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1. Introduction

In the last years there has been an increasing interest for the construction of finite–
dimensional dynamical systems from soliton equations, through the so–called meth-
ods of stationary flows and restricted flows (see [Dic], [AW1] and references therein).
Indeed the discovery of suitable sets of coordinates has allowed one to write the re-
duced systems as physically interesting Hamiltonian systems. In the case of the KdV
hierarchy, the q–representation for stationary flows has given rise to the Henon–Heiles
system [For, Wo2] and the square eigenfunctions representation for restricted flows
has furnished the Neumann and the Garnier systems [Cao1, AW1]. However the
relation between dynamical systems which are obtained through different reduction
techniques from the same soliton hierarchy is not clear; moreover a systematic way
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to find the second Hamiltonian formulation for stationary flows of any order, without
the use of a Miura map, is still lacking.

The aim of this paper is to give a contribution in these directions. The main results
are:

i) We derive in a systematic way a bi–Hamiltonian formulation for stationary
flows of the KdV hierarchy in a suitably extended phase space. As an example
the bi–Hamiltonian structure of Henon–Heiles–type systems with two and four
degrees of freedom is constructed.

ii) We obtain an explicit map between stationary and restricted flows of the
KdV hierarchy, based on the generating function of the Gelfand–Dickey (GD)
polynomials. As an application, a map between a generalized Henon–Heiles
system and the Garnier system with two degrees of freedom is constructed.

iii) We propose an integrability structure, which can be applied to both stationary
and restricted flows. It generalizes the structure introduced in [CRG] for
the particular case of the Henon–Heiles system. Though weaker than the
bi–Hamiltonian formulation, it does not require the extension of the phase
spaces.

The paper is organized as follows. In Subsect. 2.1–2.3 we construct both the KdV
hierarchy and the associated stationary flows through the kernel of the KdV Poisson
pencil. The difference between the two cases is given by the fact that the gradients
of the integrals of motion for the KdV hierarchy are the coefficients in a Laurent
series, whereas in the second case they are the coefficients of a polynomial. Thus,
using the generating function of GD polynomials, we give a bi–Lagrangian and a bi–
Hamiltonian formulation of the Lax–Novikov stationary equations of any order; as
applications, we exhibit a generalized Henon–Heiles system with two and four degrees
of freedom (Subsect.s 2.2 and 4.1).

In Subsect. 2.4 we formulate the method of restricted flows in terms of the kernels
of some Poisson structures extracted from the Poisson pencil and of the generating
function of the GD polynomials, without the explicit use of the spectral problem
as in [Cao1, AW1]. This formulation allows us to connect, in a quite natural way,
restricted flows with stationary flows: this is obtained by means of an appropriate
extension of the corresponding phase spaces with some free parameters, as we show
in Subsect. 2.5. In the final subsection 2.7 we specialize the previous map to the
Henon–Heiles and the Garnier systems.

In Sect. 3 we show that it is not possible to reduce from the extended phase space
to the standard phase space the entire bi–Hamiltonian hierarchy of Henon–Heiles and
Garnier systems, i.e. both the Poisson structures and the associated vector fields.
For this reason, in Subsect. 3.2 we propose an integrability criterion holding for a
generic finite–dimensional Hamiltonian system. It generalizes the criterion introduced
in [CRG] for the particular case of the Henon–Heiles system. Though weaker than
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the bi–Hamiltonian scheme, it will be shown to assure Liouville–integrability of a
Hamiltonian system [Arn] in its standard phase space, i.e. without the introduction
of supplementary coordinates. In Subsect. 3.3 we apply this criterion to the Henon–
Heiles system and the Garnier system with two degrees of freedom and then to the
four–dimensional Henon–Heiles system in Subsect. 4.2.

Now we give some preliminaries to be used in the following: the aim is mainly to fix
notations and terminology. Let M be a n–dimensional manifold. At any point u ∈M ,
the tangent and cotangent spaces are denoted by TuM and T ∗uM , the pairing between
the two spaces by <,>: T ∗uM × TuM → R. For each smooth function f ∈ C∞(M),
df denotes the differential of f . M is said to be a Poisson manifold if it is endowed
with a Poisson bracket {, } : C∞(M) × C∞(M) → C∞(M); the associated Poisson
tensor P is defined by {f, g}(u) :=< df(u), Pu dg(u) >. So, at each point u, Pu is a
linear map Pu : T ∗uM → TuM , skew–symmetric and with vanishing Schouten bracket
[LM]. A function h ∈ C∞(M) with a non trivial differential df ∈ KerP is called
a Casimir of P : Pu df(u) = 0. A Poisson morphism is a differentiable map which
leaves invariant the Poisson bracket. Namely, Φ : M → M is a Poisson morphism if
{f, g} ◦ Φ = {f ◦ Φ, g ◦ Φ}, for each f , g ∈ C∞(M); Φ leaves invariant the Poisson
tensor P : PΦ(u) = Φ∗ Pu Φ∗, where Φ∗ and Φ∗ denote, respectively, the tangent and
the cotangent maps associated to Φ. In particular, if the Poisson bracket is non
degenerate, i.e. P is invertible, and the Poisson morphism is a diffeomorphism, Φ
defines a symplectic (canonical) transformation. M is said to be a bi–Hamiltonian
manifold if it is endowed with two Poisson tensors P0 and P1 such that the associated
pencil P λ := P1 − λP0 be itself a Poisson tensor for any λ ∈ C [Ma1].

2. Finite–dimensional bi–Hamiltonian systems from soliton equations

In order to reduce a bi–Hamiltonian hierarchy of soliton equations on invariant
submanifolds we improve a method described in [Ton], where it was applied to sta-
tionary flows of the KdV hierarchy. This method adopts the unifying point of view
of searching for the kernel of:

i) a given Poisson pencil in the case of stationary flows;
ii) some Poisson tensors extracted from the Poisson pencil in the case of restricted

flows.

In this framework, a bi–Hamiltonian structure for the reduced vector fields can be
obtained algorithmically by a systematic use of the Gelfand–Dickey (GD) polyno-
mials. Furthermore, the use of the GD polynomials allows us to construct a map
between the stationary flows and the restricted flows.

2.1. Bi–Hamiltonian hierarchies and Gelfand–Dickey polynomials. In this
subsection we summarize the main facts about the bi–Hamiltonian theory, following
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[CMP]; furthermore, we recall the GD polynomials and their realizations in the KdV
hierarchy [Dic], showing explicitly some of their properties to be used below.
Let M be a bi–Hamiltonian manifold: if the associated Poisson pencil P λ := P1−λP0

admits as a Casimir a formal Laurent series h(λ)

h(λ) :=
∑
j≥0

hj λ−j ,(2.1)

then h0 is a Casimir of P0 and the coefficients hj (j ≥ 1) are the Hamiltonian functions
of a hierarchy of vector fields Xj, which are Hamiltonian with respect to both P0 and
P1:

Xj = P1dhj = P0dhj+1 (j ≥ 0) .(2.2)

At any point u ∈M , the equations of the bi–Hamiltonian flows are given by du/dtj =
Xj(u), tj being the evolution parameter of the jth flow. The vector fields (2.2) are
Hamiltonian also with respect to the Poisson pencil P λ. In fact let us consider the
polynomials h(j)(λ) := (λjh(λ))+ =

∑j
k=0 hk λj−k, where the index + means the

projection of a Laurent series onto the purely polynomial part. Then the recursion
relation (2.2) can be written as

Xj = P λ dh(j)(λ) .(2.3)

Summarizing, the construction of a bi–Hamiltonian hierarchy with respect to a
given Poisson pencil amounts to search the elements of its kernel which are exact
1–forms.

Remark 2.1. In the framework of stationary flows we will also consider Casimirs ĥ(λ)
of the Poisson pencil which are finite sums

ĥ(λ) =
n∑
j=0

ĥjλ
−j .(2.4)

If such Casimirs exist, one has a finite hierarchy starting from a Casimir ĥ0 of P0 and
ending with a Casimir ĥn of P1. �

Now let M be the algebra of polynomials in u, ux, uxx, . . . (u = u(x) is a C∞

function of x and the subscript x means the derivative with respect to x), and let
P0 and P1 be two compatible Poisson tensors in M . Consider the associated Poisson
pencil P λ and look for the 1–forms
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v(λ) :=
∑
j≥0

vj λ−j ,(2.5)

which are solutions of the equation

P λ v(λ) = 0 .(2.6)

For the moment we do not require that v(λ) be an exact 1–form.
The solutions of Eq. (2.6) can be obtained as follows. Owing to the skew–symmetry

of P0 and P1, two bilinear functions B0(w1, w2) and B1(w1, w2) exist such that

d

dx
Bk(w1, w2) = w1 Pkw2 + w2 Pkw1 (k = 0, 1 , ∀w1, w2) .(2.7)

These equations define B0 and B1up to additive constants which will be taken to be
zero. The pencil of the two functions, denoted by Bλ:

Bλ := B1 − λB0(2.8)

enjoys the relation

d

dx
Bλ(w1, w2) = w1 P λw2 + w2 P λw1 (∀w1, w2) .(2.9)

So Eq. (2.6) is equivalent to:

Bλ(v(λ), v(λ)) = a(λ) ,(2.10)

where a(λ) =
∑
j≥−1 ajλ

−j and d
dx

a(λ) = 0. As it is known from the literature [CMP],
if the coefficients aj are chosen independent of u, then each solution v(λ) of (2.10) is
an exact 1–form, v(λ) = dh(λ), h(λ) being a Casimir of the Poisson pencil. Moreover,
the coefficients vj are gradients of the Hamiltonians hj of the hierarchy, fulfilling the
bi–Hamiltonian relations (2.2). On account of this result, aj will be chosen to be
constant in the rest of the paper.

Remark 2.2. From the bilinearity of Bλ it follows that if v̄(λ) is a solution of (2.10)

for ā(λ) then v(λ) =
√
a(λ)/ā(λ) v̄(λ) is a solution of (2.10) for a(λ). �

Eq. (2.10) can be solved developing the left hand side as a Laurent series:

Bλ(v(λ), v(λ)) =
∑
k≥−1

Bkλ
−k ,(2.11)
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so that

B−1 = −B0(v0, v0) , Bk =
k∑
j=0

B1(vj, vk−j)−
k+1∑
j=0

B0(vj, vk+1−j) ,(2.12)

and

Bk = ak k = −1, 0, . . . .(2.13)

Remark 2.3. The only term depending on vk+1 in each Bk is −2B0(v0, vk+1). �
Now let us introduce the GD polynomials. For any Laurent series w(λ) of type

(2.5), let us consider the functions B(k)(λ) := Bλ
(
w(λ), w(k)(λ)

)
, where w(k)(λ) :=(

λkw(λ)
)

+
; it can be proved by direct computation that these functions have the

form

B(k)(λ) =
k+1∑
j=1

λjBk−j +
∑
j≥0

λ−jpjk (j, k ∈ N0) .(2.14)

If v(λ) is a solution of Eq. (2.10), the coefficients pjk are called the GD poly-
nomials and B(k)(λ) will be referred to as their generating functions. Indeed, if
P0 and P1 are differential operators in d/dx, with a polynomial dependence on
u, ux, uxx, uxxx, u

(4), . . . , (as in the KdV case), then the pjk are polynomials in u
and its x–derivatives.

The fundamental property of the GD polynomials, stemming from (2.14), (2.9) and
(2.3), is the following relation with the gradients vj and the bi–Hamiltonian vector
fields Xk :

d

dx
pjk = vjXk .(2.15)

Some other properties are contained in the following

Proposition 2.1. For every j, k ∈ N0 and w(λ) of type (2.5), the functions pjk in
Eq.(2.14) enjoy the properties

Bλ
(
w(k)(λ), w(k)(λ)

)
=

k∑
j=0

λj(2pk−j,k −B2k−j) +
2k+1∑
j=k+1

λjB2k−j ,

Bk = p0k − B0(w0, wk+1) , B2k = 2pkk − B1(wk, wk) .

(2.16)
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Proof. The first and the second equation are recovered evaluating by means of (2.14)

the positive part, respectively, of Bλ
(
w(k)(λ) − λkw(λ), w(k)(λ) − λkw(λ)

)
and of

Bλ
(
w(λ), w(k)(λ)− λkw(λ)

)
. The last equation is obtained extracting from the first

one the coefficient of λ0.

Remark 2.4. If ŵ(λ) is a finite sum as in Eq. (2.4), i.e. ŵl = 0 for l > n, the
coefficients p̂jn in Eq. (2.14) are given by

p̂jn =


pjn|wl=0 l>n if j ≤ n ,

0 if j > n.
(2.17)

�

Example: the KdV hierarchy. Let us apply the previous scheme to the KdV
hierarchy. As it is well known [Ma1], it originates from the Poisson tensors

P0 :=
d

dx
, P1 :=

d3

dx3
+ 4u

d

dx
+ 2ux ,(2.18)

which give rise to the following bilinear function

Bλ(w1, w2) := w1xxw2 + w1w2xx − w1xw2x + 4uw1w2 − λw1w2 .(2.19)

We report some polynomials pjk to be used in the following:
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p00 = 4u− w1 ,

p01 = 8uw1 − w2
1 − w2 + 2w1xx ,

p02 = 4uw2
1 + 8uw2 − 2w1w2 − w3 − w2

1x + 2w1w1xx + 2w2xx ,

p03 = 8uw1w2 − w2
2 + 8uw3 − 2w1w3 − w4 − 2w1xw2x + 2w2w1xx + 2w1w2xx + 2w3xx ,

p04 = 4uw2
2 + 8uw1w3 − 2w2w3 + 8uw4 − 2w1w4 − w5 +

− w2
2x − 2w1xw3x + 2w3w1xx + 2w2w2xx + 2w1w3xx + 2w4xx ,

p12 = 8uw1w2 − w2
2 + 4uw3 − w1w3 − w4 + 2w1xw2x + 2w2w1xx + 2w1w2xx + w3xx ,

p14 = 8uw2w3 − w2
3 + 8uw1w4 − 2w2w4 + 4uw5 − w1w5 − w6 +

− 2w2xw3x − 2w1xw4x + 2w4w1xx + 2w2w3xx + 2w3w2xx + 2w1w4xx + w5xx ,

p24 = 4uw2
3 + 8uw2w4 − 2w3w4 + 4uw1w5 − w2w5 + 4uw6 − w1w6 − w7 +

− w2
3x − 2w2xw4x − w1xw5x + 2w4w2xx + 2w3w3xx + 2w2w4xx + w1w5xx + w6xx ,

p34 = 8uw3w4 − w2
4 + 4uw2w5 − w3w5 + 4uw1w6 − w2w6 + 4uw7 − w1w7 − w8 − 2w3xw4x +

− w2xw5x − w1xw6x + w6w1xx + w5w2xx + 2w4w3xx + 2w3w4xx + w2w5xx + w1w6xx + w7xx ,

pkk = wkxxwk −
w2
kx

2
+ 2uw2

k +
B2k

2
.

(2.20)

Remark 2.5. The polynomials pkk in the above list are computed using the last equa-
tion (2.16). They will have a relevant role in the construction of a second Hamiltonian
formulation both for stationary flows and for restricted flows. �

Now we turn to the solution of Eq.(2.10), with Bλ given by (2.19). Since in this
case B0(w1, w2) = w1w2, the second equation (2.16) can be written

Bk = p0k − w0wk+1 ,(2.21)

and the system (2.13) becomes

v2
0 = −a−1 , p0k − v0vk+1 = ak k ∈ N0 .(2.22)

On account of Rem. 2.3 this system can be solved recursively with respect to vk+1;
for each k and for each a(λ), it furnishes the coefficients of the unique solution (up
to a sign) v(λ). The solution corresponding to

ā(λ) = −λ(2.23)

is the so–called basis solution v̄(λ); its first coefficients are:
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v̄0 = 1 , v̄1 = 2u , v̄2 = 2(uxx + 3u2) , v̄3 = 2(u(4) + 5u2
x + 10uxxu + 10u3)

(2.24)

and so on, namely the gradients of the first KdV Hamiltonians. In the following we
shall consider also the 1–form v(λ) = c(λ)v̄(λ), which is solution of (2.10) for

a(λ) = −λc2(λ) , c0 = 1(2.25)

(see Rem. (2.2)), where the coefficient cj are free parameters. In this case the first
1–forms of the hierarchy are

v0 = 1 , v1 = v̄1 + c1 , v2 = v̄2 + c1v̄1 + c2 , v3 = v̄3 + c1v̄2 + c2v̄1 + c3 .
(2.26)

Finally we denote by p̄jk the GD polynomials corresponding to the fundamental
solution v̄(λ). They are essentially the polynomials defined in [Dic, Prop. 12.1.12].

2.2. The method of stationary flows. The method of stationary flows [Nov] was
developed in order to reduce the flows of the KdV hierarchy onto the set Mn defined,
for every integer n, by

Mn := {u | Xn(u, ux, . . . , u
(2n+1)) = 0} .(2.27)

This manifold, being the set of fixed points of the nth flow, is invariant with respect
to each flow of the hierarchy; so the corresponding vector fields can be restricted
to Mn. It is implicitly given by the solutions of a non linear ordinary differential
equation (ODE) of order 2n + 1 and can be parametrized by the Cauchy initial data
u(x0), ux(x0), . . . , u

(2n)(x0). As Mn is odd-dimensional it cannot be a symplectic
manifold; nevertheless it will be shown to be a bi–Hamiltonian manifold, and it will
be referred to as extended phase space. Moreover, Mn is naturally foliated, on account
of (2.2) and (2.18), by a one–parameter family of 2n–dimensional submanifolds Sn
given by

Sn := {u | vn+1(u, ux, . . . , u
(2n)) = c}(2.28)

(c being a constant parameter), which are again invariant manifolds with respect to
each vector field of the KdV hierarchy, due to the invariance of the 1–forms vk. So Mn

can be naturally parametrized by the gradients of the Hamiltonians v1, . . . , vn+1 and
by their x–derivatives v1x, . . . , vnx. We shall use these coordinates in the following.

The original reduction of stationary flows consists in the restriction of the vector
fields Xj of the hierarchy to a fixed leaf Sn, by a variational formulation and using the
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so–called Ostrogradski coordinates [BN]. In this way finite–dimensional integrable
Hamiltonian systems, with x as evolution parameter, are obtained, the integrals of
motion being just the GD polynomials pjn (j = 1, . . . , n) restricted to Sn. The
last property follows from the fundamental property (2.15) of the GD polynomials.
However these Hamiltonian systems are not natural in the Ostrogradski coordinates,
so that they do not appear physically interesting.

Here we perform two different stationary reductions of the KdV flows by improving
the procedure introduced in [Ton]. On one side, we choose as reduction submanifold
S(0)
n just the leaf Sn, of the foliation (2.28), corresponding to c = 0. Owing to Eq.

(2.22), it is a level set of the GD polynomial p̂0n. On account of Eq. (2.15), also
the GD polynomials p̂jn, restricted to Mn, are invariant with respect to each flow of
the hierarchy; thus we can choose as a second reduction submanifold S(1)

n a level set
of p̂nn. The one–parameter family of the level sets of p̂nn forms another foliation of
the manifold Mn. In steps i)–iii), to be described below, we reduce the KdV flows
onto the manifold S(0)

n and S(1)
n respectively; furthermore, in step iv) we construct

the bi–Hamiltonian structure of the reduced flows in the extended phase space Mn.

From the computational point of view, the previous geometric reduction can be
performed as follows. Due to (2.3), the manifold Mn is defined by the solutions u of
the equation

P λv̂(n)(λ) = 0 ,(2.29)

where v̂(λ) =
∑n
j=0 v̂jλ

−j, v̂(n)(λ) = (λnv̂(λ))+ = λnv̂(λ).Taking into account (2.9)
and that v̂(λ) is a finite sum, this equation is equivalent to:

Bλ
(
v̂(λ), v̂(n)(λ)

)
= λnâ(λ) ,(2.30)

where â(λ) =
∑2n
j=−1 ajλ

−j, ( from now on we choose a−1 = −1 for convenience).

Remark 2.6. In particular if â(λ) = −λc2(λ), as in (2.25), Mn is given by

Mn =


u| X̄n +

n∑
j=1

cjX̄n−j = 0


 ,(2.31)

i.e. by the solutions of the Lax–Novikov equations [Lax]. �
Equating in Eq. (2.30) the coefficients of the same powers of λ and taking into

account (2.14), (2.21) and Rem. 2.4 we get the following system
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

v̂2

0 = 1

p̂0k − v̂0v̂k+1 = ak (k = 0, . . . , n− 1),

p̂jn = an+j (j = 0, . . . , n).

(2.32)

Remark 2.7. Since v̂(n) is a finite sum, (2.30) is equivalent to the equation

Bλ
(
v̂(n)(λ), v̂(n)(λ)

)
= λ2nâ(λ), used by Alber [Alb]. Due to (2.16), taking the coef-

ficients of λj (j = 0 . . . , n) in this equation one obtains

2p̂jn −Bn+j = an+j (j = 0, . . . , n) .(2.33)

Comparing Eq. (2.33) with the last n + 1 equations (2.32) one has

Bn+j = p̂jn (j = 0, . . . , n) .�(2.34)

In order to obtain the dynamical equations corresponding to the reduction of the
first vector field of the KdV hierarchy on the submanifolds S(0)

n and S(1)
n , we make

the following steps:
i) The choice of the system of (n + 1) equations in the variables (u, v̂1, v̂2, . . . , v̂n)
given by

p̂0k − v̂k+1 = ak (k = 0, . . . , n− 1) ; p̂0n = an .(2.35)

It is equivalent to the first n + 2 equations (2.32) putting v̂0 = 1. The remaining
equations will furnish a set of integrals of motion, whose independence has been
proved in [Dic]. As it will be shown later on, this system furnish the first Poisson
structure of the reduced system and will be referred to as P0–system. In order to
obtain a second Poisson structure, we consider the following system (P1–system)

p̂0k − v̂k+1 = ak (k = 0, . . . , n− 1) ; p̂nn = a2n ,(2.36)

which differs from the previous one only for the last equation; p̂nn is computed from
the list (2.20) taking into account (2.34).
ii) The previous systems are decoupled by using the first equation to eliminate u:
u = v̂1/2 + a0/4. This procedure gives rise to the reduced systems of second order
ODE’s in the n variables v̂j (j = 1, . . . , n):

p̂0k − v̂k+1 = ak (k = 1, . . . , n− 1) ; p̂0n = an ,(2.37)
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p̂0k − v̂k+1 = ak (k = 1, . . . , n− 1) ; p̂nn = a2n .(2.38)

iii) The system (2.37) can be written in Lagrangian form. To this purpose, we use
the so-called Newton or r–representation introduced in [Wo2]. Namely, we choose as

new coordinates in S(0)
n the first n coefficients rj of the formal series r(λ) :=

√
v̂(λ),

i.e.,

rk = ∆−k(
√
v̂(λ) (k = 1, . . . , n) ,(2.39)

where ∆k means the coefficient of λk in a Laurent series. Taking into account
Eq.(2.30), with the substitution v̂(n)(λ) = r2(λ)(n) and observing that 2rn+1 =
−∑n

j=1 rjrn−j+1, Eqs. (2.37) are equivalent to

(
λn

(
rxx + (r1 +

a0 − λ

4
)r − â

4r3

))
+

= 0 .(2.40)

This system is Lagrangian, with Lagrangian function

L(0)
n = ∆−(n+1)

(
L(λ; r(λ)

)
,(2.41)

where L
(
λ;w(λ)

)
is given, for each Laurent series w(λ), by

L(λ;w(λ) :=
1

2

(
wx(λ)

)2 − 1

2
(w1 +

a0 − λ

4
)w2(λ)− â(λ)

8w2(λ)
.(2.42)

The Lagrangian gradients δ
δrk

:= ∂
∂rk
− d

dx
∂

∂rkx
of L(0)

n are

δL(0)
n

δrk
= ∆k−1

(
λn

(
− rxx − (r1 +

a0 − λ

4
)r +

â

4r3

))
+

(k = 1, . . . , n) .(2.43)

Our new result is that it is possible to put also the P1–system (2.38) in Lagrangian
form with the following choice of coordinates in S(1)

n

qk = ∆−k

(√
v̂(λ)

)
(k = 1 . . . , n− 1); qn = −√vn .(2.44)

In other words we take qk = rk (k = 1, . . . , n − 1) and qn =
√−vn. The choice

of the last variable qn is motivated by the form (2.20) of pnn (see also Rem. 2.5 ).
Indeed, putting vn = −q2

n, we can write the equation pnn = a2n as a Newton equation
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without qnx. Furthermore, defining q(λ) :=
√
v̂(λ), we observe that the system (2.38)

is equivalent to

(
λn−1(qxx + (q1 +

a0 − λ

4
)q − â

4q3

))
+

+
1

2
q2
n = 0 ,

qnxx + (q1 +
a0

4
)qn −

a2n

4q3
n

= 0 .

(2.45)

This is a Lagrangian system with Lagrangian

L(1)
n = ∆−n

(
L(λ; q(λ)

)
+

1

2
q2
nx −

1

2
(q1 +

a0

4
)q2
n −

a2n

8q2
n

.(2.46)

Indeed it can be verified that the Lagrangian gradients of L(1)
n are

δL(1)
n

δq1

= ∆0

(
λn−1

(
− qxx − (q1 +

a0 − λ

4
)q +

â

4q3

))
+

− 1

2
q2
n

δL(1)
n

δqk
= ∆k−1

(
λn−1(−qxx −

(
q1 +

a0 − λ

4
)q +

â

4q3

))
+

(k = 2, . . . , n− 1)

δL(1)
n

δqn
= −qnxx − (q1 +

a0

4
)qn +

a2n

4q3
n

(2.47)

The two Lagrangian systems can be put in Hamiltonian form. For the P0-system
the canonical momenta are

sn+1−k = rkx (k = 1, . . . , n)(2.48)

and the Hamiltonian function

H(0)
n = ∆−(n+1)

(
H(λ; r(λ), s(λ))

)
(2.49)

where H(λ;w(λ), z(λ)) is given by

H(λ;w(λ), z(λ)) =
1

2
z2(λ) +

1

2

(
w1 +

a0 − λ

4

)
w2(λ) +

â(λ)

8w2(λ)
,(2.50)

and s(λ) =
∑n
j=1 sjλ

−j. For the P1–system the canonical momenta are
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pn = qnx , pn−k = qkx (k = 1, . . . , n) ,(2.51)

and the Hamiltonian function is

H(1)
n = ∆−n

(
H(λ; q(λ), p(λ))

)
+

1

2
p2
n +

1

2
(q1 +

a0

4
)q2
n +

a2n

8q2
n

,(2.52)

with p(λ) =
∑n
j=1 pjλ

−j.
The two Hamiltonian functions depend on the two sets of coordinates and momenta

(rk, sk), (qk, pk) respectively and on the two sets of free parameters (a0, . . . , an−1, an)
and (a0, . . . , an−1, a2n).
iv) Now let us consider the manifold Mn (2.27), which can be parametrized by
(rk, sk, an), or by (qk, pk, a2n), with the parameters an and a2n regarded as addi-
tional dynamical variables in Mn. On this manifold one can extend trivially the
canonical Poisson structures, the Hamiltonians and the vector fields associated with
each one of the two systems, following a method introduced in [AFW]. In partic-
ular the vector fields can be extended in such a way that they are tangent to the
foliations S(0)

an and S(1)
a2n

. We denote by a tilda the extended tensor fields. Taking
into account, on one side, the relation between the two sets of coordinates through
the original variables (vk, vkx), on the other side the relation between the two in-
tegrals of motion an and a2n through the GD polynomials p0n and pnn, a map
Φ : Mn → Mn, (rk, sk, an) �→ (qk, pk, a2n) can be systematically constructed. It
relates the Hamiltonians and the vector fields of one system with the corresponding
ones of the other system. Since this map is not a Poisson morphism, the extended
canonical Poisson structures associated with one chart is mapped into a Poisson
structure different from the extended canonical structure associated with the other
chart. If this second Poisson tensor is compatible with the extended canonical one,
a bi–Hamiltonian formulation of the two system is obtained.

In conclusion the previous steps can be summarized as follows:

Proposition 2.2. The systems (2.37) and (2.38), written respectively in the coordi-
nates (2.39) and (2.44), are natural Lagrangian systems. The corresponding canonical
Hamiltonian systems

rkx =
∂H(0)

n

∂sk
, skx = −∂H(0)

n

∂rk
,(2.53)

qkx =
∂H(1)

n

∂pk
, pkx = −∂H(1)

n

∂qk
,(2.54)

have n integrals of motion given by
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Kj ≡ −
1

8
p̂jn|Y = an+j (j = 1, . . . , n) , Hj ≡ −

1

8
p̂jn|X = an+j (j = 0, . . . , n− 1) .

(2.55)

Moreover, the map Φ : Mn → Mn in the extended phase space generates a second
Poisson structure.

Remark 2.8. The symbols |Y and |X in (2.55) mean that, in the GD polynomials
p̂jk, the coordinates (vk, vkx) must be replaced by the canonical coordinates (rk, sk)
and (qk, pk) respectively and that the first order x–derivatives of momenta must be
eliminated by means of the Hamiltonian dynamical equations (2.53), (2.54). �

In the next Subsection we shall give some applications of the results stated in this
proposition.

2.3. Example I: the bi–Hamiltonian structure of a Henon–Heiles system.
Here we present the bi–Hamiltonian structure of a generalized Henon–Heiles system
with two degrees of freedom. Its Hamiltonian is

H0 =
1

2

(
p2

1 + p2
2

)
+ q3

1 +
1

2
q1q

2
2 +

a4

8q2
2

+
a0

2

(
q2
1 +

1

4
q2
2

)
− a1

4
q1(2.56)

where q1, q2, p1, p2 are the canonical coordinates and momenta and a0, a1, a4 are free
constant parameters.

Remark 2.9. The previous Hamiltonian encompasses the two cases a0 = a4 = 0 and
a0 = a1 = 0 introduced in [BW]. Moreover H0 is related with the Hamiltonian

HH =
1

2

(
p2

1 + p2
2

)
+

1

2

(
Aq
′2
1 + Bq

′2
2

)
+ q

′3
1 +

1

2
q′1q

′2
2 +

a4

8q
′2
2

,(2.57)

through the map

q1 = q′1 +
A

2
− 2B , q2 = q′2 , a0 = −2A + 12B , a1 = −A2 + 16AB − 48B2 .

(2.58)

HH is the Hamiltonian of the classical integrable Henon–Heiles system [Tab] with the
additional term a4/8q

′2
2 . �

The Hamiltonian (2.56) can be recovered, together with a second independent
integral of motion by applying the method discussed in Subsect. 2.2. On account of
Rem. 2.6 it corresponds to the reduction of the first vector field of the KdV hierarchy
on the stationary manifold
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M2 =
{
u|u(5) + 10uxxxu + 20uxxux + 30uxu

2 + c1(uxxx + 6uxu) + c2ux = 0
}

,

(2.59)

where c1 = −a0/2, c2 = −a1/2 + a2
0/4.

One proceeds as follows:
i) The P0–system and the P1–system of ODE’s corresponding to Eqs. (2.35) and
(2.36) become respectively

2u− v̂1 =
a0

2
, 8uv̂1 − v̂2

1 + 2v̂1xx − 2v̂2 = a1 ,

4uv̂2
1 + 8uv̂2 − 2v̂1v̂2 − v̂2

1x + 2v̂1v̂1xx + 2v̂2xx = a2 ,
(2.60)

2u− v̂1 =
a0

2
, 8uv̂1 − v̂2

1 + 2v̂1xx − 2v̂2 = a1 ,

2v̂2xxv̂2 − v̂2
2x + 4uv̂2

2 = a4 .
(2.61)

ii) The reduced systems corresponding to (2.37) and (2.38) are obtained by eliminat-
ing u by means of the first equation, so that

v̂1xx = −3

2
v̂2

1 + v̂2 − a0v̂1 +
a1

2

v̂2xx =
1

2
v̂3

1 − 2v̂1v̂2 +
1

2
v̂2

1x +
a0

2
v̂2

1 − a0v̂2 −
a1

2
v̂1 +

a2

2
,

(2.62)

v̂1xx = −3

2
v̂2

1 + v̂2 − a0v̂1 +
a1

2
, v̂2xx =

v̂2
2x

2v̂2

− v̂1v̂2 +
a4

2v̂2

− a0

2
v̂2 .(2.63)

iii) Introduce in (2.62) the coordinates (2.39) r1 = v̂1/2, r2 = v̂2/2−v̂2
1/4 and in (2.63)

the coordinates (2.44) q1 = v̂1/2, q2 =
√
−v̂2; the two systems take the Lagrangian

form

r1xx = −5

2
r2
1 + r2 − a0r1 +

a1

4

r2xx =
5

2
r3
1 − 5r1r2 +

3

2
a0r

2
1 −

3

4
a1r1 − a0r2 +

a2

4
,

(2.64)

q1xx = −3q2
1 −

1

2
q2
2 − a0q1 +

a1

4
, q2xx = −q1q2 +

a4

4q3
2

− a0

4
q2 ,(2.65)

with Lagrangian functions
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(2.66) L
(0)
2 = r1xr2x − V

(0)
2 ,

V
(0)
2 = −5

8
r4
1 +

5

2
r2
1r2 −

1

2
r2
2 −

a0

2
r3
1 +

3

8
a1r

2
1 + a0r1r2 −

a2

4
r1 −

a1

4
r2 ,

L
(1)
2 =

1

2

(
q2
1x + q2

2x

)
− V

(1)
2 , V

(1)
2 = q3

1 +
1

2
q1q

2
2 +

a4

8q2
2

+
a0

2
q2
1 +

a0

8
q2
2 −

a1

4
q1 .

(2.67)

These system can be put in Hamiltonian form, taking s1 = r2x, s2 = r1x and p1 = q1x,
p2 = q2x as canonical momenta (see (2.48) and (2.51)). The integrals of motion which
are obtained by the reduction of the GD polynomials are

K0 ≡ −
1

8
p̂02|Y = −a2

8
,(2.68)

K1 ≡ −
1

8
p̂12|Y = s1s2 + V

(0)
2 ,(2.69)

K2 ≡ −
1

8
p̂22|Y = −s2

2r2 + s1s2r1 +
1

2
s2
1 −

1

2
r5
1 + 2r1r

2
2 −

3

8
a0r

4
1 +

+
a1

4
r3
1 −

a0

2
r2
1r2 +

a1

2
r1r2 +

a0

2
r2
2 −

a2

8
r2
1 −

a2

4
r2 ,

(2.70)

and

H0 ≡ −
1

8
p̂02|X =

1

2

(
p2

1 + p2
2

)
+ V

(1)
2 ,(2.71)

H1 ≡ −
1

8
p̂12|X = p2

2q1 − p1p2q2 −
1

2
q2
1q

2
2 −

1

8
q4
2 +

a4q1

4q2
2

− a0

4
q1q

2
2 +

a1

8
q2
2 ,(2.72)

H2 ≡ −
1

8
p̂22|X = −a4

8
,(2.73)

The corresponding Hamiltonian vector fields will be respectively denoted by Yj :=
P0 dKj and Xj+1 := P1 dHj (j = 0, 1, 2); P0 and P1 are represented in the corre-

sponding coordinates by the canonical Poisson matrix E =
(

0 1
−1 0

)
, where 0 and 1

are 2× 2 zero and identity matrices respectively.
iv) Let M2 be the 5–dimensional extended phase space parametrized by (r1, r2, s1, s2; a2)
or (q1, q2, p1, p2; a4). It is convenient to make use of block notations. So, for example,
we denote with m = (r, s; a) the 5–tuple (r1, r2, s1, s2; a2), with X̃ = [X̃r, X̃s; X̃a]T
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the generic vector field and with dK̃ = [∂K̃/∂r, ∂K̃/∂s; ∂K̃/∂a]T the generic gradient
of a function K̃ (the superscript T means transposition). In this notation a vector
field X̃ = P̃ dK̃ with Hamiltonian function K̃ with respect to a Poisson tensor P̃ will
be written



X̃r

X̃s

X̃a


 =


 P rr P rs P ra

P sr P ss P sa

P ar P as P aa






∂K̃
∂r
∂K̃
∂s
∂K̃
∂a


 ,(2.74)

where P sr = −(P rs)T etc. . . . , for the skew–symmetry of P . From the definition
of r1, r2 and q1, q2 in terms of v1 and v2, and from (2.73) and (2.70) one obtains the
following map Φ : M2 →M2, (r, s; a2) �→ (q, p; a4)

q1 = r1 , q2 = (−2r2 − r2
1)

1/2

p1 = s2 , p2 = − s1 + r1s2

(−2r2 − r2
1)

1/2
, a4 = −8K2(2.75)

with K2 given by Eq. (2.70). In these two charts let us consider the extended
Hamiltonians H̃j, K̃j, the vector fields X̃j, with components X̃r

j = Xr
j , X̃s

j = Xs
j ,

X̃a
j = 0 and Ỹj, with components Ỹ r

j = Y r
j , Ỹ s

j = Y s
j , Ỹ a

j = 0, and the extension of

the canonical Poisson structure, Ẽ :=
( 0 1 0
−1 0 0
0 0 0

)
. The following proposition holds

Proposition 2.3. The action of the map Φ : M2 → M2 defined by (2.75) on the
Hamiltonians H̃j, the vector fields Ỹj and the Poisson tensor P̃ ′0 := Ẽ is given by

Φ∗(H̃j) = K̃j , Φ∗(Ỹj) = X̃j(2.76)

P̃0 := Φ∗P̃
′
0Φ
∗ =




0 A −8X̃q
2

−AT B −8X̃p
2

8(X̃q
2)
T 8(X̃p

2 )T 0 ,


(2.77)

where

A =

[
0 − 1

q2

− 1
q2

2q1
q22

]
, B =


 0 −p2

q22
p2
q22

0


 .(2.78)

So, the map Φ is not a Poisson morphism.
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Thus we have recovered in the extended phase space M2 a second Poisson tensor
P̃0. We can check that P̃0 is compatible with P̃1 = Ẽ. Furthermore P̃0 and P̃1 give
rise to the following bi–Hamiltonian hierarchy

X̃j+1 := P̃1 dH̃j = P̃0 dH̃j+1 (j = 0, 1) ,(2.79)

the Hamiltonians H̃0 and H̃2 being Casimirs of P̃0 and P̃1 respectively.

2.4. The method of restricted flows. The method of restricted flows was intro-
duced in [Mos] as a non linearization of the KdV spectral problem and was generalized
in [Cao1, AW1]. Our formulation of this method puts the emphasis on the role played
by the GD polynomials and their generating function; by their use, a map connecting
restricted and stationary flows will be algorithmically constructed in the next subsec-
tion. In this subsection, we apply the method to the KdV hierarchy and we recover
the Garnier system.

Let us consider the following system

p̂00 − v̂1 = a0, P0

(
v̂1 −

n∑
j=1

βj
)

= 0, P λkβk = 0 (k = 1, . . . , n)(2.80)

where: λ1, . . . , λn are distinct fixed parameters, P λk := P1 − λkP0 (P0 and P1 being
the two KdV Poisson tensors (2.18)). This is a system of (n + 2) equations in
u, v̂1, β1, . . . , βn. The second equation will be referred to as the P0–restriction of
the first KdV flow X0 = P0 v̂1 = v̂1x, and the last n equations define the kernel of n
Poisson tensors extracted from the Poisson pencil. Written in terms of

ψk =
√
βk ,(2.81)

the last n equations are called square eigenfunction relations (SER) and the ψk are
referred to as Bargmann coordinates. On account of (2.20), (2.18) and (2.9), the
previous system is equivalent to the following one

u =
v̂1

2
+

a0

4
, v̂1 =

n∑
j=1

βj + c , Bλk(βk, βk) = fk ,(2.82)

where Bλ is the bilinear function (2.19), c and fk are free parameters. This system is

interesting for it has a close relationship with the GD polynomials, Bλ
(
v̂(λ), v̂(k)(λ)

)
being just their generating functions (2.14).
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By using the first two equations in order to eliminate u and v̂1 from the last n
equations, one gets a system of n ODE’s of second order for β1, . . . , βn: .

2βkxxβk − β2
kx + 2β2

k(
n∑
j=1

βj + d)− λkβ
2
k = fk (k = 1, . . . , n) ,(2.83)

where d := c + a0/2. On account of (2.81) this system takes the Lagrangian form

ψkxx = −1

2
ψk


 n∑
j=1

ψ2
j


 +

1

4
(λk − 2d)ψk +

1

4

fk
ψ3
k

,(2.84)

with Lagrangian function

L(0) =
1

2

n∑
j=1

ψ2
jxx −

1

8


(

n∑
k=1

ψ2
j

)2

−
n∑
j=1

(λj − 2d)ψ2
j +

n∑
j=1

fj
ψ2
j


 .(2.85)

The corresponding Hamiltonian is

KG =
1

2

n∑
j=1

χ2
j +

1

8


(

n∑
k=1

ψ2
j

)2

−
n∑
j=1

(λj − 2d)ψ2
j +

n∑
j=1

fj
ψ2
j


 ,(2.86)

where χj = ψjx are canonical momenta. The Hamiltonian vector field YG = E dKG
(where E :=

(
0n 1n
−1n 0n

)
, 0n and 1n being the n× n zero and identity matrices respec-

tively) gives the Garnier system with n degrees of freedom [AW1]

ψjx =
∂KG
∂χj

, χjx = −∂KG
∂ψj

(j = 1, . . . , n) .(2.87)

2.5. A map between stationary flows and restricted flows. Now we shall
construct a map between the nth stationary flow and the previous restricted flow
of the KdV hierarchy. To this end we extend the corresponding phase spaces, re-
garding some free parameters in the Hamiltonian functions as additional dynamical
variables. Let us consider the P1–formulation of the stationary flow (2.54) and let
us extend its phase space to a (3n + 1)–dimensional space, M̃n, with coordinates
(qk, pk; a0, . . . , an−1, a2n). Analogously let us consider the P0–formulation of the first
restricted flow (2.87) in the extended space M̃n with coordinates (ψk, χk; f1, . . . , fn, d).

Let us recall that if qk, pk are solutions of the dynamical equations (2.54) then the
pair (u, v̂(n)(λ)) given by

u =
v̂1

2
+

a0

4
, v̂(n)(λ) = λ

(
q2(λ)

)(n−1) − q2
n ,(2.88)
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with q(λ) = 1 +
∑n
j=1 qjλ

−j, satisfies (2.30) and consequently the following equation

Bλ
(
v̂(n)(λ), v̂(n)(λ)

)
= λ2nâ(λ) ,(2.89)

(see Rem. 2.7). So, for each n–tuple of distinct complex parameters λj, any solution
(u, v̂(n)(λ)) of Eq. (2.89) fulfills the following system

u =
v̂1

2
+

a0

4
, Bλk

(
v̂(n)(λk), v̂

(n)(λk)
)

= λ2n
k â(λk) (k = 1, . . . , n) ,(2.90)

where v̂(n)(λk) := v̂(n)(λ)|λ=λk
. In order to have a solution of this system satisfying

also a constraint condition as the second equation (2.82), the so–called Lagrange
interpolation formula can be used [Alb, CW]. It allows us to represent the polynomial
v̂(n)(λ) by

v̂(n)(λ) = v̂0 p(λ) +
n∑
j=1

p(λ)

λ− λj
βj ,(2.91)

where p(λ) =
∏n
j=1(λ− λj), and

βk =
v̂(n)(λk)

p′(λk)
(k = 1, . . . , n) ,(2.92)

( p′(λ) means the derivative of p(λ) with respect to λ). Obviously the n functions βk
(2.92) and u are solutions of the following system

u =
v̂1

2
+

a0

4
Bλk(βk, βk) =

λ2n
k â(λk)

(p′(λk))2
.(2.93)

Furthermore, developing both sides of (2.91) in power of λ, it follows that βk satisfy
the so–called Bargmann constraint

v̂1 =
n∑
j=1

βj − v̂0

n∑
j=1

λj .(2.94)

So, by eliminating u by means of the first equation (2.93) one gets

2βkxxβk − β2
kx + 2β2

k(
n∑
j=1

βj +
a0

2
−

n∑
j=1

λj)− λkβ
2
k =

λ2n
k â(λk)

(p′(λk))2
(k = 1, . . . , n) .

(2.95)
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Then at each point of M̃n the functions βk defined by Eq. (2.92) are solutions of
the system (2.83), provided that

fk =
λ2n
k â(λk)

(p′(λk))2
, d =

a0

2
−

n∑
j=1

λj .(2.96)

Taking into account Eq. (2.81), (2.92), (2.96) and (2.55), we obtain the following

Proposition 2.4. Let Ψ : M̃n → M̃n, (q, p; a0, . . . , an−1, a2n) �→ (ψ, χ; f1, . . . , fn, d)
be the map:

ψk =
(∑n−1

j=0

∑j
l=0 qlqj−l λ

n−j
k − q2

n

p′(λk)

)1/2
, χk =

∑n−1
j=1

∑j
l=1 qj−lpn−l λ

n−j
k − qnpn(

p′(λk)
( ∑n−1

j=0

∑j
l=0 qlqj−l λ

n−j
k − q2

n

))1/2
,

fk =
1

(p′(λk))2

(
a2n − 8

n∑
j=0

Hn−j λ
j
k +

2n+1∑
j=n+1

a2n−j λ
j
k

)
, d =

a0

2
−

n∑
j=1

λj

(2.97)

(k = 1, . . . , n), where Hj are the Hamiltonian functions (2.55). If (qk, pk) are solu-
tions of the stationary flows (2.54), then (ψk, χk) are solutions of the Garnier system
(2.87) for fk and d given by (2.97).

The function Bλ is also a generating function of integrals of motion for the Garnier
system. Indeed evaluating the function Bλ by means of (2.81), (2.91) and eliminating
the second x–derivatives of ψk by means of the Newton equations (2.84), one gets

4
n∑
j=1

Ij
λ− λj

+
n∑
j=1

fj
(λ− λj)2

+ 2d− λ =
λ2nâ(λ)

(p(λ))2
(2.98)

where Ij are given by

Ij = χ2
j +

n∑
k=1
k �=j

(ψjχk − ψkχj)
2

λj − λk
+

1

4


ψ2

j

(
2d− λj +

n∑
k=1

ψ2
k

)
+

fj
ψ2
j

+
n∑
k=1
k �=j

1

λj − λk

(fjψ
2
k

ψ2
j

+
fkψ

2
j

ψ2
k

)
 .

(2.99)

Taking the residues at λ = λj it follows that the functions Ij are integrals of motion
along the flow (2.87). Its Hamiltonian function KG (2.86) is dependent on Ij because
KG = 1/2

∑n
j=1 Ij. The integrals Ij were obtained in [Wo2] by means of a Lax

representation. Another family of n integrals of motion (dependent on Ij) can be
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obtained by multiplying both members of (2.98) by p(λ)2 and equating the coefficients
of the powers of λ. A few ones are

K0 ≡
a0

8
=

1

4
(d +

n∑
j=1

λj) , K1 ≡
a1

8
= KG −

d

2
(
n∑
j=1

λj)−
1

8
(
n∑
j=1

λj)
2 ,

Kn ≡
a2n

8
=

d

4

n∏
j=1

λ2
j +

1

8

n∑
j=1

fj


∏
k �=j

λ2
k


− 1

2


 n∏
j=1

λj


 n∑
j=1

Ij


∏
k �=j

λk


 ,

(2.100)

where KG is the Hamiltonian (2.86).

2.6. Example II: the bi–Hamiltonian structure of the Garnier system. In
the previous section we have recovered a map between the nth stationary flow and
the Garnier system with n degrees of freedom. Now we shall use implicitly this map
in order to construct a second Hamiltonian formulation for the Garnier vector field
YG. Let us consider the system

p̂nn = a2n , P1


v̂0 −

n∑
j=1

βj
λj


 = 0 , Bλk(βk, βk) = fk (k = 1, . . . , n) .

(2.101)

and let us compare it with the first Hamiltonian formulation (2.80). The first con-
straint equation has this motivation: it can be shown, by means of the map (2.97),
that the solutions of the system (2.80) comes from solutions of Eq. (2.89). Just this
equation implies the first constraint (2.101). The second equation (2.101) is due to
the bi–Hamiltonian property (2.2) of the KdV hierarchy and will be referred to as
the P1–formulation of the first restricted flow. The first equation can be solved with
respect to u:

u = − v̂nxx
2v̂n

+
v̂2
nx + a2n

4v̂2
n

,(2.102)

and the second equation is solved by

v̂0 −
n∑
j=1

βj
λj

= µv̂n µ ∈ R ,(2.103)

on account of (2.89). Thus we can eliminate u in the last n equations (2.101), which
become (for v̂0 = 1)
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2βkxxβk − β2
kx + 2β2

k

( ∑n
j=1

βjxx
λj

1−∑n
j=1

βj
λj

+

(∑n
j=1

βjxx
λj

)2
+ a2n

λ2
1λ

2
2

2
(
1−∑n

j=1
βj
λj

)2

)
− λkβ

2
k = fk(2.104)

for k = 1, . . . , n. This system, with the substitution βk = ψ2
k, becomes the Lagrangian

system

ψkxx −
λk
4

ψk −
fk
4ψ3

k

+ ψk
(〈ψx,Λ−1ψx〉+ 〈ψ,Λ−1ψxx〉

1− 〈ψ,Λ−1ψ〉 +
〈ψ,Λ−1ψx〉2 + a2n

4λ2
1λ

2
2(

1− 〈ψ,Λ−1ψ〉
)2 = 0 ,

(2.105)

with Lagrangian function

La =
1

2
〈ψx,Λ−1ψx〉+

〈ψ,Λ−1ψx〉2

2
(
1− 〈ψ,Λ−1ψ〉

) +
1

8
〈ψ, ψ〉 − a2n

8λ2
1λ

2
2

(
1− 〈ψ,Λ−1ψ〉

) − 1

8
〈Fψ−1,Λ−1ψ−1〉 ,

(2.106)

where we have used the vector notation ψ = [ψ1, . . . , ψn]
T , ψ−1 = [ψ−1

1 , . . . , ψ−1
n ]T ,

Λ = diag(λ1, . . . , λn), F = diag(f1, . . . , fn) and 〈φ, ψ〉 =
∑n
j=1 φjψj. The corre-

sponding Hamiltonian is

HG =
1

2
〈θ,Λθ〉 − 1

2
〈θ, ψ〉2 − 1

8
〈ψ, ψ〉+ a2n

8λ2
1λ

2
2

(
1− 〈ψ,Λ−1ψ〉

) +
1

8
〈Fψ−1,Λ−1ψ−1〉 ,

(2.107)

where the canonical momenta θk are given by

θk =
ψkx
λk

+
ψk
λk

〈ψ,Λ−1ψx〉
1− 〈ψ,Λ−1ψ〉 ;(2.108)

the corresponding Hamiltonian vector field is XG = E dHG. As well as for the first
Hamiltonian formulation we can use the function Bλ as a generating function of the
integrals of motion for the vector field XG. For the sake of simplicity we report here
only one of these

H0 =
a0

8
= HG +

1

4
(
n∑
j=1

λj) .(2.109)
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Now let us consider in the extended phase space Mn with coordinates (ψk, θk; a),

the extended Hamiltonian H̃G, the vector field X̃G, the Poisson structure Ẽ =
( 0n 1n 0
−1n 0n 0

0 0 0

)
and in the coordinates (ψk, χk; d) the extended Hamiltonian K̃G (see (2.86)) and the
vector field ỸG = Ẽ dK̃G. By inverting (2.108) and comparing (2.109) with the first
Eq. (2.100) it is easy to prove the following result

Proposition 2.5. Let Φ :Mn →Mn, (ψk, θk; a2n) �→ (ψk, χk; d) be the map:

χk = λkθk − ψk
n∑
j=1

θjψj , d = 4HG ,(2.110)

where HG is as in (2.107). Its action on the vector field X̃G and on the Poisson
tensor P̃ ′1 := Ẽ is given by

Φ∗(X̃G) = ỸG(2.111)

P̃1 := Φ∗P̃ ′1Φ∗ =




0 Λ− ψ ⊗ ψ 4ỸψG
−(Λ− ψ ⊗ ψ)T χ⊗ ψ − ψ ⊗ χ 4ỸχG
−4(ỸG

ψ
)T −4(ỸG

χ
)T 0


 ,(2.112)

where ⊗ denotes the tensor product.

Since the Poisson tensor P̃ ′1 is mapped into a Poisson structure P̃1, which can be
verified to be compatible with P̃0 := Ẽ , P̃1 and P̃0 endow the manifoldMn with a bi–
Hamiltonian structure. It coincides with the one obtained in [AW3] for the particular
case fk = 0 (k = 1, . . . , n). Let us specialize the previous results for n = 2. In this
case the Hamiltonian (2.86) becomes

KG =
1

2
(χ2

1 + χ2
2) +

1

8
[(ψ2

1 + ψ2
2)

2 − (λ1 − 2d)ψ2
1 − (λ2 − 2d)ψ2

2 +
f1

ψ2
1

+
f2

ψ2
2

] ,

(2.113)

and the corresponding Hamiltonian vector field YG = E dKG is

YG = [χ1, χ2,−
1

2
(ψ2

1 + ψ2
2)ψ1 +

1

4
(λ1 − 2d)ψ1 +

f1

4ψ3
1

,−1

2
(ψ2

1 + ψ2
2)ψ2 +

1

4
(λ2 − 2d)ψ2 +

f2

4ψ3
2

]T .

(2.114)

In the five–dimensional extended phase space M2 with coordinates (ψ1, ψ2, χ1, χ2; d)
let us consider the extended Hamiltonian K̃G, the vector field ỸG and the Poisson
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tensors P̃0 and P̃1 (2.112). In this space, combining the integrals of motion Ij (2.99),

one can construct a bi–Hamiltonian chain, starting and ending with a Casimir of P̃0

and P̃1:

Proposition 2.6. The Garnier vector field ỸG = Ỹ1 belongs to the following bi–
Hamiltonian hierarchy

Ỹj+1 = P̃1 dG̃j = P̃0 dG̃j+1 (j = 0, 1) ,(2.115)

where the Hamiltonians G̃j are given by

G̃0 =
d

4
, G̃1 = −(λ1 + λ2)

d

4
+

1

2
(I1 + I2)

G̃2 = λ1λ2
d

4
− 1

2
(λ1 + λ2)(I1 + I2) +

1

2
(λ1I1 + λ2I2) ,

(2.116)

G̃0 and G̃2 being Casimirs of P̃0 and P̃1 respectively, and I1, I2 being the integrals of
motion (2.99).

As in the case of the Henon–Heiles system, a bi–Hamiltonian structure for the
Garnier system seems to naturally exist only in its extended phase space. Nevertheless
in Subsect. 3.3 a realization of the integrability structure introduced in Prop. 3.1
will be constructed in the original four dimensional phase space.

2.7. Example III: a map between the Henon–Heiles and the Garnier sys-
tem. Now we specialize the map of Subsect. 2.5 to the Henon–Heiles system and the
Garnier system with two degrees of freedom: we obtain the surprising result that the
Henon–Heiles vector field is mapped into the Garnier vector field. Let us consider
the seven–dimensional phase space of the Henon–Heiles system M̃2 with coordinates
(q, p; a0, a1, a4). Similarly, for the Garnier system let us select the parameters f1, f2, d
(whereas λ1,λ2 have to be considered fixed) and we enlarge the phase space to a
seven–dimensional phase space M̃2, with coordinates (ψ, χ; f1, f2, d). It is easy to
prove

Proposition 2.7. Let us consider the map Ψ : M̃2 → M̃2, (q, p; a0, a1, a4) �→ (ψ, χ; f1, f2, d)
defined by
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ψ1 =
(λ2

1 + 2λ1q1 − q2
2

(λ1 − λ2)

)1/2
, ψ2 =

(−λ2
2 − 2λ2q1 + q2

2

(λ1 − λ2)

)1/2
,

χ1 =
(λ1p1 − q2p2)(

(λ1 − λ2) (λ2
1 + 2λ1q1 − q2

2)
)1/2

, χ2 =
(λ2p1 − q2p2)(

(λ1 − λ2) (−λ2
2 − 2λ2q1 + q2

2)
)1/2

,

f1 =
(−λ5

1 + a0λ
4
1 + a1λ

3
1 − 8H0λ

2
1 − 8H1λ1 + a4)

(λ1 − λ2)2
,

f2 =
(−λ5

2 + a0λ
4
2 + a1λ

3
2 − 8H0λ

2
2 − 8H1λ2 + a4)

(λ1 − λ2)2
, d =

a0

2
− (λ1 + λ2) .

(2.117)

The tangent map Φ∗ maps the extended Henon-Heiles vector fields X̃1, X̃2 (2.79) into
the extended Garnier vector fields Ỹ1, Ỹ2 (2.115):

Φ∗
(
X̃1

)
= Ỹ1 Φ∗

(
X̃2

)
= Ỹ2 .(2.118)

Moreover the pull–backs of the Garnier integrals of motion G1 and G2 are

Φ∗(G1) = −1

8
(λ2

1 + λ2
2) +

a0

8
(λ1 + λ2) +

a1

8

Φ∗(G2) =
1

(λ1 − λ2)2

(
2λ1λ2H0 + (λ1 + λ2)H1 + 2H2

)
+

+
λ1λ2

4(λ1 − λ2)2

(
(λ3

1 + λ3
2)−

a0

2
(λ2

1 + λ2
2)−

a1

2
(λ1 + λ2)

)
,

(2.119)

i.e. they are integrals of motion for the Henon–Heiles system. The action of the map
Φ on the Poisson tensor Ẽ of the Henon–Heiles system, furnishes a Poisson tensor
which is not equal to the Poisson tensor Ẽ of the Garnier system (it is not reported
here for the sake of brevity). Moreover the action of Φ on the Poisson tensor P̃0 is
given by

Φ∗P̃0Φ∗ =
1

(λ1 − λ2)2


 0 A 0
−AT B 0

0 0 0


 ,(2.120)
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where

A =


 (λ1−λ2+ψ2

1+ψ2
2)

ψ2
1

− (ψ2
1+ψ2

2)

(ψ1ψ2)

− (ψ2
1+ψ2

2)

(ψ1ψ2)

(−λ1+λ2+ψ2
1+ψ2

2)

ψ2
2


 ,

B =


 0

(χ2ψ1−χ1ψ2)(ψ2
1+ψ2

2)

(ψ1ψ2)2

− (χ2ψ1−χ1ψ2)(ψ2
1+ψ2

2)

(ψ1ψ2)2
0


 .

(2.121)

So the map Φ is not a Poisson morphism. However, according to Eq. (2.118), the
orbits of the Henon–Heiles system are mapped into the orbits of the Garnier system.

3. A new integrability structure

3.1. The reduced structures of Henon–Heiles and Garnier systems. In order
to have a bi–Hamiltonian hierarchy also in the original (not extended) phase space
for the Henon–Heiles system, one can try to perform a geometrical reduction of this
structure following the reduction techniques known from the literature [LM, MR]. In
particular, two methods can be followed: a restriction to the standard phase space
or a projection onto it.

In the first case, if the restriction submanifold is chosen to be a leaf S(1)
a4

of the

second natural foliation in M2, the Hamiltonians H̃j, the vector fields X̃j and the

Poisson structure P̃1 can be trivially restricted respectively to Hj, Xj and E; but it

turns out that P̃0 cannot be restricted. So on S(1)
a4

one gets two integrable Hamiltonian
vector fields but not a bi–Hamiltonian hierarchy.

In the second case, if Π : M2 → S2, (q1, q2, p1, p2; a2n) �→ (q1, q2, p1, p2) is the
projection map, the two Poisson tensors can be projected onto Poisson structures
without Casimirs (symplectic structures), but the Hamiltonians H̃j and the vector

fields X̃j cannot be projected onto S2, because they depend in an essential way on

the fiber coordinate. Namely the Poisson tensors P̃0 and P̃1 are projected onto:

PH = Π∗P̃0Π
∗ =

[
0 A
−AT B

]
, E = Π∗P̃1Π

∗ ,(3.1)

with A, B given by (2.78). Because these operators are compatible and invertible
they give rise to the following Nijenhuis tensor (hereditary operator) [Ma2, FF]

NH := PHE−1 =

[
A 0
B AT

]
(3.2)

together with the hierarchy of Poisson tensors
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Pk := Nk
HPH k ∈ Z .(3.3)

However these tensors are not invariant along the flow of the Henon–Heiles vector
field X1 := E dH0 (with H0 given by (2.71))

X1 = [p1, p2,−3q2
1 −

1

2
q2
2 − a0q1 +

a1

4
,−q1q2 +

a

4q3
2

− a0

4
q2]

T .(3.4)

In other words X1 is neither a symmetry of P0 nor of P1, so that they cannot generate
a bi–Hamiltonian hierarchy starting with X1.

As in the case of the Henon–Heiles system, one can try to reduce the bi–Hamiltonian
structure of the Garnier system with n degrees of freedom and one gets similar re-
sults. We report here only the results obtained by the projection of the structures on
the quotient manifold S(1)

n . If Π :Mn → S(1)
n , (ψk, χk; d) �→ (ψk, χk) is the projection

map, the Poisson tensor P̃0 and P̃1 are projected onto:

Π∗P̃0Π
∗ = E , PG := Π∗P̃1Π

∗ =


 0 Λ− ψ ⊗ ψ
−(Λ− ψ ⊗ ψ)T χ⊗ ψ − ψ ⊗ χ


 .

(3.5)

These are compatible and invertible operators and give rise to the following Nijenhuis
tensor

NG := PGE−1 =

[
Λ− ψ ⊗ ψ 0

χ⊗ ψ − ψ ⊗ ψ Λ− ψ ⊗ ψ

]
,(3.6)

together with the hierarchy of Poisson tensor fields

Pk := N k
G E k ∈ Z .(3.7)

However these tensor fields are not invariant along the flow of the Garnier vector
field YG = E dHG, so they cannot be used to construct a bi–Hamiltonian hierarchy
starting with YG.

3.2. A new integrability criterion. In Subsect. 2.3 we have constructed a bi–
Hamiltonian structure for a Henon–Heiles system with two degrees of freedom in a
suitably extended phase space; in the previous subsection we have put into evidence
some problems arising when one look for a geometrical reduction of this structure
onto the original phase space. Now we introduce a new integrability scheme, weaker
than the bi–Hamiltonian one, but living in the standard phase space. We shall define
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this new structure for a generic Hamiltonian system with n degrees of freedom; for
n = 2 it coincides with the one introduced in [CRG] for the Henon–Heiles system
with the Hamiltonian (2.57) and a4 = 0. In the following two new examples of this
integrability structure will be exhibited: the Garnier system with two degrees of
freedom and a Henon–Heiles system with four degrees of freedom.

Proposition 3.1. Let M be a 2n–dimensional Poisson manifold equipped with a
Poisson tensor Q0, and let Z0 be Hamiltonian vector field with Hamiltonian h0:
Z0 = Q0 dh0. Let there exist a tensor N : TM → TM and a skew–symmetric
tensor Q1 : T ∗M → TM such that

Q1 = NQ0 .(3.8)

Denote by Zi the vector fields obtained by the iterated action of the tensor N on Z0

Zi := N iZ0 (i = 1, . . . , n− 1) ,(3.9)

and by αi the 1–forms obtained by the iterated action of the adjoint N ∗ : T ∗M → T ∗M
on α0 := dh0

αi := N ∗iα0 (i = 1, . . . , n− 1) .(3.10)

Let there exist n−1 independent functions hi (i = 1, . . . , n−1) and (n(n+1)/2−1)
functions µij (i = 1, . . . , n−1; 0 ≤ j ≤ i) with µ00 = 1 and µii �= 0 (i = 1, . . . , n−1),
such that the 1-forms αi can be written as

αi =
i∑

j=0

µij dhj (i = 1, . . . , n− 1) .(3.11)

Under the previous assumptions the following results hold:
i) the vector fields Zi satisfy the recursion relations

Zi+1 = Q0αi+1 = Q1αi (i = 0, . . . , n− 2).(3.12)

ii) the functions hi are in involution with respect to the Poisson bracket defined by
Q0 and they are constants of motion for the fields Zk

{hi, hj}Q0 = 0 , LZk(hi) = 0 ,(3.13)

where LZk denotes the Lie derivative with respect to the vector field Zk.
iii) the Hamiltonian system corresponding to the vector field Z0 is Liouville–integrable.
In addition if Q1 is a Poisson tensor field, then also Z1 is an integrable Hamiltonian
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vector field and the functions hi are in involution also with respect to the Poisson
bracket defined by Q1.

Proof.

i) From Eq. (3.8) and the skew–symmetry of Q0 and Q1 it follows that Q0N ∗ = NQ0

and Q1N ∗ = NQ1. Then

Z1 −Q0α1 = Z1 −Q0N ∗α0 = Z1 −NQ0α0 = 0(3.14)

and the first relation (3.12) is proved by induction since it is

Zi+1 −Q0αi+1 = NZi −Q0N ∗αi = N (Zi −Q0αi) .(3.15)

The second relation (3.12) follows from

Zi+1 −Q1αi = NZi −Q1αi = N (Zi −Q0αi) .(3.16)

ii) By (3.11), the gradients dhk can be expressed for any k in terms of dh0

dhk = (
k∑
i=0

νkiN ∗
i

)dh0 ,(3.17)

where νki are the elements of the matrix a−1, a being the lower triangular matrix
defined by aij = µij (i ≥ j), aij = 0 (i < j), (i, j = 0, . . . , n− 1). Thus

{hi, hj}Q0
: = 〈dhi, Q0dhj〉

=
i∑

a=0

j∑
b=0

νiaνjb〈N ∗
a

dh0, Q0N ∗
b

dh0〉

=
i∑

a=0

j∑
b=0

νiaνjb〈dh0,N a+bQ0dh0〉

(3.18)

and the first relation (4.5) follows from the skew–symmetry of the tensor NmQ0 for
any m. Furthermore
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LZk(hi) = 〈dhi, Q0αk−1〉

= 〈dhi, Q0

k∑
j=0

µkjdhj〉

=
k∑
j=0

µkj{hi, hj}Q0

= 0

(3.19)

iii) Since Z0 is a Hamiltonian vector field, it is Liouville–integrable on account of the
previous result. Moreover, since it is

{hi, hj}Q1
: = 〈dhi, Q1dhj〉

=
i∑

a=0

j∑
b=0

νiaνjb〈N ∗
a

dh0, Q1N ∗
b

dh0〉

=
i∑

a=0

j∑
b=0

νiaνjb〈dh0,N a+bQ1dh0〉

= 0.

(3.20)

it follows that if Q1 is also a Poisson tensor, {, }Q1 is a Poisson bracket, Z1 is a
Hamiltonian vector field and then it is Liouville–integrable.

Remark 3.1. The recursion scheme and the integrability of the vector field Z0 do not
require that the skew–symmetric tensor Q1 be a Poisson tensor; so M is a Poisson
manifold, not a bi-Hamiltonian one. �

In view of the next applications, it may be worthwhile to remark that the results
of Prop. 3.1 hold true if the role of Q0 and Q1 are interchanged; to be more precise,
one can prove (just as for Prop. 3.1)

Proposition 3.2. The integrability scheme of Prop. 3.1 is still valid if Q0 is skew–
symmetric, Q1 is a Poisson tensor and the role of Z0 is now played by Z1 = Q1dh0.
The involution relations (3.13) become {hi, hj}Q1 = 0.

3.3. The integrability structure of Henon–Heiles and Garnier systems. In
Subsect. 3.1 we have recovered by projection onto the quotient manifold S2 the
Nijenhuis tensor (3.2) and a hierarchy of compatible Poisson tensors (3.3); however,
it is not possible to associate to these tensors and to the Henon–Heiles vector field
X1 (3.4) a bi–Hamiltonian hierarchy of vector fields. Nevertheless it is possible to
use these elements to construct an example of the integrability structure introduced
in Prop. 3.2. In fact if one takes
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i) Q1 = E, the vector field Z1 := X1 (3.4) with Hamiltonian h0 := H0 (2.71);
ii) the tensor field N := NH (3.2) and Q0 := P−2 = N−2

H PH , with PH as in (3.1);
iii) the function h1 := H1 (2.72) and the functions µij as µ10 = 0, µ11 = 1/q2

2;

then the conditions of Prop. 3.2 are satisfied. Moreover the vector field Z0 :=
Q0 dh0 = P−2 dH0 is a new integrable vector field:

Z0 =




−2p1q1 − p2q2

−p1q2

−p2
2 + 6q3

1 + 2q1q2 − a4
4q22
− a1

2
q1 − 2a0q

2
1 + a0

4
q2
2

p1p2 +
q32
2

+ 3q2
1q2 − a1

4
q2 + a0q1q2


 .(3.21)

This integrability structure is related to the one introduced in [CRG], for the Hamil-
tonian (2.57) with a4 = 0, through the map (2.58).

For the Garnier system with two degrees of freedom one can construct an example
of the integrability structures of Prop. 3.1. Indeed if one uses the elements of Subsect.
3.1 and makes the following choices:

i) Q0 := E , h0 := G̃1 (2.116), Z0 := YG (2.114);
ii) N := N−1

G , with NG given by (3.6), Q1 := P−1 = N−1
G E ;

iii) the functions h1 := G̃2 (2.116), µ10 = 0, µ11 = − λ1λ2

1−
ψ2
1
λ1
−
ψ2
2
λ2

;

then the conditions of Prop. 3.1 are satisfied. Moreover the vector field Z1 := µ11Y2

is a new integrable vector field ( Y2 is the restriction to the submanifold of M2,
d = cost, of the vector field Ỹ2 (2.115)).

Now we compute the action, on the recursion operators of the previous integrability
structures, of the map between the standard phase spaces of the Henon–Heiles and
of the Garnier system, induced by the map (2.117).

Proposition 3.3. Let us consider the map Φ : (q1, q2, p1, p2) �→ (ψ1, ψ2, χ1, χ2):

ψ1 =
(λ2

1 + 2λ1q1 − q2
2

(λ1 − λ2)

)1/2
, ψ2 =

(−λ2
2 − 2λ2q1 + q2

2

(λ1 − λ2)

)1/2
,

χ1 =
(λ1p1 − q2p2)(

(λ1 − λ2) (λ2
1 + 2λ1q1 − q2

2)
)1/2

, χ2 =
(λ2p1 − q2p2)(

(λ1 − λ2) (−λ2
2 − 2λ2q1 + q2

2)
)1/2

.

(3.22)

The map Φ relates the recursion operators of the Henon–Heiles and of the Garnier
systems:

Φ∗NH = N−1
G Φ∗ .(3.23)
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4. A Henon–Heiles system with four degrees of freedom

In order to show the effectiveness of the reduction method presented in Subsect.
2.2, we present a new integrable Hamiltonian system with four degrees of freedom
and an indefinite kinetic energy; it can be obtained as a stationary reduction of the
ninth-order KdV equation as well as the Henon–Heiles system has been obtained
as a reduction of the fifth-order KdV equation. For this reason, the new system
will be referred to as a Henon–Heiles system with four degrees of freedom. In the
next subsection its bi–Hamiltonian structure in the extended phase space will be
constructed and in Subsect. 4.2 its integrability structure will be exhibited as a
realization of the criterion introduced in Subsect. 3.1.

Obviously enough, a Henon–Heiles system with n degrees of freedom and an indef-
inite kinetic energy can be obtained as a stationary reduction of the (2n + 1)–order
KdV equation.

4.1. The bi–Hamiltonian structure. We apply to the case n = 4 the general
procedure illustrated in Subsect. 2.2. We make the choice

a(λ) = −λ + a4λ
−4 + a8λ

−8 ,(4.1)

which, on account of Rem. 2.6, corresponds to the stationary manifold

M5 =

{
u | d

dx

(
u(8) + 18u(6)u + 54u(5)ux + 114u(4)uxx + 126u(4)u2 + 69u2

xxx

+ 504uxxxuxu + 378u2
xxu + 462uxxu

2
x + 420uxxu

3 + 630u2
xu

2 + 126u5
)

= 0

}
.

(4.2)

i) The system of ODE’s corresponding to Eq. (2.35) becomes

p0k − vk+1 = 0 (k = 0, 1, 2, 3) , p04 = a4 ,(4.3)

and the one corresponding to Eq. (2.36) differs for the fifth equation, which is

p44 = a8 .(4.4)

ii) The reduced systems corresponding to (2.37) is
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v1xx = −3

2
v2

1 + v2 , v2xx = +
1

2
v3

1 − 2v1v2 +
1

2
v2

1x + v3

v3xx = −1

2
v4

1 +
3

2
v2

1v2 −
1

2
v2

1xv1 + v1xv2x −
1

2
v2

2 − 2v1v3 + v4

v4xx =
1

2
v5

1 − 2v3
1v2 +

1

2
v2

1xv
2
1 −

1

2
v2

1xv2 +−v1v1xv2x +
3

2
v1v

2
2 +

+
3

2
v2

1v3 − v1v1xv2x + +v2
2x + v1xv3x +−v2v3 − 2v1v4 +

a4

2

(4.5)

and the one corresponding to (2.38) differs for the fourth equation which is replaced
by

v4xx =
v2

4x

2v4

− v1v4 +
a8

2v4

.(4.6)

iii) In order to put Eq.s (4.5) in Lagrangian form, let us introduce in (4.5) the coor-
dinates rj (j = 1, 2, 3, 4) given by: r1 = v1/2, r2 = v2/2− v2

1/8, r3 = v3/2− v1v2/4 +
v3

1/16, r4 = v4/2 − v1v3/4 − v2
2/8 + 3v2

1v2/16 − 3v4
1/128. As for the system contain-

ing (4.6) we introduce the coordinates qj (j = 1, 2, 3, 4) given by: q1 = v1/2, q2 =
v2/2 − v2

1/8, q3 = v3/2 − v1v2/4 + v3
1/16, q4 =

√−v4. The two previous systems
become

r1xx = −5

2
r2
1 + r2 , r2xx =

5

2
r3
1 − 4r1r2 + r3

r3xx = −15

4
r4
1 +

15

2
r2
1r2 −

3

2
r2
2 − 4r1r3 + r4

r4xx =
21

4
r5
1 − 15r3

1r2 +
15

2
r1r

2
2 +

15

2
r2
1r3 − 4r2r3 − 5r1r4 +

a4

4
,

(4.7)

q1xx = −5

2
q2
1 + q2 , q2xx =

5

2
q3
1 − 4q1q2 + q3

q3xx = −15

4
q4
1 +

15

2
q2
1q2 − 2q2

2 − 5q1q3 −
1

2
q2
4 , q4xx = −q1q4 +

a8

4q3
4

,
(4.8)

with Lagrangian functions
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L
(0)
4 = r1xr4x + r2xr3x − V

(0)
4 ,

V
(0)
4 = −7

8
r6
1 +

15

4
r4
1r2 −

15

4
r2
1r

2
2 −

5

2
r3
1r3 +

1

2
r3
2 + 4r1r2r3 +

5

2
r2
1r4 +

− r2r4 −
1

2
r2
3 −

a4

4
r1 ,

(4.9)

L
(1)
4 =

1

2

(
q2
4x + 2q1xq3x + q2

2x

)
− V

(1)
4 ,

V
(1)
4 =

3

4
q5
1 −

5

2
q3
1q2 + 2q1q

2
2 +

5

2
q2
1q3 +

1

2
q1q

2
4 − q2q3 +

a8

8q2
4

.
(4.10)

The integrals of motion which are obtained by reduction of the GD polynomials
are Kj ≡ −1

8
p̂jk|Y and Hj ≡ −1

8
p̂jk|X , (j = 0, . . . , 4):

K0 = −a4

8
, K1 = s1s4 + s2s3 + V

(0)
4 ,

K2 = −s2
4r4 − s3s4r3 − s2s4r2 + s1s4r1 + 2s2s3r1 + s1s3 +

1

2
s2
2 −

3

4
r7
1 +

9

4
r5
1r2 +

− 5

4
r4
1r3 −

3

2
r1r

3
2 − 2r2

1r2r3 + r1r
2
3 + 3r1r2r4 + +

5

2
r2
2r3 −

a4

8
r2
1 − r3r4 −

a4

4
r2 ,

K3 = s2
4r2r3 − s3s4r1r3 − s2s4r1r2 + s2s3r

2
1 − s2s4r3 +

− 2s3s4r4 + s1s4r2 − s2
3r3 + s2s3r2 + s1s3r1 + s2

2r1 + s1s2 +

− 3

2
r6
1r2 +

45

8
r4
1r

2
2 −

1

4
r5
1r3 −

9

2
r2
1r

3
2 − r3

1r2r3 +
5

4
r4
1r4 +

3

8
r4
2 +

1

2
r1r

2
2r3 +

− 3

2
r2
1r

2
3 − r2

1r2r4 −
1

2
r2
4 + 2r2r

2
3 + 3r1r3r4 +

1

2
r2
2r4 −

a4

4
r1r2 −

a4

4
r3 ,

K4 =
1

2
s2
4r

2
3 + s3s4r2r3 − s2s4r1r3 − s2s4r

2
2 − s2

3r1r3 + s2s3r1r2 +
1

2
s2
2r

2
1 +

− s2
3r4 − 2s2s4r4 + s1s4r3 + s1s3r2 + s1s2r1 +

1

2
s2
1 −

3

4
r5
1r

2
2 −

3

2
r6
1r3 +

+
5

2
r3
1r

3
2 + 5r4

1r2r3 −
3

2
r5
1r4 +−3

2
r1r

4
2 −

9

2
r2
1r

2
2r3 − 3r3

1r
2
3 + 5r3

1r2r4 +

+ r3
2r3 + 2r1r2r

2
3 − 2r1r

2
2r4 − r2

1r3r4 + 2r2r3r4 + 2r1r
2
4 −

a4

8
r2
2 −

a4

4
r1r3 ,

(4.11)

and
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H0 =
1

2

(
p2

2 + 2p1p3 + p2
4

)
+ V

(1)
4 ,

H1 = p1p2 + p2
2q1 + p1p3q1 + p2

4q1 − p2p3q2 − p2
3q3 − p3p4q4 +

5

8
q6
1 +

+
5

4
q4
1q2 + q2

1q
2
2 + q3

2 + 3q1q2q3 −
1

2
q2
3 +

a8q1

4q2
4

,

H2 =
1

2
p2

2q
2
1 +

1

2
p2

4q
2
1 +

1

2
p2

3q
2
2 + p2p3q1q2 +

1

2
p2

3q
2
4 − p3p4q1q4 +

+ 2p2p3q3 + p2
4q2 + p1p3q2 + p1p2q1 − p2p4q4 +

1

2
p2

1 +

+
5

4
q5
1q2 − 3q3

1q
2
2 +

1

2
q3
1q

2
4 +

5

4
q4
1q3 + q1q

3
2 − q2

1q2q3 −
1

2
q1q2q

2
4 +

+
1

2
q3q

2
4 + +q2

2q3 + 2q1q
2
3 +

a8

8q2
4

(q2
1 + 2a8q2) ,

H3 = −p2p4q1q4 − p3p4q2q4 + p2p3q
2
4 + p2

4q1q2 + p2
4q3 − p1p4q4 +

− 5

8
q4
1q

2
4 +

3

2
q2
1q2q

2
4 −

1

2
q2
2q

2
4 +−q1q3q

2
4 −

1

8
q4
4 +

a8

4q2
4

(q1q2 + q3) ,

H4 = −a8

8

(4.12)

where s1 = r4x, s2 = r3x, s3 = r2x, s4 = r1x and p1 = q3x, p2 = q2x, p3 = q1x,
p4 = q4x are canonical momenta. The corresponding Hamiltonian vector fields will
be respectively denoted by Yj := P0 dKj and Xj+1 := P1 dHj (j = 0, 1, . . . , 4), where
P0 and P1 are represented in the corresponding coordinates by the canonical Poisson

matrix E =
(

0 1
−1 0

)
, 0 and 1 being the 4× 4 zero and identity matrices respectively.

iv) From the definition of r1, r2, r3, r4 and q1, q2, q3, q4 in terms of v1 and v2, given in
step iii), and from H4 (4.12), K4 (4.11), the map Φ : M4 →M4, (r, s; a4) �→ (q, p; a8)
in the 9–dimensional extended phase space can be easily obtained:

q1 = r1, q2 = r2, q3 = r3, q4 = (−r2
2 − 2r1r3 − 2r4)

1/2 ,(4.13)

p1 = s2, p2 = s3, p3 = s4, p4 = −s1 + r1s2 + r2s3 + r3s4

(−r2
2 − 2r1r3 − 2r4)1/2

,

a8 = −8K4 .

In these two charts let us consider the extended Hamiltonians H̃j, K̃j, the vector

fields X̃j, Ỹj and the Poisson structure Ẽ :=
( 0 1 0
−1 0 0
0 0 0

)
. The following proposition

holds
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Proposition 4.1. The action of the map Φ : M4 → M4 defined by (4.13) on the
Hamiltonians H̃j, on the vector fields Yj and on the Poisson structure P̃ ′0 := Ẽ is
given by

Φ∗(H̃j) = K̃j , Φ∗(Ỹj) = X̃j(4.14)

P̃0 := Φ∗P̃
′
0Φ
∗ =




0 A −8X̃q
4

−AT B −8X̃p
4

8(X̃q
4)
T 8(X̃p

4 )T 0


 ,(4.15)

where

A = −




0 0 0 1
q4

−1 0 0 q1
q4

0 −1 0 q2
q4

q2
q4

q1
q4

1
q4
−2(q1q2+q3)

q24
,




B =




0 0 0 − (p4q2−p2q4)
q24

0 0 0 − (p4q1−p3q4)
q24

0 0 0 −p4
q24

(p4q2−p2q4)
q24

(p4q1−p3q4)
q24

p4
q24

0




(4.16)

So the map Φ is not a Poisson morphism.

Thus the Poisson tensor P̃ ′0 is mapped into a non canonical Poisson structure P̃0,
which can be verified to be compatible with P̃1 = Ẽ. Both of them give rise to the
following bi–Hamiltonian hierarchy

X̃j+1 = P̃1 dH̃j = P̃0 dH̃j+1 = (j = 0, 1, 2, 3) ,(4.17)

the Hamiltonians H̃0 and H̃4 being Casimirs of P̃0 and P̃1 respectively.

4.2. The integrability structure. In this subsection we construct the integrability
structure of the Henon–Heiles system with four degrees of freedom in its eighth–
dimensional phase space as an example of the model presented in Prop. 3.2. The
first step consists in projecting the two compatible Poisson tensors in the extended
phase space via the canonical projection Π : M4 → S4, (q, p; a8) �→ (q, p). The
projected tensors are given by

PH := Π∗P̃0Π
∗ =

[
0 A
−AT B

]
, E = Π∗P̃1Π

∗ ,(4.18)



40 G. TONDO

where A and B are the matrices (4.16). Since these operators are invertible, they
give rise to the following Nijenhuis tensor

NH := PHE−1 =

[
A 0
B −AT

]
,(4.19)

together with the hierarchy of Poisson tensors

Pk := Nk
HPH k ∈ Z .(4.20)

As a matter of fact, one can use NH to construct an integrability scheme as in Prop.
3.2 Indeed, if one takes

i) Q1 = E, the vector field Z1 := X1 with Hamiltonian h0 := H0(4.12);
ii) the tensor field N := NH , i.e. the Nijenhuis tensor (4.19), and Q0 := P−2;
iii) the function h1 := H3, h2 := H2, h3 := H1 (4.12);
iv) µ10 = µ20 = µ30 = 0 and

µ11 = µ22 = µ33 =
1

q2
4

µ21 = µ32 =
2(q1q2 + q3)

q4
4

µ31 =
2q2 + q2

1

q4
4

+
4(q2

1q
2
2 + 2q1q2q3 + q2

3)

q6
4

,

(4.21)

then the conditions of Prop. 3.2 are satisfied. Moreover the vector field Z0 :=
Q0dh0 = P2dH0 is a new integrable vector field:

Z0 =




p2 − p3q1

p1 − p3q2

−p1q1 − p2q2 − 2p3q3 − p4q4

−p3q4

−p2
2 − p1p3 − p2

4 + 15
4
q5
1 − 10q3

1q2 + 6q1q
2
2 + 10q2

1q3 − 3q2q3 + 3
2
q1q

2
4 − a8

4q24
p2p3 − 15

4
q4
1 + 10q2

1q2 − 3q2
2 − 5q1q3 − 1

2
q2
4

p2
3 + 5q3

1 − 5q1q2 + q3

p3p4 + 5
2
q2
1q4 − q2q4




.

(4.22)
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5. Concluding remarks

In this paper we have derived a bi–Hamiltonian formulation for stationary flows
(Prop. 2.2), and for the first restricted flows of the KdV hierarchy (Prop. 2.6). The
reduction procedure amounts, respectively, to searching the kernel of the Poisson
pencil and of n–Poisson structures extracted from the Poisson pencil of the KdV
hierarchy. In this approach the generating function of the GD polynomials plays a
relevant role. Moreover it allows us to construct a map between stationary flows
and restricted flows; in the case of the fifth-order stationary KdV equation, this map
relates solutions of the Henon–Heiles system with solutions of the Garnier system.

However, to obtain these results, one must extend the phase space of the reduced
flows by means of some free parameters naturally contained in the corresponding
Hamiltonian functions. This difficulty can be bypassed, at least if one analyzes com-
plete integrability of a Hamiltonian system without requiring an explicit knowledge
of a bi–Hamiltonian structure. To this purpose, we have introduced a new integra-
bility scheme in the standard phase space, which implies Liouville integrability of the
reduced Hamiltonian systems.

Acknowledgments. I wish to thank F. Magri, who pointed out the role of the
GD polynomials in the bi–Hamiltonian formulation of the KdV hierarchy and C.
Morosi for many valuable discussions and suggestions.
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