Esame di Metodi Matematici per l'Ingegneria: esercizi Ex a.a. 2013-2014, sessione invernale, II appello

Corso: prof. TIRONI	
COGNOME e NOMEN. Matric	cola
Anno di Corso Laurea in Ingegneria	
ESERCIZIO N. 1. È data la funzione $f(z) = \frac{1}{1-z} \cdot \frac{1}{1-z^2}$. Si calcolino, usando il reseguenti integrali	
$ (a) \frac{1}{2\pi i} \int_{ z =2} \frac{1}{z^2} \cdot f(z) dz \text{e} (b) \frac{1}{2\pi i} \int_{ z =c} \frac{1}{z^2} \cdot f(z) dz , \text{ con } 0 < c < $ Quale relazione c'è tra la funzione $f(z)$ e l'integrale (b)?	1.
RISULTATO	
SVOLGIMENTO	

2	Università	degli Studi	di Trieste -	Dipartimento	d'Ingegneria.	Trieste, 27	gennaio	2015
_	O III . OI DIGG	40811 20441	GI = III	2 Pour construction	a		8011110110	

ESERCIZIO N. 2. È data la funzione $f(x) = (1 - \frac{|x|}{\pi})^2$, definita per $|x| \le \pi$.

(i) Si determini lo sviluppo in serie di Fourier di f(x)

- $\left(ii\right)$ Si dica se la convergenza della serie è puntuale o uniforme
- (iii) Usando l'identità di Parseval, si calcoli la somma della serie $\sum_{n=1}^{\infty} \frac{1}{n^4}.$

COGNOME e NOME	N. Matricola				
ESERCIZIO N. 3. Si determini la funzione $f(x)$ che ha come trasformata di Fourier di $\hat{f}(\xi) = \xi e^{- \xi }$. Si valutino successivamente la trasformata di $f'(x)$ e l'iterata $\mathcal{F}^2(f)$.					
RISULTATO					
SVOLGIMENTO					

$\begin{cases} x' - x - y = 0 \\ y' + x + y = e^{-t}u(t) \end{cases}.$
Si determini la soluzione del sistema con condizioni iniziali nulle (qui $u(t)$ è la funzione gradino di Heaviside).
RISULTATO
SVOLGIMENTO

4 Università degli Studi di Trieste – Dipartimento d'Ingegneria. Trieste, 27 gennaio 2015

 $\bf ESERCIZIO~N.~4.~~\grave{E}$ dato il sistema di equazioni differenziali lineari