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Abstract

We prove a multiplicity result for the periodic problem associated
with a Hamiltonian system whose Hamiltonian function has a twist-
ing part and a nonresonant part. The possible approach to resonance
together with some kind of Landesman–Lazer conditions is also ana-
lyzed. We propose a new version of this condition, and we also treat
the so-called double resonance situation.

1 Introduction

We consider the Hamiltonian system{
Ju̇ = ∇uH(t, u) +∇uP (t, u, z) ,

Jż = ∇zH (t, z) +∇zP (t, u, z) ,
(HS)

where

J =

(
0 −I
I 0

)
denotes the standard symplectic matrix in any even dimension. We assume
that all the involved functions H(t, u), H (t, z), and P (t, u, z) are continuous,
T -periodic in the variable t and continuously differentiable with respect to
the variables (u, z).

System (HS) appears as the coupling of two systems, which are assumed
to have a completely different behaviour. While for the first one we have a
twist dynamics, for the second one we ask for some nonresonance conditions.
In order to better understand this setting, let us first provide a brief historical
account, which for the reader’s convenience we divide in three parts.
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Twist dynamics. In 1912, Poincaré [52] conjectured his last geometrical
theorem, proved by Birkhoff in [7, 8], which is now called the Poincaré–
Birkhoff Theorem (see [11] for a modern exposition). The theorem has been
extended in many ways and applied to obtain multiplicity of periodic solu-
tions for planar Hamiltonian systems of the type

Ju̇ = ∇uH(t, u) (1)

(see [32] and the references therein). Here we state a version of it, as proposed
in [38].

Theorem 1.1. Assume H(t, u) to be continuous, T -periodic in t, contin-
uously differentiable in u = (q, p), and 2π-periodic with respect to q. Let
a < b be such that all solutions u = (q, p) of (1) starting with p(0) ∈ [a, b]
are defined on [0, T ] and are such that{

p(0) = a ⇒ q(T )− q(0) < 0 ,

p(0) = b ⇒ q(T )− q(0) > 0 .

Then, system (1) has at least two geometrically distinct T -periodic solutions
u = (q, p), with p(0) ∈ ]a, b[ .

An analogous statement holds with the above inequalities being reversed.

In 1983, Conley and Zehnder [16] were able to obtain a multiplicity result
for the periodic problem associated with a higher dimensional Hamiltonian
system, opening the road towards a generalization of the Poincaré–Birkhoff
Theorem in this setting. Since then, many papers have been devoted to this
problem, e.g., [14, 21, 28, 39, 42, 46, 53, 55], extending the result in [16] in
several directions. In [38], a generalization of the Poincaré–Birkhoff Theorem
in the setting of higher dimensional Hamiltonian systems was proved, by the
use of an infinite dimensional version of the Lusternik–Schnirelmann theory
provided in [55]. This result was later extended in [26] to coupled systems
having a twisting part and a nonresonant linear part.

Nonresonance. In 1972/73, Lazer [44] and Ahmad [1] proved an existence
and uniqueness result for the T -periodic problem associated with a system
in RN of the type

ẍ+∇G (x) = p(t) .

They asked for the existence of A,B ∈ Sym(RN ), with

σ(A) = {α1 ≤ · · · ≤ αN} , σ(B) = {β1 ≤ · · · ≤ βN} ,
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such that
A ≤ G ′′(x) ≤ B , for every x ∈ RN ,

and

[αk, βk] ∩
{(

2πn

T

)2

: n ∈ N
}

= ∅ , k = 1, . . . , N . (2)

Here and in the following we denote by Sym(RL) the set of symmetric L×L
real matrices, and by σ(M) the spectrum of any M ∈ Sym(RL). Moreover,
given A,B ∈ Sym(RL) we write A ≤ B if ⟨Az, z⟩ ≤ ⟨Bz, z⟩ for every z ∈ RL.
Notice that (2) is a typical nonresonance condition involving the eigenvalues
of the differential operator.

Different proofs of this theorem have been provided in [3, 10, 17, 50, 51,
57]; it has then been extended by many authors [2, 4, 5, 6, 40, 48, 56, 59] and
finally found a solid abstract setting in [29]. In particular, for the system

Jż = ∇zH (t, z) , (3)

the following generalization of the Ahmad–Lazer result has been proved
in [30].

Theorem 1.2. Assume the function H to be twice continuously differen-
tiable in z, with

A ≤ H ′′
z (t, z) ≤ B , for every (t, z) ∈ [0, T ]× R2N ,

for some A,B ∈ Sym(R2N ), and⋃
λ∈[0,1]

σ
(
(1− λ)JA+ λJB

)
∩ 2π

T
iZ = ∅ .

Then, system (3) has a unique T -periodic solution.

Approaching resonance. The so-called Landesman–Lazer condition has
been indeed first introduced by Lazer and Leach in [45] for the periodic
problem associated with a scalar second order ODE of the type

ẍ+ λx+ h(t, x) = 0 , (4)

assuming h(t, x) to be continuous, and T -periodic in t. The following result
was proved.
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Theorem 1.3. Let λ = (2πnT )2 for some positive integer n, and h(t, x) be
uniformly bounded. If for every nontrivial solution of ξ̈ + λξ = 0 one has
that ∫

{ξ<0}
lim sup
x→−∞

h(t, x)ξ(t) dt+

∫
{ξ>0}

lim inf
x→+∞

h(t, x)ξ(t) dt > 0 , (5)

then equation (4) has a T -periodic solution.

One year later the condition has been adapted in [43] in order to deal
with a Dirichlet problem associated with an elliptic PDE, and since then it
is named after Landesman and Lazer. Notice that when h(t, x) is increasing
in x this condition happens to be necessary and sufficient for the existence
of a solution. This remarkable fact has attracted a lot of attention, leading
to a large literature on the subject (see, e.g., [12, 47, 54]). Note that, in the
above theorem, condition (5) can be replaced by the symmetrical one∫

{ξ<0}
lim inf
x→−∞

h(t, x)ξ(t) dt+

∫
{ξ>0}

lim sup
x→+∞

h(t, x)ξ(t) dt < 0 .

Even the so-called double resonance has been considered, assuming a Landes-
man–Lazer condition on both sides (see [18, 19, 20, 23, 54]).

It is the aim of this paper to couple a Poincaré–Birkhoff type system with
a nonresonant one, still preserving the multiplicity of periodic solutions. We
also introduce a new version of the Landesman–Lazer condition, which seems
to be well fitted in order to deal with higher dimensional systems. We are
then able to extend our analysis to the double resonance situation. Our
multiplicity results thus contain in a unique setting all the above stated
ones.

Let us now describe in detail how the paper is organized.

In Section 2 we introduce the general setting for system (HS), coupling
a system in R2M having a twist dynamics with a nonresonant one in R2N .
Assuming the first Hamiltonian function H(t, q, p) to be 2π-periodic in the
components of the state variable q = (q1, . . . , qM ), we will prove the existence
of at least M + 1 periodic solutions.

In Section 3 we propose a new version of the Landesman–Lazer condition
to be imposed on the second system in (HS) and prove that the above
mentioned multiplicity result still holds in this case.
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In Section 4 we compare our version of the Landesman–Lazer condition
with the one introduced in [22] in the setting of planar systems. Then we
show that, when dealing with a scalar second order equation, our condition
follows from the classical one.

In Section 5 we discuss some possible extensions and applications of our
results, and suggest a few open problems.

In the Appendix we provide a detailed exposition of a compactness prop-
erty of the solutions of ODE’s which plays an important role in the proof of
our results.

2 Nonresonance

Using the notation u = (q, p), z = (x, y), with

q = (q1, . . . , qM ) , p = (p1, . . . , pM ) ,

and
x = (x1, . . . , xN ) , y = (y1, . . . , yN ) ,

system (HS) can be equivalently written as
q̇ = ∇pH(t, q, p) +∇pP (t, q, p, x, y) ,

ṗ = −∇qH(t, q, p)−∇qP (t, q, p, x, y) ,

ẋ = ∇yH (t, x, y) +∇yP (t, q, p, x, y) ,

ẏ = −∇xH (t, x, y)−∇xP (t, q, p, x, y) .

As already said, we assume that all functions H(t, q, p), H (t, x, y), and
P (t, q, p, x, y) are continuous, T -periodic in the variable t and continuously
differentiable with respect to the variables (q, p, x, y).

Let us now present our further assumptions. We first ask for the period-
icity of H in the state variables.

A1. The function H(t, q, p) is 2π-periodic in qi for every i ∈ {1, . . . ,M}.

We now assume that the first system in (HS) has a so-called twist dy-
namics.

A2. Given the rectangle

D = [a1, b1]× · · · × [aM , bM ] ,
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there exists an M -tuple (s1, . . . , sM ) ∈ {−1, 1}M such that, for every C1-
function Z : [0, T ] → R2N , all the solutions (q, p) of the system{

q̇ = ∇pH(t, q, p) +∇pP (t, q, p,Z(t)) ,

ṗ = −∇qH(t, q, p)−∇qP (t, q, p,Z(t)) ,

starting with p(0) ∈ D, are defined on [0, T ] and, for every i ∈ {1, . . . ,M},{
pi(0) = ai =⇒ si(qi(T )− qi(0)) < 0 ,

pi(0) = bi =⇒ si(qi(T )− qi(0)) > 0 .

Concerning the function P , we assume periodicity in the q-variables and
that it has a bounded gradient.

A3. The function P (t, q, p, x, y) is 2π-periodic in qi for every i ∈ {1, . . . ,M},
and has a bounded gradient with respect to (q, p, x, y). In particular, there
exists m > 0 such that

|∇zP (t, u, z)| ≤ m, for every (t, u, z) ∈ [0, T ]× R2M × R2N .

We now introduce a structural assumption for the function H .

A4. There are two functions M : R×R2N → Sym(R2N ) andQ : R×R2N → R
such that

∇zH (t, z) = M(t, z)z +∇zQ(t, z) . (6)

The above functions are continuous, T -periodic in t,

A ≤ M(t, z) ≤ B , for every (t, z) ∈ [0, T ]× R2N ,

for some A,B ∈ Sym(R2N ), and Q(t, z) is continuously differentiable in z,
with uniformly bounded gradient ∇zQ(t, z).

Finally, a nonresonance condition is needed.

A5. The following holds:⋃
λ∈[0,1]

σ
(
(1− λ)JA+ λJB

)
∩ 2π

T
iZ = ∅ .

We are now able to state our first main result.

Theorem 2.1. Assume A1 − A5. Then system (HS) has at least M + 1
geometrically distinct T -periodic solutions satisfying p(0) ∈ D̊.

In the above setting, T -periodic solutions appear in equivalence classes
made of those functions whose components qi(t) differ by an integer multiple
of 2π. We say that two T-periodic solutions are geometrically distinct if they
do not belong to the same equivalence class.
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Assumption A2 is usually called a twist condition. The form given here,
which involves a C1-function Z(t), has already been exploited in [24, 27, 37,
36], where several examples of applications have been discussed.

Concerning assumption A4, let us point out that it is a consequence of
the following condition.

A4̂. The function H is twice continuously differentiable in z, with

A ≤ H ′′
z (t, z) ≤ B , for every (t, z) ∈ [0, T ]× R2N

for some A,B ∈ Sym(R2N ).

Indeed, we have

∇zH (t, z) =

(∫ 1

0
H ′′

z (t, sz) ds

)
z +∇zH (t, 0) ,

hence, defining

M(t, z) =

∫ 1

0
H ′′

z (t, sz) ds ,

condition A4 is readily verified. We thus immediately have the following
extension of Theorems 1.1 and 1.2.

Corollary 2.2. If A1 − A3, A4̂, and A5 are satisfied, the same conclusion
of Theorem 2.1 holds.

As a particular case of (HS), we have the system{
Ju̇ = ∇uH(t, u) +∇uP (t, u, x) ,

ẍ+∇xG (t, x) = −∇xP (t, u, x) .
(7)

We assume A1 − A3, and the following conditions corresponding to A4
and A5.

A4̃. There are two functions M̃ : R×RN → Sym(RN ) and Q̃ : R×RN → R
such that

∇xG (t, x) = M̃(t, x)x+∇xQ̃(t, x) .

The above functions above are continuous, T -periodic in t,

Ã ≤ M̃(t, x) ≤ B̃ , for every (t, x) ∈ [0, T ]× RN ,

for some Ã, B̃ ∈ Sym(RN ), and Q̃(t, x) is continuously differentiable in x,
with uniformly bounded gradient ∇xQ̃(t, x).
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A5̃. Writing σ(Ã) = {α1 ≤ · · · ≤ αN} and σ(B̃) = {β1 ≤ · · · ≤ βN}, the
following nonresonance condition holds:

[αk, βk] ∩
{(

2πn

T

)2

: n ∈ N
}

= ∅ , k = 1, . . . , N .

We remark that, since Ã ≤ B̃, the Courant–Fischer Theorem guarantees
that αk ≤ βk for every k = 1, . . . , N (see, e.g., [41, Theorem 4.2.11]).

Theorem 2.3. Assume A1−A3, A4̃, and A5̃. Then system (7) has at least
M + 1 geometrically distinct T -periodic solutions, with p(0) ∈ D̊.

Proof. Writing the second equation as

ẋ = y ẏ = −∇xG (t, x)−∇xP (t, u, x) ,

we can recover the setting of Theorem 2.1, with

A =

(
Ã 0
0 I

)
, B =

(
B̃ 0
0 I

)
.

Indeed, it is easily seen that condition A4̃ is equivalent to A4.

As an immediate consequence, we have the following.

Corollary 2.4. Assume A1−A3 and that G is twice continuously differen-
tiable in x, with

Ã ≤ G ′′
x (t, x) ≤ B̃ , for every (t, x) ∈ [0, T ]× RN .

If also A5̃ is satisfied, then the same conclusion of Theorem 2.3 holds.

2.1 Proof of Theorem 2.1

The main strategy of the proof is to modify the Hamiltonian functions in
system (HS) in order to enter the setting of [26, Corollary 2.4], where the
nonlinearity in the second system is a perturbation of a linear one and ∇uH
is assumed to be bounded.

By (6), there is a function Φ : R × R2N → R such that H (t, z) =
Φ(t, z) +Q(t, z), and

∇zΦ(t, z) = M(t, z)z .

Writing

Φ(t, z) = Φ(t, 0) +

∫ 1

0
⟨∇zΦ(t, sz), z⟩ ds ,
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we can assume without loss of generality that Φ(t, 0) = 0. Hence, by A4 we
have that

1
2⟨Az, z⟩ ≤ Φ(t, z) ≤ 1

2⟨Bz, z⟩ . (8)

For every r > 1 let ηr : R → [0, 1] be a C∞-function such that

ηr(ξ) =

{
1 if ξ ≤ r ,

0 if ξ ≥ r3 ,

and
− 1

ξ ln ξ
≤ η′r(ξ) ≤ 0 , for every ξ ≥ r . (9)

The existence of such a function is guaranteed by the fact that∫ r3

r

dξ

ξ ln ξ
> 1 .

We now fix a matrix D ∈ Sym(R2N ) such that A ≤ D ≤ B, and define the
function Φr : R× R2N → R as

Φr(t, z) =


Φ(t, z) if |z| ≤ r ,

ηr(|z|)Φ(t, z) + (1− ηr(|z|))12⟨Dz , z⟩ if r ≤ |z| ≤ r3 ,
1
2⟨Dz , z⟩ if |z| ≥ r3 .

Consider the modified system{
Ju̇ = ∇uH(t, u) +∇uP (t, u, z) ,

Jż = ∇zΦr(t, z) +∇zQ(t, z) +∇zP (t, u, z) ,
(HSr)

and notice that ∇zΦr(t, z) can be decomposed as

∇zΦr(t, z) = Mr(t, z)z + υr(t, z) ,

where Mr : R× R2N → Sym(R2N ) is defined as

Mr(t, z) =


M(t, z) if |z| ≤ r ,

ηr(|z|)M(t, z) + (1− ηr(|z|))D if r ≤ |z| ≤ r3 ,

D if |z| ≥ r3 ,

and υr : R× R2N → R2N as

υr(t, z) =


0 if |z| ≤ r ,

η′r(|z|)|z|−1
[
Φ(t, z)− 1

2⟨Dz, z⟩
]
z if r ≤ |z| ≤ r3 ,

0 if |z| ≥ r3 .
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Notice that A ≤ Mr(t, z) ≤ B, for every (t, z) ∈ [0, T ] × R2N . Moreover,
by (8) and (9), if r ≤ |z| ≤ r3, then

|υr(t, z)| ≤ 1
2∥B− A∥ |z|

ln |z|
≤ 1

2∥B− A∥ |z|
ln r

, (10)

while υr(t, z) = 0 otherwise. We now need to prove an a priori bound for
the z-component of the solutions of (HSr).

Proposition 2.5. There exists r > 1 such that, for any r ≥ r, every T -
periodic solution of (HSr) satisfies ∥z∥∞ ≤ r.

Proof. We assume by contradiction that there is a sequence (rn)n in ]1,+∞[
and a sequence of T -periodic solutions (un, zn) of (HSr), with r = rn, such
that rn → +∞ and ∥zn∥∞ > n. Introducing the normalized function vn =
zn/∥zn∥∞ we have that vn is a solution of

Jv̇n = Γn(t)vn + en(t) , vn(0) = vn(T ) , (11)

with
Γn(t) = Mrn(t, zn(t)) ,

and

en(t) =
1

∥zn∥∞

(
υr(t, zn(t)) +∇zQ(t, zn(t)) +∇zP (t, un(t), zn(t))

)
. (12)

We notice that A ≤ Γn(t) ≤ B and, by (10) and the boundedness of ∇zQ
and ∇zP , we have that en → 0 uniformly in [0, T ]. The sequence (vn)n is
thus bounded in C1([0, T ],R2N ), so there exists v ∈ C([0, T ],R2N ) such that
vn → v uniformly and weakly in H1, up to a subsequence.

Let us now define the closed convex and bounded set

CA,B = {f ∈ L2([0, T ],Sym(R2N )) : A ≤ f(t) ≤ B for a.e. t ∈ [0, T ]} .

Since the sequence (Γn)n is contained in CA,B , we can find G ∈ CA,B such that
Γn ⇀ G, weakly in L2, up to a subsequence. Passing to the limit in (11), we
can see that v is a weak solution of

Jv̇ = G(t)v , v(0) = v(T ) .

By A5, applying [30, Corollary 3] (see also [29, Corollary 1]), the previous
equation admits only the trivial solution, and we get a contradiction.

10



We now continue the proof of Theorem 2.1. We fix r ≥ r and rewrite the
Hamiltonian function for system (HSr) as

Hr(t, u, z) = H(t, u) + 1
2⟨Dz , z⟩+ P̃r(t, u, z) ,

with
P̃r(t, u, z) = Φr(t, z)− 1

2⟨Dz , z⟩+Q(t, z) + P (t, u, z) .

Proposition 2.5 provides an a priori bound in C([0, T ],R2N ) for the z-compo-
nent of the solutions of system (HSr). Using the second equation in that
system we see that the a priori bound extends also to the derivative of z.
We thus have an a priori bound in C1([0, T ],R2N ). Hence, the Ascoli-Arzelà
Theorem implies that z belongs to a compact set Z ⊆ C([0, T ],R2N ). By
the global existence assumption in A2, using Theorem 6.1 in the Appendix
with u = (q, p) and D = [0, 2π]M × D, we can find a constant C > 0 such
that all the solutions of (HSr) starting with p(0) ∈ D satisfy |p(t)| ≤ C for
every t ∈ [0, T ]. We then introduce a C∞-function δ : R → R such that

δ(ξ) =

{
1 if ξ ≤ C ,

0 if ξ ≥ C + 1 ,

and set H̃(t, q, p) = δ(|p|)H(t, q, p), so that, by the periodicity in the q-
components, H̃(t, q, p) has a bounded gradient with respect to (q, p). In
view of these considerations, in order to prove Theorem 2.1 there is no loss
of generality in assuming that H(t, q, p) has a bounded gradient with respect
to (q, p).

Since Φr(t, z)− 1
2⟨Dz , z⟩ = 0 when |z| ≥ r3, we have that ∇(u,z)P̃r(t, u, z)

is uniformly bounded. Hence, we can apply [26, Corollary 2.4] and obtain the
existence of M + 1 geometrically distinct T -periodic solutions of (HSr) sat-
isfying p(0) ∈ D̊. By Proposition 2.5, the so-found solutions solve also (HS),
thus concluding the proof.

3 The Landesman–Lazer conditions

We will now modify conditions A4 and A5 into

A4′. There are two functions µ : R × R2N → [0, 1] and Q : R × R2N → R
such that

∇zH (t, z) = (1− µ(t, z))Az + µ(t, z)Bz +∇zQ(t, z) ,

for some A,B ∈ Sym(R2N ), with A ≤ B. All functions above are continuous,
T -periodic in t, and ∇zQ(t, z) is uniformly bounded.
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A5′. The following holds:⋃
λ∈ ]0,1[

σ
(
(1− λ)JA+ λJB

)
∩ 2π

T
iZ = ∅ , (13)

while possibly

σ(JA) ∩ 2π

T
iZ ̸= ∅ , or σ(JB) ∩ 2π

T
iZ ̸= ∅ .

When they are both nonempty, we also assume that B− A is invertible.

In this setting we also need to introduce some nonresonance assumptions.
The ones we propose below generalize the classical Landesman–Lazer condi-
tions, as will be shown in Section 4. Let us first define, for every v ∈ R2N \{0}
and θ ∈ ]0, π/2[ , the cone

Cv(θ) = {z ∈ R2N : ⟨z, v⟩ ≥ |z| |v| cos θ} .

In what follows, the constant m is the one introduced in A3, and B(0, r)
denotes the open ball of radius r centered at the origin. Here is our version
of the Landesman–Lazer condition involving the matrix A.

A6. For every nontrivial T -periodic solution v(t) of Jv̇ = Av there exist a
null set N ⊆ [0, T ] and three real-valued functions θ, ρ, σ, defined on [0, T ] \
N , such that

0 < θ(t) <
π

2
, ρ(t) > 0 , for every t ∈ [0, T ] \ N , (14)

and σ is integrable, with the following property: for every t ∈ [0, T ] \N and
z ∈ Cv(t)(θ(t)) \B(0, ρ(t)) one has

⟨∇zH (t, z)− Az, v(t)⟩ ≥ σ(t) , (15)

and ∫ T

0
σ(t) dt > m

∫ T

0
|v(t)| dt .

The following is the analogue of our Landesman–Lazer condition involv-
ing the matrix B.

A6′. For every nontrivial T -periodic solution v(t) of Jv̇ = Bv there exist a
null set N ⊆ [0, T ] and three real-valued functions θ, ρ, σ, defined on [0, T ] \
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N , such that (14) holds, and σ is integrable, with the following property:
for every t ∈ [0, T ] \ N and z ∈ Cv(t)(θ(t)) \B(0, ρ(t)) one has

⟨∇zH (t, z)− Bz, v(t)⟩ ≤ σ(t) ,

and ∫ T

0
σ(t) dt < −m

∫ T

0
|v(t)| dt .

Here we state our result in the double resonance situation.

Theorem 3.1. Assume A1−A3, A4′, A5′, A6 and A6′. Then system (HS)
has at least M +1 geometrically distinct T -periodic solutions, with p(0) ∈ D̊.

In the proof of this theorem, the following lemma will be needed.

Lemma 3.2. Assume A4′ and A5′, and let µ ∈ L2(0, T ) be such that 0 ≤
µ(t) ≤ 1 for almost every t ∈ [0, T ]. If v is a nontrivial solution of

Jv̇ = (1− µ(t))Av + µ(t)Bv , v(0) = v(T ) ,

then, either v is a solution of Jv̇ = Av, or it is a solution of Jv̇ = Bv.

We postpone the proof of the lemma at the end of this section.

Proof of Theorem 3.1. We proceed as in the proof of Theorem 2.1. Notice
that, by A4′, we now have

M(t, z) = (1− µ(t, z))A+ µ(t, z)B .

Choosing D = 1
2(A+ B), we modify our system into (HSr), with

Mr(t, z) = (1− µr(t, z))A+ µr(t, z)B ,

where

µr(t, z) =


µ(t, z) if |z| ≤ r ,

ηr(|z|)µ(t, z) + 1
2(1− ηr(|z|)) if r ≤ |z| ≤ r3 ,

1
2 if |z| ≥ r3 .

Now we need to prove Proposition 2.5. We assume by contradiction that
there is a sequence (rn)n in ]1,+∞[ and a sequence of T -periodic solutions
(un, zn) of (HSr), with r = rn, such that rn → +∞ and ∥zn∥∞ > n.
Introducing the normalized function vn = zn/∥zn∥∞, we have that

Jv̇n =
[
(1− µn(t))A+ µn(t)B

]
vn + en(t) , vn(0) = vn(T ) ,
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where µn(t) = µrn(t, zn(t))), and en(t) is as in (12). Since 0 ≤ µn(t) ≤ 1
for every t ∈ [0, T ], the sequence (µn)n has a subsequence which weakly
converges in L2 to some µ ∈ L2(0, T ), with 0 ≤ µ(t) ≤ 1 for almost every
t ∈ [0, T ]. At the same time, the sequence (vn)n converges to some v ∈
C([0, T ],R2N ) uniformly and weakly in H1, up to a subsequence, and v is a
nontrivial solution of

Jv̇ =
[
(1− µ(t))A+ µ(t)B

]
v , v(0) = v(T ) .

By Lemma 3.2, either v is a solution of Jv̇ = Av, or it is a solution of
Jv̇ = Bv. Let us assume that Jv̇ = Av and see how the contradiction is
reached in this case. The other case can be treated similarly.

Since it has to be v(t) ̸= 0 for every t ∈ [0, T ], we have that

min{|v(t)| : t ∈ [0, T ]} > 0 .

Consequently, both
lim
n

|zn(t)| = +∞ , (16)

and
lim
n

⟨(B− A)zn(t), v(t)⟩ = +∞ , (17)

uniformly in t ∈ [0, T ]. Recalling the second equation in (HSr), with r = rn,
we have

Jżn − Azn = ∇Φrn(t, zn)− Azn +∇zQ(t, zn) +∇zP (t, un, zn) .

Hence, multiplying by v and integrating, since∫ T

0
⟨Jżn(t)− Azn(t), v(t)⟩ dt =

∫ T

0
⟨zn(t), Jv̇(t)− Av(t)⟩ dt = 0 ,

by A3 we get∫ T

0
⟨∇zΦrn(t, zn(t))− Azn(t) +∇zQ(t, zn(t)), v(t)⟩ dt

≤ m

∫ T

0
|v(t)| dt . (18)

Let us verify that, for n sufficiently large,

⟨∇zΦrn(t, zn(t))− Azn(t), v(t)⟩ ≥ 0 , for every t ∈ [0, T ]. (19)
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We have three cases. If |zn(t)| ≤ rn, by (17), for n large enough,

⟨∇zΦrn(t, zn(t))− Azn(t), v(t)⟩ = µ(t, zn(t))⟨(B− A)zn(t), v(t)⟩ ≥ 0 .

If |zn(t)| ≥ r3n, then again for n large enough,

⟨∇zΦrn(t, zn(t))− Azn(t), v(t)⟩ = 1
2⟨(B− A)zn(t), v(t)⟩ > 0 .

Finally, if rn < |zn(t)| < r3n, we just interpolate the two inequalities above,
and we have that (19) holds in all cases, provided that n is large enough.

Since ∇zQ is bounded and (19) holds, we can apply Fatou’s Lemma and
obtain, from (18), that∫ T

0
lim inf

n
⟨∇zΦrn(t, zn(t))− Azn(t) +∇zQ(t, zn(t)), v(t)⟩ dt ≤

≤ m

∫ T

0
|v(t)| dt . (20)

We will now use assumption A6 to reach the aimed contradiction. For every
t ∈ [0, T ], since zn(t) = ∥zn∥∞vn(t) and vn(t) → v(t), by (16) there exists
n̄t ≥ 1 such that zn(t) ∈ Cv(t)(θ(t)) \B(0, ρ(t)) for every n ≥ n̄t. Hence, for
every t ∈ [0, T ] \ N and n ≥ n̄t , we have that

⟨∇zH (t, zn(t))− Azn(t), v(t)⟩ ≥ σ(t) .

Again we consider three cases. If |zn(t)| ≤ rn, then

∇zΦrn(t, zn(t))− Azn(t) +∇zQ(t, zn(t)) = ∇zH (t, zn(t))− Azn(t) ,

hence
⟨∇zΦrn(t, zn(t))− Azn(t) +∇zQ(t, zn(t)), v(t)⟩ ≥ σ(t) . (21)

If |zn(t)| ≥ r3n, then

∇zΦrn(t, zn(t))− Azn(t) +∇zQ(t, zn(t)) =
1
2(B− A)zn(t) +∇zQ(t, zn(t)) ,

hence, for n large enough, (21) still holds, since the left hand side tends
to +∞, recalling (17). If rn < |zn(t)| < r3n, we just interpolate the two
inequalities above, hence (21) holds in all cases, provided that n is large
enough. Then, by (20), we conclude that∫ T

0
σ(t) dt ≤ m

∫ T

0
|v(t)| dt ,

a contradiction with (15) thus ending the proof of Proposition 2.5 in this
setting.
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The proof of Theorem 3.1 can now be completed exactly as the one of
Theorem 2.1.

Proof of Lemma 3.2. Recalling assumption A5′, without loss of generality
we can always assume that B − A is invertible. It is convenient to intro-
duce the following functional setting. Denoting by X the Hilbert space
L2([0, T ],R2N ) with the standard product ⟨·|·⟩2 and the corresponding norm
∥ · ∥2, we consider the linear selfadjoint operator L : D(L) ⊆ X → X defined
by

D(L) = {z ∈ H1([0, T ],R2N ) : z(0) = z(T )}, Lz = Jż .

Moreover, setting G(t) = (1 − µ(t))A + µ(t)B, we introduce the bounded
selfadjoint operators A,B,N : X → X defined by

[Az](t) = Az(t) , [Bz](t) = Bz(t) , [Nz](t) = G(t)z(t) .

We have that A ≤ N ≤ B with the standard meaning, i.e., ⟨Az|z⟩2 ≤
⟨Nz|z⟩2 ≤ ⟨Bz|z⟩2 for every z ∈ X.

Let v be a nontrivial solution of Jv̇ = G(t)v such that v(0) = v(T ). Then
v(t) ̸= 0 for every t ∈ [0, T ], and Lv = Nv. Since B−A is a positive definite
invertible matrix, the operator B−A is also positive definite and invertible.
We can thus define the operator D = (B −A)1/2, which explicitly reads as

[Dz](t) = (B− A)1/2z(t) .

Now, following the idea in [20, 29], we set w = Dv. Then, w is a nontrivial
solution of

L̃w = Ñw , (22)

with L̃ = D−1(L−A)D−1 and Ñ = D−1(N −A)D−1. From (13) we deduce
that

σ(L̃)∩ ]0, 1[= ∅ ,

and 0 ≤ Ñ ≤ I. Since L̃ has a compact resolvent, we can write X = X− ⊕
X0⊕X1⊕X+, where X− is the eigenspace generated by eigenfunctions of L̃
with negative eigenvalues, X+ is the eigenspace generated by eigenfunctions
of L̃ with eigenvalues larger than 1, X0 = ker L̃, and X1 = ker(L̃ − I).
Notice that, since L̃ is selfadjoint, this is an orthogonal decomposition. We
accordingly write w = w− + w0 + w1 + w+.
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We want to prove that w− = w+ = 0. Recalling (22), if w+ ̸= 0,
then ⟨L̃w+ | w+⟩2 > ∥w+∥22 and, by the symmetry of Ñ , we reach the
contradiction

0 = ⟨(L̃− Ñ)(w− + w0 + w1 + w+) | w− + w0 − w1 − w+⟩2
= ⟨L̃w− | w−⟩2 − ⟨L̃w1 | w1⟩2 − ⟨L̃w+ | w+⟩2

− ⟨Ñ(w− + w0) | w− + w0⟩2 + ⟨Ñ(w1 + w+) | w1 + w+⟩2
≤ 0− ∥w1∥22 − ⟨L̃w+ | w+⟩2 − 0 + ∥w1 + w+∥22
< −∥w1∥22 − ∥w+∥22 + ∥w1 + w+∥22 = 0 .

Hence, w+ = 0. If w− ̸= 0 then ⟨L̃w− | w−⟩2 < 0 and we get

0 = ⟨(L̃− Ñ)(w− + w0 + w1) | w− + w0 − w1⟩2
= ⟨L̃w− | w−⟩2 − ⟨L̃w1 | w1⟩2 − ⟨Ñ(w− + w0) | w− + w0⟩2 + ⟨Ñw1 | w1⟩2
< 0− ∥w1∥22 − 0 + ∥w1∥22 = 0 ,

again a contradiction. Hence, w− = 0 and w = w0 + w1.

Recalling that v = D−1w and setting v0 = D−1w0 and v1 = D−1w1, it
is easily seen that Jv̇0 = Av0 and Jv̇1 = Bv1, hence, being v = v0 + v1,

Jv̇ = Jv̇0 + Jv̇1 = Av0 + Bv1 .

On the other hand, since

Jv̇ =
[
(1− µ(t))A+ µ(t)B

]
(v0 + v1) ,

we deduce that

(1− µ(t))(B− A)v1(t) = µ(t)(B− A)v0(t) , for a.e. t ∈ [0, T ] .

Therefore, also

(1− µ(t))(B− A)1/2v1(t) = µ(t)(B− A)1/2v0(t) , for a.e. t ∈ [0, T ] ,

i.e.,
(1− µ(t))w1(t) = µ(t)w0(t) , for a.e. t ∈ [0, T ] .

In particular,

⟨w0(t), w1(t)⟩ = |w0(t)| |w1(t)| , for a.e. t ∈ [0, T ] ,
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and since w0 and w1 are orthogonal in X = L2([0, T ],R2N ), we have that∫ T

0
|w0(t)| |w1(t)| dt =

∫ T

0
⟨w0(t), w1(t)⟩ dt = 0 .

So, for every t ∈ [0, T ], either w0(t) = 0, or w1(t) = 0, implying that either
v0(t) = 0, or v1(t) = 0. Recalling that v0 and v1 solve Jv̇0 = Av0 and
Jv̇1 = Bv1, we conclude that either v0 or v1 are identically equal to zero,
and the proof is completed.

4 Planar systems

The aim of this section is to compare the Landesman–Lazer condition in A6
with the one introduced in [22], where the authors consider a planar system.
For simplicity, we assume µ(t, z) = 0 and P = 0, so that we can write the
second equation in (HS) as

Jż = Az + r(t, z) .

We assume that A is a 2 × 2 positive definite invertible symmetric matrix
and r(t, z) is a uniformly bounded continuous function, T -periodic in t, i.e.,
there is a constant c̃ ≥ 0 such that

|r(t, v)| ≤ c̃ , for every (t, v) ∈ R× R2.

We also assume that the planar system Jv̇ = Av has nontrivial T -periodic
solutions, i.e., that

T ∈ 2π√
detA

N .

We denote by φ one of them, so that the others can be written as v(t) =
cφ(t+α) with c > 0 and α ∈ [0, T ]. Here is the condition introduced in [22].

A7. For every α ∈ [0, T ],∫ T

0
lim inf
λ→+∞
ω→α

〈
r(t, λφ(t+ ω)) , φ(t+ ω)

〉
dt > 0 . (23)

Theorem 4.1. Assumption A6 is equivalent to A7.

Proof. Let us prove that A6 implies A7. Let α ∈ [0, T ]. Then v(t) = φ(t+α)
is a T -periodic solution of Jv̇ = Av and we correspondingly introduce the
null set N and the functions θ, ρ, σ as in A6. By the continuity of φ and
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the definition of the cone, for every t ∈ [0, T ] \ N we can find λ(t) > 0 and
δ(t) > 0 such that, setting

F = {λφ(t+ ω) : λ > λ(t) , |ω − α| < δ(t)} ,

we have that F ⊆ Cφ(t+α)(θ(t)) \ B(0, ρ(t)). For z ∈ F and t ∈ [0, T ] \ N ,
we have〈

r(t, λφ(t+ ω)) , φ(t+ ω)
〉
=

〈
r(t, λφ(t+ ω)) , φ(t+ α)

〉
+
〈
r(t, λφ(t+ ω) , φ(t+ ω)− φ(t+ α)

〉
≥ σ(t)− c̃ |φ(t+ ω)− φ(t+ α)| .

Hence, we see that

lim inf
λ→+∞
ω→α

〈
r(t, λφ(t+ ω)) , φ(t+ ω)

〉
≥ σ(t) ,

for every t ∈ [0, T ] \ N and we conclude.

We now prove that A7 implies A6. Let v(t) = cφ(t+ α), with c > 0 and
α ∈ [0, T ], be a solution of Jv̇ = Av. Without loss of generality, we assume
c = 1. Since r(t, z) is bounded, we can define the function σ̃ : [0, T ] → R as

σ̃(t) = lim inf
λ→+∞
ω→α

〈
r(t, λφ(t+ ω)) , φ(t+ ω)

〉
.

Clearly enough, σ̃ is integrable on [0, T ]. We set σ =
∫ T
0 σ̃(t) dt and N = ∅.

By (23), we have that σ > 0. Let ε = σ/(4T ). From the definition of σ̃ and
the uniform continuity of φ, for every t ∈ [0, T ] there are λ(t) and δ(t) such
that, if λ > λ(t) and |ω − α| < δ(t), then〈

r(t, λφ(t+ ω)) , φ(t+ ω)
〉
> σ̃(t)− ε ,

and
|φ(t+ α)− φ(t+ ω)| ≤ ε/c̃ .

We can then find two constants ρ(t) and θ(t) such that

Cφ(t+α)(θ(t)) \B(0, ρ(t)) ⊆ {λφ(t+ ω) : λ > λ(t) , |ω − α| < δ(t)} .

Hence, every z ∈ Cφ(t+α)(θ(t))\B(0, ρ(t)) can be written as z = λzφ(t+ωz)

with λz > λ(t) and |ωz − α| < δ(t). We now compute〈
r(t, z) , v(t)

〉
=

〈
r(t, λzφ(t+ ωz)) , φ(t+ α)

〉
=

〈
r(t, λzφ(t+ ωz)) , φ(t+ ωz)

〉
+
〈
r(t, λzφ(t+ ωz)) , φ(t+ α)− φ(t+ ωz)

〉
≥ σ̃(t)− ε− |r(t, λzφ(t+ ωz))| |φ(t+ α)− φ(t+ ωz)|
≥ σ̃(t)− 2ε .
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Hence, defining σ(t) = σ̃(t)− 2ε and recalling the definition of ε,∫ T

0
σ(t) dt =

∫ T

0
σ̃(t) dt− 2εT = σ − 2

σ

4T
T =

1

2
σ > 0 ,

so that A6 holds.

Let us now focus our attention on the particular case of a scalar second
order equation of the type

ẍ+ λx+ h(t, x) = 0 . (24)

For simplicity we assume h(t, x) to be continuous, uniformly bounded, and
T -periodic in t. If λ = (2πnT )2 for some positive integer n, the classical
Landesman–Lazer condition reads as follows.

A8. for every nontrivial solution ξ(t) of ξ̈ + λξ = 0, either

(a)

∫
{ξ<0}

lim sup
x→−∞

h(t, x)ξ(t) dt+

∫
{ξ>0}

lim inf
x→+∞

h(t, x)ξ(t) dt > 0 ,

or

(b)

∫
{ξ<0}

lim inf
x→−∞

h(t, x)ξ(t) dt+

∫
{ξ>0}

lim sup
x→+∞

h(t, x)ξ(t) dt < 0 .

In order to have a further insight on the extent of this condition, we will
now prove that A8(a) implies A6. Similarly one can show that A8(b) implies
A6′.

By [23, Proposition 3.1], condition A8(a) is equivalent to assuming the
existence of some constants η > 0, R > 0 and two functions ψ± ∈ L1(0, T )
such that {

h(t, x) ≤ ψ−(t) , if x ≤ −R ,
h(t, x) ≥ ψ+(t) , if x ≥ R ,

and ∫
{ξ<0}

ψ−(t)ξ(t) dt+

∫
{ξ>0}

ψ+(t)ξ(t) dt ≥ η∥ξ∥∞ . (25)

Setting

A =

(
λ 0
0 1

)
, Q(t, z) =

∫ x

0
h(t, s) ds, z =

(
x
y

)
,

we see that (24) is equivalent to Jż = Az +∇zQ(t, z).
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Let v be a nontrivial T -periodic solution of Jv̇ = Av. Then

v(t) =

(
ξ(t)

ξ̇(t)

)
,

where ξ(t) is a nontrivial solution of ξ̈ + λξ = 0. Let N be the set of those
t ∈ [0, T ] such that ξ(t) = 0. It is a finite set, hence a zero-measure set. For
every t ∈ [0, T ] \ N there is a θ(t) ∈ ]0, π2 [ such that

Cv(t)(θ(t)) ∩ {(x, y) ∈ R2 : x = 0} = ∅ .

Moreover, there is a ρ(t) > 0 such that[
ξ(t) > 0 and (x, y) ∈ Cv(t)(θ(t)) \B(0, ρ(t))

]
⇒ x ≥ R ,

and [
ξ(t) < 0 and (x, y) ∈ Cv(t)(θ(t)) \B(0, ρ(t))

]
⇒ x ≤ −R .

We define
σ(t) = ψ+(t)ξ

+(t)− ψ−(t)ξ
−(t) ,

and notice that
∫ T
0 σ(t) dt > 0, by (25). We still have to prove that

z ∈ Cv(t)(θ(t)) \B(0, ρ(t)) ⇒ ⟨∇zQ(t, z), v(t)⟩ ≥ σ(t) .

Take z = (x, y) ∈ Cv(t)(θ(t)) with |z| ≥ ρ(t). If ξ(t) > 0, then x ≥ R, hence
h(t, x) ≥ ψ+(t) and

⟨∇zQ(t, z), v(t)⟩ = h(t, x)ξ(t) ≥ ψ+(t)ξ(t) = σ(t) .

On the other hand, if ξ(t) < 0, then x ≤ −R, hence h(t, x) ≤ ψ−(t) and

⟨∇zQ(t, z), v(t)⟩ = h(t, x)ξ(t) ≥ ψ−(t)ξ(t) = σ(t) .

The proof is thus completed.

5 Applications and final remarks

In this section we briefly explore some possible applications of our results as-
suming different behaviours of the first system in (HS), and we then suggest
some open problems.
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The typical situation where a twist dynamics applies is in the context
of pendulum-like equations (see, e.g., [34, 49]) and their higher dimensional
analogues, like those in [14, 16, 21, 28, 39, 42, 46, 53, 55]. Nonetheless, this
type of dynamics also manifests in superlinear or sublinear systems when
passing to action-angle variables (as seen, for instance, in [13, 33, 35]). Ad-
ditionally, systems featuring singularities can also effectively be analysed
using this approach (see [58] and the references therein).

The Poincaré–Birkhoff Theorem has also been employed to tackle bifur-
cations from nondegenerate periodic solutions (see, e.g., [32]), and situations
in which the time map either exhibits some type of monotonicity in the
phase plane, or has different behaviours near the origin and at infinity (or in
proximity to a homoclinic or heteroclinic orbit).

Regarding assumption A2, variants of the twist condition have been pro-
posed [38], finally leading to a general “avoiding cones” condition [25]. Our
results hold also in this more general setting, but we refrain from providing
the details, for the sake of brevity.

The periodicity assumption in A1 could be extended to encompass some
of the components of the variable p, say p1, . . . , pL, including the case where
the Hamiltonian function H exhibits periodicity in all variables q1, . . . , qM
and p1, . . . , pM , a situation considered in [16, Theorem 1]. In such a case, our
theorem would guarantee the existence of at least M + L+ 1 geometrically
distinct T -periodic solutions.

Open Problems

1. In [15], the coupling of twist dynamics with a resonant equation involving
the Ahmad–Lazer–Paul condition has been addressed. However, under such
a condition, the scenario of double resonance remains unexplored, even when
dealing only with a scalar second order equation. Notice that the Ahmad–
Lazer–Paul condition does not guarantee an a priori bound as the one proved
in Proposition 2.5, as shown in [9].

2. In [27], the asymmetric case for scalar second-order ODEs has been con-
sidered. An extension of our results to some kind of asymmetric systems
would be desirable.

3. It’s worth noting that, if the periodic solutions of system (HS) are known
to be nondegenerate, then there are at least 2M of them. It would be inter-
esting to have an example where, in the opposite case, exactly M+1 periodic
solutions appear.
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4. As shown in [31], the multiplicity of solutions for the Neumann problem
associated with system (1) can be proved without any twist condition. We
wonder whether our results could also be rephrased in this setting.

5. The extension of our results to an infinite-dimensional setting seems to
be a challenging problem.

6 Appendix - A compactness theorem

In this appendix we provide a variant of a rather classical result on the com-
pactness of the set of solutions for a Cauchy problem, when global existence
is assumed. The novelty lies in the fact that the nonlinearity may depend on
a parameter which belongs to a general compact topological space Z. Let
f : [0, T ]×Rd ×Z → Rd be a continuous function. We consider the Cauchy
problem

u̇ = f(t, u, z) , u(0) = u0 . (CP )

Theorem 6.1. Let D ⊆ Rd be a compact set, and assume that all the so-
lutions of (CP ) starting with u0 ∈ D are defined on [0, T ]. Then there is a
constant C > 0 such that, for every solution of (CP ) with u0 ∈ D, one has

|u(t)| ≤ C , for every t ∈ [0, T ] .

Proof. Let (rm)m be a strictly increasing positive sequence, with limm rm =
+∞, and denote by Dm the closed ball centered at 0 with radius rm. Assume
moreover D to be contained in the interior of D1.

Assume by contradiction that for every k ≥ 1 there are uk0 ∈ D, zk ∈ Z
and a solution uk : [0, T ] → Rd of the Cauchy problem

u̇ = f(t, u, zk) , u(0) = uk0 ,

such that, for some tk ∈ ]0, T ], one has that uk(tk) /∈ Dk.

For subsequences, uk0 → u0 ∈ D and zk → z ∈ Z. Let t1k ∈ ]0, T [ be such
that

uk(t) ∈ D̊1 , for every t ∈ [0, t1k[ , and uk(t1k) ∈ ∂D1 .

For subsequences, t1k → t̄1 ∈ ]0, T ] and uk(t
1
k) → ū1 ∈ ∂D1.

Claim. There is a subsequence (uk)k which converges pointwise on [0, t̄1]
and uniformly on every [0, τ ] with τ ∈ ]0, t̄1[ to some continuous function
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u(1) : [0, t̄1] → Rd. Moreover, u(1) is a solution of (CP ) on [0, t̄1] and it
satisfies

u(1)(t) ∈ D1 , for every t ∈ [0, t̄1] , and u(1)(t̄1) = ū1 .

Proof of the Claim. Set

c̄ = max{|f(t, u, z)| : t ∈ [0, T ], u ∈ D1, z ∈ Z} .

Let δ1 > δ2 > · · · > δi > . . . be such that limi δi = 0. We can assume
that δ1 < t̄1. Consider the interval [0, t̄1 − δ1]. Since t1k > t̄1 − δ1 for
k large enough, we have that uk(t) ∈ D1 for every t ∈ [0, t̄1 − δ1], hence
|u̇k(t)| ≤ c̄, for every t ∈ [0, t̄1 − δ1]. By the Ascoli–Arzelà theorem, there is
a subsequence of (uk)k, which we denote by (u1k)k, which converges to some
u1 : [0, t̄1 − δ1] → Rd, uniformly on [0, t̄1 − δ1]. Passing to the limit in

u1k(t) = uk0 +

∫ t

0
f(s, u1k(s), zk) ds ,

we see that u1 is a solution of (CP ) on [0, t̄1−δ1]. Next, there is a subsequence
of (u1k)k, which we denote by (u2k)k, which converges to some u2 : [0, t̄1−δ2] →
Rd, uniformly on [0, t̄1 − δ2]. Again we see that u2 is a solution of (CP ) on
[0, t̄1 − δ2]. It coincides with u1 on [0, t̄1 − δ1]. Proceeding recursively, for
every i ≥ 3 we find a subsequence of (ui−1

k )k, which we denote by (uik)k,
which converges to some ui : [0, t̄1 − δi] → Rd, uniformly on [0, t̄1 − δi].
Again we see that ui is a solution of (CP ) on [0, t̄1 − δi], and it coincides
with ui−1 on [0, t̄1 − δi−1].

Consider the diagonal subsequence (ukk)k, which with a slight abuse of
notation we denote by (uk)k. It converges to some ū : [0, t̄1[→ Rd, uniformly
on [0, τ ], for every τ ∈ [0, t̄1[ . Passing to the limit in

uk(t) = uk0 +

∫ t

0
f(s, uk(s), zk) ds ,

we see that ū is a solution of (CP ) on [0, t̄1[ . By assumption, it can be
extended to a solution on [0, T ]. Let u(1) be the restriction of this function
to the interval [0, t̄1]. This will be the function we are looking for.

Indeed, u(1) : [0, t̄1] → Rd is a solution of (CP ) on [0, t̄1] and, since
uk(t) ∈ D1 for every t ∈ [0, t1k], it has to be that u(1)(t) ∈ D1 for every
t ∈ [0, t̄1[ . We need to prove that u(1)(t̄1) = ū1. Fix ε > 0. There exists a
sufficiently small δ ∈ ]0, ε/(4c̄)[ such that

|u(1)(t̄1)− u(1)(t̄1 − δ)| < ε

4
,
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and, for k sufficiently large,

|u(1)(t̄1 − δ)− uk(t̄1 − δ)| < ε

4
, |uk(t1k)− ū1| <

ε

4
.

Since uk(t) ∈ D1 for every t ∈ [0, t1k], we have that |u̇k(t)| ≤ c̄, for every
t ∈ [0, t1k]. Taking k large enough, it will be that t1k > t̄1 − δ, and

|uk(t1k)− uk(t̄1 − δ)| ≤ c̄(t1k − (t̄1 − δ)) < c̄δ <
ε

4
.

Hence,

|u(1)(t̄1)− u1| ≤ |u(1)(t̄1)− u(1)(t̄1 − δ)|+ |u(1)(t̄1 − δ)− uk(t̄1 − δ)|

+|uk(t̄1 − δ)− uk(t
1
k)| − |uk(t1k)− ū1| < 4

ε

4
= ε .

By the arbitrariness of ε, it has to be u(1)(t̄1) = u1, and the proof of the
Claim is completed.

We now continue the proof of Theorem 6.1. Once we have found the
subsequence (uk)k, we relabel accordingly the sequences (uk0)k, (zk)k and
(tk)k. For k ≥ 2, let t2k ∈ ]0, T [ be such that

uk(t) ∈ D̊2 , for every t ∈ [0, t2k[ , and uk(t
2
k) ∈ ∂D2 .

For subsequences, t2k → t̄2 ∈ ]0, T ] and uk(t
2
k) → ū2 ∈ ∂D2. Adapting the

Claim proved above, we find a subsequence (uk)k which converges pointwise
on [0, t̄2] and uniformly on every [0, τ [ with τ ∈ ]0, t̄2[ to some continuous
function u(2) : [0, t̄2] → Rd. Moreover, u(2) is a solution of (CP ) and satisfies

u(2)(t) ∈ D2 , for every t ∈ [0, t̄2] , and u(2)(t̄2) = ū2 .

Notice that u(2) coincides with u(1) on [0, t̄1], and t̄2 > t̄1.

Proceeding in this way, for everym ≥ 1 we find t̄1 < t̄2 < t̄3 < · · · < t̄m in
[0, T ], a point ūm in ∂Dm and a subsequence (uk)k which converges pointwise
on [0, t̄m] and uniformly on every [0, τ [ with τ ∈ ]0, t̄m[ to some continuous
function u(m) : [0, t̄m] → Rd. Moreover, u(m) is a solution of (CP ) and
satisfies

u(m)(t) ∈ Dm , for every t ∈ [0, t̄m] , and u(m)(t̄m) = ūm .

Notice that u(m) coincides with u(m−1) on [0, t̄m−1].
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Let t̄∞ = limm t̄m ; it belongs to ]0, T ]. We define the function u∞ :
[0, t̄∞[→ Rd as

u∞(t) = u(m)(t) if t ∈ [0, t̄m] .

It is a solution of (CP ) on [0, t̄∞[ . By assumption, it can be extended to
a solution of (CP ) defined on [0, T ], which we denote by ũ∞ : [0, T ] → Rd.
Clearly enough, being a continuous function defined on a compact interval,
the image ũ∞([0, T ]) is bounded. But we know that

ũ∞(t̄m) = u∞(t̄m) = u(m)(t̄m) = ūm ,

and |ūm| = rm → +∞, a contradiction.

Remark 6.2. When dealing with the Cauchy problem

u̇ = F (t, u,Z(t)) , u(0) = u0 ,

where F : [0, T ] × Rd × Rℓ → Rd is continuous and Z ∈ C1([0, T ],Rℓ), if
we know that Z belongs to a bounded set of C1([0, T ],Rℓ), then the Ascoli–
Arzelà theorem tells us that Z also belongs to a compact set of C([0, T ],Rℓ).
Denoting by Z this compact set, we can then recover (CP ) by defining
f : [0, T ]× Rd × Z → Rd as

f(t, u, z) = F (t, u, z(t)) .

It is indeed a continuous function, since on Z we have the topology of the uni-
form convergence. We have used this argument in the proof of Theorems 2.1
and 3.1.
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