Esame di Analisi matematica II - 9 CFU : esercizi A.a. 2014-2015, sessione estiva, III appello Corso prof. Omari

COGNOME	NOME					
N. Matricola		Anno di corso				
Corso di Studi:	Ingegneria Industriale		eria Navale)		
ESERCIZIO N. 1. Si definisca, per ogni $n \in \mathbb{N}^+$, $f_n : [0, +\infty[\to \mathbb{C}, \text{ ponendo } f_n(x) = \frac{2^n}{x + i 3^n}]$.						
	fissato, si studi la funzione $ f_r $					
(;;) C: determedia: ciuc	stificando la risposta, l'insieme	di controllera n	untuale della goria	$\sum_{i=1}^{+\infty} f_{i}(x_{i})$		
(ii) Si determini, gius	tincando la risposta, i insieme	ar convergenza p	untuaie dena serie	$\sum_{n=1}^{\infty} J_n(x).$		
		+~				
(iii) Si stabilisca, gius	stificando la risposta, se la ser	ie $\sum_{n=1}^{\infty} f_n(x)$ conve	erge uniformement	e in $[0, +\infty[$.		
(iv) Si calcoli $\sum_{n=1}^{+\infty} f_n(0)$	0).					
n=1						

ESERCIZIO N. 2. Si consideri la funzione $f(x,y) = \int_0^{x-y} (3t^2 + 2t - 1) dt$.

(i) Si studi la funzione $\varphi(t) = t^3 + t^2 - t$.

(ii) Si determinino i segni di f.

 $\left(iii\right)$ Si determino gli estremi relativi e assoluti di f.

(iv) Si descrivano le curve di livello $L_k(f)=\{(x,y)^T:f(x,y)=k\}$ per $k\in\{-1,0,1\}.$

COGNOME e NOME	N. Matricola

ESERCIZIO N. 3. Si definiscano, per ogni $\alpha \in]0, +\infty[$, le funzioni $\Phi, \Psi : \mathbb{R}^2 \setminus \{(0,0)^T\} \to \mathbb{R}$, ponendo $\Phi(x,y) = (x^2 + y^2)^{\alpha}, \qquad \Psi(x,y) = (x^2 + y^2)^{-\alpha}.$

(i) Si determini l'insieme D dei punti $(x,y)^T \in \mathbb{R}^2 \setminus \{(0,0)^T\}$ tali che $\Phi(x,y) \leq \Psi(x,y)$.

(ii) Si determinino gli $\alpha \in \,]0,+\infty[$ tali che il volume in senso generalizzato dell'insieme $E=\{(x,y,z)^T\in {\rm I\!R}^3: (x,y)^T\in D,\, \Phi(x,y)\leq z\leq \Psi(x,y)\}$ è finito.

4

ESERCIZIO N. 4. Si consideri la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita da $f(x,y) = x^2 + xy + y^2$. Si determini e si descriva il sostegno della curva $\gamma: \mathbb{R} \to \mathbb{R}^2$ ortogonale alle linee di livello di f e tale che $\gamma(0) = (1,1)^T$.

	_	-	
RISULTATO			
SVOLGIMENTO			
SVOLGIMENTO			