Esame di Analisi matematica II - 9 CFU: esercizi A.a. 2016-2017, sessione autunnale, I appello Corso prof. P. Omari

COGNOME			NOME	
N. Matricola			Anno di corso	
Corso di Studi:	Ingegneria Industriale	0	Ingegneria Navale	0

ESERCIZIO N. 1. Si ponga $f(x) = \ln(1 + 3x^3)$.

$$\left(i\right)$$
 Si determini lo sviluppo in serie di Taylor-Maclaurin di $f.$

•
$$log(1+t) = \sum_{m=1}^{+\infty} (-1)^{m+1} \frac{t^m}{m}$$
, for $t \in [-1,1]$;
• $log(1+3\times^2) = \sum_{m=1}^{+\infty} (-1)^{m+1} \frac{3^m \times 3^m}{m}$, for $x \in [-1], 1$.

(ii) Si determini l'insieme di convergenza dello sviluppo.

(iv) Si approssimi
$$\int_0^{1/3} f(x) dx$$
, con un errore inferiore a 10^{-3} .

$$\int_{0}^{\frac{1}{3}} \log(1+3x^{2}) dx = \sum_{m=1}^{\infty} \frac{(-1)^{m+3}}{m(3m+1)3^{2m+1}} \times \min_{m=1}^{\infty} \frac{(-1)^{m+3}}{m(3m+1)3^{2m+1}} \times \min_{m=1}^{\infty} \frac{(-1)^{m+4}}{m(3m+1)3^{2m+1}} \times \min_{m=1}^{\infty} \frac{(-1)^{m+4}}{m(3m+$$

$$\frac{1}{(W+1)(3N+4)3^{2N+3}} < 10^{-3} \iff N \ge 1$$

2

ESERCIZIO N. 2. Posto $E = \{(x,y)^T \in \mathbb{R}^2 : x \leq 2\}$, si consideri la funzione $f : E \to \mathbb{R}$, definita da $f(x,y) = x^2 + (1-x)^3 y^2$.

(i) Si calcoli $\nabla f(x,y)$.

(ii) Si calcoli Hf(x,y).

$$H\xi(x,\lambda) = \begin{pmatrix} -e(x-1)_{5}\lambda & 5(1-x)_{5}\lambda \\ -e(x-1)_{5}\lambda & 5(1-x)_{5}\lambda \end{pmatrix}$$

(iii) Si determinino gli estremi relativi di f nell'interno di E.

$$\nabla f(x,y) = 0 \iff \begin{cases} 2x - 3(x - 1)^2 y^2 = 0 \\ 2x - 3(x - 1)^2 y^2 = 0 \end{cases} \iff \begin{cases} x = 0 \\ y = 0 \end{cases}$$

(iv) Si determinino gli estremi relativi e assoluti di f sulla frontiera di E.

$$f(x,y)|_{RE} = f(z,y) = 4-y^2$$
; mor $f = 4$;
 $x = x = x = 4$; $f(z,y) = -\infty$.

(v) Si determinino $\inf_E f$ e supf, specificando se sono minimo o massimo.

· Aug
$$f = +\infty$$
, exemple $\lim_{x \to +\infty} f(x,0) = +\infty$.

(vi) Si stabilisca quali insiemi di livello di f sono curve regolari in forma implicita.

Le(f)
$$\neq \neq$$
 the opinite TR; f(0,0)=0, 0 f(0,0)=2 => Lo(f) mon è regolini; Li(f) è regolare the opinite to.

COGNOME e NOME _______ N. Matricola ______

ESERCIZIO N. 3. Si calcoli l'area della superficie cartesiana

$$\Sigma = \{(x, y, z)^T \in \mathbb{R}^3 : (x, y)^T \in E, z = 1 + x^2 + y^2\},$$

con $E = \{(x, y)^T \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4, \ 0 \le x \le y\}.$

RISULTATO

SVOLGIMENTO

$$\iint_{K} \sqrt{1+4p^{2}} p dp dQ = \int_{0}^{\frac{\pi}{4}} \left(\int_{1}^{2} \frac{1}{8} \sqrt{1+4p^{2}} dp dp \right) dQ$$

$$= \frac{\pi}{32} \left[\frac{2}{3} \left(1 + 4p^{2} \right)^{\frac{3}{2}} \right]_{1}^{2} = \frac{\pi}{32} \frac{2}{3} \left(1 + 4p^{2} \right)^{\frac{3}{2}}$$

$$= \frac{\pi}{48} \left(1 + \frac{3}{4} - 5^{\frac{3}{2}} \right)$$

4 Università degli Studi di Trieste – Ingegneria. Trieste, 11 settembre 2017

ESERCIZIO N. 4. Si consideri il campo vettoriale lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$, definito da

$$g(x, y, z) = (y - z, x - z, z)^T.$$

(i) Si stabilisca, giustificando la risposta, se g è conservativo in \mathbb{R}^3 .

•
$$q(x,y,z) = \begin{pmatrix} 0 & 1-1 \\ 1 & 0-1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = A \begin{pmatrix} x \\ y \\ z \end{pmatrix};$$
 wordte A mon ε

timmetra, que e conservativa

Altiments;

(ii) Si determini la linea di campo $\gamma(\cdot) = (x(\cdot), y(\cdot), z(\cdot))^T$ passante per il punto $(0, 0, 1)^T$ (cioè la soluzione del problema di Cauchy $\begin{cases} \gamma'(t) = g(\gamma(t)) \\ \gamma(0) = (0, 0, 1)^T \end{cases}$)

$$\begin{cases} x'(t) = y(t) - z(t) \\ y'(t) = x(t) - z(t) \\ z'(t) = z(t) \end{cases} \Leftrightarrow \begin{cases} x'(t) = y(t) - e^{t} \\ y'(t) = x(t) - e^{t} \\ x(0) = 0, y(0) = 0 \end{cases}$$

$$\begin{cases} x'(t) = y(t) - e^{t} \\ x'(t) = x(t) - e^{t} \\ x(t) = e^{t} \end{cases}$$

$$x'(+) = y'(+) - e^{\pm} = x(+) - 2e^{\pm} \Leftrightarrow x'' - x = -2e^{\pm}$$

 $x(+) = Ae^{\pm} + Be^{\pm} + \overline{x}(+), \quad \overline{x}(+) = -\pm e^{\pm}$