} × B is contained in Ω. Let {Uδ}δ∈∆ and {Vγ}γ∈Γ be families
of connected open sets (in (X, TX) and (Y, TY ) respectively) such that {x0} =⋂

δ∈∆ Uδ, {y0} =
⋂

γ∈Γ Vγ , V1 �= Y , Uδ ⊆ A for all δ ∈ ∆, Vγ ⊆ B for all γ ∈ Γ.
For (δ, γ) ∈ ∆ × Γ let us pick a point xδ,γ ∈ Uδ such that {xδ,γ} × Vγ �⊆ Ω (this
can be done since Uδ × Vγ �⊆ Ω) and let Bδ,γ = πY ({xδ,γ} × Vγ ∩ Ω). The set
Bδ,γ is a proper open subset of the connected set Vγ , therefore we can pick a point
yδ,γ ∈ clVγ (Bδ,γ) \ Bδ,γ (here clF (G) denotes as usual the closure in the subspace
F of the set G).
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Let us note that (xδ,γ , yδ,γ) ∈ Ω \ Ω (closure in T ). In fact, if O is a T -
neighbourhood of (xδ,γ , yδ,γ), then πY ({xδ,γ} × Vγ ∩ O) is a neighbourhood of yδ,γ

in Vγ , hence there is a point w ∈ Bδ,γ ∩ πY ({xδ,γ} × Vγ ∩ O). Clearly (xδ,γ , w) ∈
O ∩ Ω. Moreover (xδ,γ , yδ,γ) �∈ Ω since yδ,γ �∈ Bδ,γ .

By compactness of Ω there is a T -cluster point (x̃, ỹ) of the net N := {(xδ,γ , yδ,γ);
(δ, γ) ∈ (∆,Γ)}. Since TX ×TY ⊆ T the point (x̃, ỹ) is also a TX ×TY -cluster point,
but the net N TX × TY -converges to (x0, y0) and the product topology TX × TY is
Hausdorff, hence (x0, y0) = (x̃, ỹ). However Ω is a neighbourhood of (x0, y0) that
misses N , a contradiction.

Question 2.11. Can we replace the property “locally connected” with “connected”
in Theorem 2.10 ?

Example 2.12. We cannot replace the property “ all partial functions ix〈Y 〉 and
iy〈X〉 are continuous ” with “the projections πX and πY are open” in Theorem 2.10.
Consider for example the unit square S = [0, 1]× [0, 1]. Define new neighbourhoods
for points (x, x) on the diagonal as open intervals on the diagonal {(u, u) ∈ X×X :
|x−u| < ε}. We obtain a locally compact, locally connected topology T on S, finer
than the Euclidean topolgy. The quotient topology on each factor is the Euclidean
topology and the projections are open.

We consider now topologies T compatible with some algebraic structure on X ×
Y .

Theorem 2.13. Let (X, ·, 1) and (Y, ·, 1) be unitary semigroups and T a topology
on X × Y . Let TX and TY be the quotient topologies induced on X and Y re-
spectively by the projections πX and πY . Assume that the natural (componentwise)
multiplication · induced on the product X×Y is a T -continuous T -open map. Then
T = TX × TY if and only if all partial functions ixY and iyX are continuous.

Proof. We show T ⊆ TX×TY . Let W be a neighbourhood of a point (x, y) ∈ X×Y .
By the continuity of the operation · there exists an open neighbourhood Ω of (1, 1)
such that (x, y) ∈ (x, y) · Ω ⊆ W . Since T is a semigroup topology there exists a
T -neighbourhood V of (1, 1) such that V · V ⊆ Ω.

The sets A = (ix〈Y 〉)
−1(V ) = πX(V ∩ X × {1}) and B = (iy〈X〉)

−1(V ) = πY (V ∩
{1}× Y ) are open in (X, TX) and (Y, TY ) respectively. Clearly (1, 1) ∈ A×B and,
since (u, v) = (u, 1) · (1, v), we have A×B ⊆ V ·V ⊆ Ω. Since · is an open function,
the sets x · A and y · B are open in (X, TX) and (Y, TY ) respectively. We have
(x, y) ∈ (x · A) × (y · B) ⊆ W , and the theorem is proved.

Theorem 2.13 is trivially not true for arbitrary topological semigroups, since
any topological space can be considered as a topological semigroup with a constant
operation. However, I have not been able to find an example of a unitary topological
semigroup with continuous partial functions where T �= TX × TY .

Question 2.14. Can we drop the condition that the operation is an open map in
Theorem 2.13 ?

Corollary 2.15. Let X and Y be groups and T a group topology on X×Y . Let TX

and TY be the quotient topologies induced on X and Y respectively by the projections
πX and πY . Then T = TX × TY if and only if all partial functions ixY and iyX are
continuous.
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Corollary 2.16. Let X, Y be groups, {(Zα, Tα) : α ∈ A} a family of topological
groups and T the weak topology induced on X × Y by a family of homomorphisms
{fα : X × Y → Zα : α ∈ A}. Let TX and TY be the quotient topologies induced
on X and Y respectively by the projections πX and πY . Then T = TX × TY if and
only if for all (x, y) ∈ X × Y and for all α ∈ A the functions (fα)x

〈Y 〉 and (fα)y
〈X〉

are continuous.

Proof. The weak topology induced by homomorphisms is compatible with the group
structure (see for example [MU]). Therefore T is a group topology for X × Y and
we can apply Theorem 2.13.

Let X be any set endowed with some algebraic structure, {(Zα, Tα) : α ∈ A} a
family of topological spaces, {fα : X → Zα : α ∈ A} a family of functions. The
linear weak topology on X with respect to {fα : α ∈ A} is the coarsest topology
on X compatible with the algebraic structure on X for which all functions fα are
continuous (see [MU]).

Corollary 2.17. Let X, Y be groups, {(Zα, Tα) : α ∈ A} a family of topological
spaces and T the linear weak topology induced on X × Y by a family of functions
{fα : X × Y → Zα : α ∈ A}. Let TX and TY be the quotient topologies induced
on X and Y respectively by the projections πX and πY . Then T = TX × TY if and
only if for all (x, y) ∈ X × Y and for all α ∈ A the functions (fα)x

〈Y 〉 and (fα)y
〈X〉

are continuous.
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