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Abstract

The Hamiltonian systems considered in this paper are obtained by
weakly coupling two systems having completely different behaviours.
The first one satisfies the usual twist assumptions taylored for the
application of the Poincaré–Birkhoff Theorem, while the second one
presents the existence of some well-ordered lower and upper solutions.
In the higher dimensional case, we also treat a coupling situation where
the classical Hartman condition is assumed.

1 Main results in low dimension

In the first part of the paper we are interested in the periodic problem asso-
ciated with a four-dimensional system of the type

q̇ = ∂pH(t, q, p) + ε ∂pP (t, q, p, u, v) ,

ṗ = −∂qH(t, q, p)− ε ∂qP (t, q, p, u, v) ,

u̇ = f(t, v) + ε ∂vP (t, q, p, u, v) ,

v̇ = g(t, u)− ε ∂uP (t, q, p, u, v) .

(1.1)

The idea is to consider a Poincaré–Birkhoff situation for the system

q̇ = ∂pH(t, q, p) , ṗ = −∂qH(t, q, p) , (1.2)

and the existence of well-ordered lower/upper solutions for the system

u̇ = f(t, v) , v̇ = g(t, u) . (1.3)

The coupling function P = P (t, q, p, u, v) will be assumed to have a bounded
gradient with respect to (q, p, u, v), and ε will be a small parameter. All
functions involved are assumed to be continuous, and T -periodic in their
first variable t.
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In the second part of the paper we will extend our results to higher di-
mensional systems, both concerning the couple (q, p) and the couple (u, v).
To this aim, for the couple (q, p) we will apply some recent generalizations
of the Poincaré–Birkhoff Theorem (see [11, 12, 16, 17]), while for the couple
(u, v) the treatment of lower and upper solutions will be based on two dif-
ferent situations. The first one comes from the recent papers [13, 15], while
the second approach involves a classical condition by Hartman [19].

We could also have assumed some very general twist conditions, in the
line of [10, 11, 12]. However, in this paper we preferred to present our ideas in
some more concrete situations. The interested reader will have no difficulties
in adapting our results to the more general setting.

Now, in order to better understand the spirit of our results, some histor-
ical hints may be useful.

One of the most brilliant results for the periodic problem associated with
a Hamiltonian system was proved by Conley and Zehnder [6] in 1983, giving
a partial answer to a conjecture by Arnold [1, 2]. They also mentioned a
possible relation of their result with the Poincaré–Birkhoff Theorem [27].
The results in [6] have been developed by different researchers in several
directions (see, e.g., [4, 8, 18, 20, 21, 23]).

Recently, a deeper relation between these results and the Poincaré–Birk-
hoff Theorem has been established by the first author and A.J. Urena [16].
The first author then extended the results of [16] jointly with P. Gidoni [11],
introducing a very general twist condition in order to find periodic solutions.
The same authors further extended the theory, in a second paper [12], to the
case when the Hamiltonian function includes a nonresonant quadratic term.
The possibility of resonance has also been studied in [5] by assuming some
Ahmad–Lazer–Paul conditions.

On the other hand, the history of lower and upper solutions goes back
to the pioneering work of Picard [26] in 1893. The first attempts towards a
modern definition of lower and upper solutions were made by Scorza Drag-
oni [28] in 1939 for the following equation

ü = g(t, u, u̇). (1.4)

A few years later Nagumo [25] provided the classical definition of lower so-
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lution α and upper solution β of (1.4) by assuming the inequalities

α̈(t) ≥ g(t, α(t), α̇(t)) , β̈(t) ≤ g(t, β(t), β̇(t)) .

He also introduced an extra assumption, which we nowadays call Nagumo
condition, so to find the existence of a solution.

The notion of lower and upper solutions has recently been extended in [13,
15] to planar systems. Moreover, the first author together with M. Garzon
and A. Sfecci [10] further extended this fertile theory to coupled systems
which contain both the periodicity-twist conditions and a pair of well-ordered
lower and upper solutions. However, due to some technical problems, they
only used constant lower and upper solutions, while proposing as an open
problem the case of non-constant lower/upper solutions.

In this paper, we provide a partial answer to this open problem and
extend the theory to systems which contain the periodicity-twist conditions
together with generalized well-ordered lower/upper solutions, coupled by a
perturbation term.

The paper is organized as follows.

In Section 2 we state our result in the low dimensional case by coupling
“twist” and strict lower/upper solutions. The proof of this result is given in
Section 3. In Section 4 we provide some consequences of the main result and
an example of application.

In Section 5 we extend our previous theorem to higher dimensions, and
provide some variants and an example of application. In Section 6 we prove
a result by coupling “twist” with a Hartman-type condition [19] in higher
dimensions. This condition extends the concept of constant lower and upper
solutions to higher dimensions, and has been extensively studied by many
authors (see [9] and the references therein).

Finally, in Section 7 we illustrate an application to the theory of pertur-
bations of completely integrable systems.

2 A first multiplicity result

Let us first recall what we know about systems (1.2) and (1.3), separately.
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- The Poincaré–Birkhoff Theorem

Here are our assumptions concerning system (1.2).

A1. The function H(t, q, p) is 2π-periodic in q.

A2. There are a < b such that all the solutions (q, p) of system (1.2) starting
with p(0) ∈ [a, b] are defined on [0, T ] andp(0) = a ⇒ q(T )− q(0) < 0 ,

p(0) = b ⇒ q(T )− q(0) > 0 .

The following result was proved in [16].

Theorem 2.1. Assume that A1 and A2 hold true. Then, system (1.2) has
at least two geometrically distinct T -periodic solutions (q, p) such that p(0) ∈
]a, b[ .

Notice that, when a T -periodic solution (q, p) has been found, infinitely
many others appear by just adding an integer multiple of 2π to the q-th
component. We say that two solutions are geometrically distinct if they
cannot be obtained from each other in this way.

We also want to remark here that the period 2π in assumption A1 is
inessential; any period would be possible.

- Lower and upper solutions

Let us first recall the definitions of lower and upper solutions for the
T -periodic problem associated with system (1.3).

Definition 2.2. A T -periodic C1-function α : R→ R is said to be a “lower
solution” for the T -periodic problem associated with system (1.3) if there
exists a T -periodic C1-function vα : R→ R such thatv < vα(t) ⇒ f(t, v) < α̇(t) ,

v > vα(t) ⇒ f(t, v) > α̇(t) ,
(2.1)

and
v̇α(t) ≥ g(t, α(t)) . (2.2)

The lower solution is “strict” if the strict inequality in (2.2) holds.
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Definition 2.3. A T -periodic C1-function β : R→ R is said to be an “upper
solution” for the T -periodic problem associated with system (1.3) if there
exists a T -periodic C1-function vβ : R→ R such thatv < vβ(t) ⇒ f(t, v) < β̇(t) ,

v > vβ(t) ⇒ f(t, v) > β̇(t) ,
(2.3)

and
v̇β(t) ≤ g(t, β(t)) . (2.4)

The upper solution is “strict” if the strict inequality in (2.4) holds.

The following result was proved in [13, 15]

Theorem 2.4. Assume that there exist a lower solution α and an upper
solution β for the T -periodic problem associated with system (1.3), such that
α ≤ β. Then, system (1.3) has a T -periodic solution (u, v) such that α ≤
u ≤ β.

- Back to the coupled system

Let us state our hypotheses. We will assume A1 and A2; moreover,

A3. There exist a strict lower solution α and a strict upper solution β for
the T -periodic problem associated with system (1.3), such that α ≤ β.

A4. there exist positive constants c, d such that |α̇(t)| < c, |β̇(t)| < c for
every t ∈ [0, T ], and f(t, v) ≥ c , for v ≥ d ,

f(t, v) ≤ −c , for v ≤ −d .

A5. The second order partial derivatives ∂2tvf(t, v) and ∂2vvf(t, v) exist and
are continuous; moreover, there exists λ > 0 such that

∂vf(t, v) ≥ λ , for every (t, v) ∈ [0, T ]× R .

A6. The function P (t, q, p, u, v) is 2π-periodic in q and has a bounded gradi-
ent with respect to (q, p, u, v); moreover, the partial derivative ∂vP is inde-
pendent of q and p, and the map ∂vP (t, u, v) is continuously differentiable.
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Here is the main result of this section.

Theorem 2.5. Assume that A1 – A6 hold true. Then there exists ε̄ > 0

such that, if |ε| ≤ ε̄, there are at least two geometrically distinct T -periodic
solutions of system (1.1), with p(0) ∈ ]a, b[ and α ≤ u ≤ β.

The proof of the Theorem 2.5 will be given in Section 3.

Remark 2.6. Theorem 2.5 provides a partial answer to an open problem
raised in [10], where only constant lower and upper solutions were considered.
However, our result only applies to weakly coupled systems with strict lower
and upper solutions. Hence, the problem raised in [10] remains open.

Remark 2.7. As already noticed in [16], instead of using a constant interval
[a, b], it is possible to deal with a varying interval [a(q), b(q)], where a, b :

R → R are continuous and 2π-periodic functions. Indeed, if a and b are
continuously differentiable, then this case can be reduced to the previous one
by the symplectic change of variables

ψ(q, p) =

(∫ q

0

b(s)− a(s)

2
ds ,

2p− b(q)− a(q)

b(q)− a(q)

)
.

On the other hand, if the functions a and b are only continuous, then by
the Fejer Theorem they can be replaced by smooth functions. Notice that
the new Hamiltonian H̃(t, q̃, p̃) = H(t, ψ−1(q̃, p̃)) is periodic in q̃ with period
τ := 1

2

∫ 2π
0 (b(s)− a(s))ds.

Before going to the proof, we now present a variant of Theorem 2.5 which
is more related to Poincaré-Birkhoff Theorem as originally stated by Poin-
caré [27].

We first recall the definition of “rotation number”. Assume that t1 < t2

and let φ : [t1, t2]→ R2 be a continuous curve such that φ(t) 6= (0, 0) for every
t ∈ [t1, t2]. Writing φ(t) = ρ(t)(cos θ(t), sin θ(t)), where ρ : R→ ]0,+∞[ and
θ : R→ R are continuous, we define

Rot(φ; [t1, t2]) = −θ(t2)− θ(t1)
2π

.

In the sequel, D(Γ) denotes the open bounded region delimited by a
planar Jordan curve Γ. Here is the statement.
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Theorem 2.8. Let assumptions A3 – A6 hold true. Let k be any integer and
assume that there exist ρ > 0 and two planar Jordan curves Γ1, Γ2, strictly
star-shaped with respect to the origin, with

0 ∈ D(Γ1) ⊆ D(Γ1) ⊆ D(Γ2) ,

such that the solutions of system (1.2) starting with (q(0), p(0)) ∈ D(Γ2) \
D(Γ1) are defined on [0, T ] and satisfy

(q(t), p(t)) 6= (0, 0) , for every t ∈ [0, T ] ;

moreover, (q(0), p(0)) ∈ Γ1 ⇒ Rot((q, p); [0, T ]) < k ,

q(0), p(0)) ∈ Γ2 ⇒ Rot((q, p); [0, T ]) > k .
(2.5)

Then system (1.1) has at least two T -periodic solutions (q, p, u, v) such that

α ≤ u ≤ β ,

(q(0), p(0)) ∈ D(Γ2) \ D(Γ1) ,

and
Rot((q, p); [0, T ]) = k .

The same is true if (2.5) is replaced by the following:(q(0), p(0)) ∈ Γ1 ⇒ Rot((q, p); [0, T ]) > k ,

(q(0), p(0)) ∈ Γ2 ⇒ Rot((q, p); [0, T ]) < k .

In the above theorem, the Hamiltonian function H is not assumed to be
periodic in the variable q. The 2π-periodicity can indeed be recovered when
passing to some kind of polar coordinates. The proof is almost the same as
in [10, Theorem 10], so we omit it, for briefness.

3 Proof of Theorem 2.5

Let A = minα and B = maxβ. Then there exists a constant C > 0 such
that

|g(t, u)| ≤ C , for every (t, u) ∈ [0, T ]× [A,B] .
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We can find two straight lines γ± : R→ R, whose equations are

γ+(u) = µu+R , γ−(u) = µu−R ,

where µ < −C/c and R > 0 are chosen in such a way that

γ−(u) < −d < d < γ+(u) ,

and
γ−(u) ≤ α̇(t), vα(t), β̇(t), vβ(t) ≤ γ+(u) , (3.1)

for every (t, u) ∈ [0, T ]× [A,B].

Let us define the set

V = {(t, q, p, u, v) ∈ R5 : α(t) ≤ u ≤ β(t) , γ−(u) ≤ v ≤ γ+(u)}.

We can choose a constant d̂ > max{c, d, C/|µ|} such that

−d̂ < γ−(u) < γ+(u) < d̂ , for every u ∈ [A,B] .

Consider the function η : R× R→ R, defined as

η(t, u) =


α(t) , if u ≤ α(t) ,

u , if α(t) ≤ u ≤ β(t) ,

β(t) if u ≥ β(t) .

Now define the functions

g̃(t, u) = g(t, η(t, u))− η(t, u) + u , (3.2)

and

f̃(t, v) =



v , if v ≤ −d̂− 1 ,

f(t, v)− (v + d̂)(v − f(t, v)) , if − d̂− 1 ≤ v ≤ −d̂ ,

f(t, v) , if − d̂ ≤ v ≤ d̂ ,

f(t, v) + (v − d̂)(v − f(t, v)) , if d̂ ≤ v ≤ d̂+ 1 ,

v , if v ≥ d̂+ 1 .

(3.3)

By A3, there exists a ξ > 0 such that

v̇α(t)− g(t, α(t)) > ξ , for every t ∈ [0, T ] , (3.4)
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v̇β(t)− g(t, β(t)) < −ξ , for every t ∈ [0, T ] . (3.5)

By the global existence assumption in A2, we note that there exists a
constant C1 > 0 such that, for any solution (q, p) of (1.2) starting with
p(0) ∈ [a, b], one has that

|p(t)| ≤ C1 , for every t ∈ [0, T ] .

Let σ : R→ R be a C∞-function such that

σ(s) =

1 , if s ≤ C1 ,

0 , if s > C1 + 1 ,
(3.6)

and set Ĥ(t, q, p) = σ(|p|)H(t, q, p). Then Ĥ has a bounded gradient with
respect to (q, p). Now consider the modified system

q̇ = ∂pĤ(t, q, p) + ε ∂pP (t, q, p, u, v) ,

ṗ = −∂qĤ(t, q, p)− ε ∂qP (t, q, p, u, v) ,

u̇ = f̃(t, v) + ε ∂vP (t, q, p, u, v) ,

v̇ = g̃(t, u)− ε ∂uP (t, q, p, u, v) ,

(3.7)

where the new Hamiltonian function is defined as

H̃(t, q, p, u, v) = Ĥ(t, q, p) +

∫ v

0
f̃(t, s)ds−

∫ u

0
g̃(t, s)ds+ εP (t, q, p, u, v) .

We can also write the modified system (3.7) as ż = J∇H̃(t, z), where J =(
0 −1
1 0

)
is the standard symplectic matrix, and z = (q, p, u, v). Notice that

H̃(t, z) =
1

2
(v2 − u2) +K(t, z) ,

where K is a function having a bounded gradient with respect to z. More-
over, by A2, since ∂pP and ∂qP are bounded, if |ε| is small enough, for any
solution (q, p, u, v) of (3.7) one still has thatp(0) = a ⇒ q(T )− q(0) < 0 ,

p(0) = b ⇒ q(T )− q(0) > 0 .

Then, by [12, Corollary 2.4], we conclude that the modified system (3.7) has
at least two geometrically distinct T -periodic solutions such that p(0) ∈ ]a, b[ ,

provided that |ε| is small enough.
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We now need to show that such solutions z are such that (t, z(t)) ∈ V
for every t ∈ [0, T ]. Let us first prove the following five lemmas.

Lemma 3.1. There exist vεα and vεβ such that

f(t, vεα(t)) + ε ∂vP (t, α(t), vεα(t)) = α̇(t) , (3.8)

f(t, vεβ(t)) + ε ∂vP (t, β(t), vεβ(t)) = β̇(t) , (3.9)

for every t ∈ [0, T ]. Moreover,

lim
ε→0

vεα = vα , lim
ε→0

v̇εα = v̇α , lim
ε→0

vεβ = vβ , lim
ε→0

v̇εβ = v̇β ,

uniformly in [0, T ], i.e., vεα → vα and vεβ → vβ in C1 ([0, T ],R), as ε→ 0.

Proof. We only prove the statement concerning vεα, since the one for vεβ can
be proved in a similar way. Consider the space X = C1([0, T ],R). By A5

and A6, the functions f and ∂vP are continuously differentiable, and since

f(t, vα(t)) = α̇(t) , for every t ∈ R ,

we have that α ∈ C2([0, T ],R). We can then define the function F̃ : X×R→
X by

F̃ (v, ε)(t) = f(t, v(t)) + ε ∂vP (t, α(t), v(t))− α̇(t) . (3.10)

Now, clearly F̃ (vα, 0) = 0, and for all h ∈ X, we have

∂F̃

∂v
(vα, 0)(h)(t) = lim

σ→0

F̃ (vα + σh, 0)− F̃ (vα, 0)

σ
(t)

= lim
σ→0

f (t, vα(t) + σh(t))− f(t, vα(t))

σ
= ∂vf(t, vα(t))h(t) .

Let us prove that F̃ is differentiable with respect to its first variable at (vα, 0),
with [

dvF̃ (vα, 0)(h)
]
(t) = ∂vf(t, vα(t))h(t) .

Writing
F̃ (v, 0) = F̃ (vα, 0) + dvF̃ (vα, 0)(v − vα) + r(v) , (3.11)

we need to prove that

v
C1

−−→ vα ⇒ r(v)

‖v − vα‖C1

C1

−−→ 0 . (3.12)
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Substituting (3.10) in (3.11), we obtain

f(t, v(t)) = f(t, vα(t)) + ∂vf(t, vα(t))(v(t)− vα(t)) + r(v)(t) .

By the Lagrange Mean Value Theorem, for every t ∈ [0, T ] there exists
ζ(t) ∈ [vα(t), v(t)] such that

f(t, v(t))− f(t, vα(t)) = ∂vf(t, ζ(t))(v(t)− vα(t)) .

Then,

|r(v)(t)|
‖v − vα‖C1

= |∂vf(t, ζ(t))− ∂vf(t, vα(t))| |v(t)− vα(t)|
‖v − vα‖C1

≤ |∂vf(t, ζ(t))− ∂vf(t, vα(t))| , for every t ∈ [0, T ] .

If v → vα in C1, then v → vα uniformly, hence also ζ → vα uniformly. Since
the partial derivative of f with respect to v is continuous, taking a constant
M > ||vα||∞, the map ∂vf : [0, T ]× [−M,M ]→ R is uniformly continuous.
It then follows that, if v → vα in C1, then

r(v)(t)

‖v − vα‖C1

→ 0 , uniformly for t ∈ [0, T ] .

It remains to be proved that, if v → vα in C1, then

d

dt

(
r(v)(t)

‖v − vα‖C1

)
→ 0 , uniformly for t ∈ [0, T ].

We have

d

dt
r(v)(t) = ∂tf(t, v(t)) + ∂vf(t, v(t))v̇(t)− ∂tf(t, vα(t))− ∂vf(t, vα(t))v̇α(t)

−
(
∂2tvf(t, vα(t)) + ∂2vvf(t, vα(t))v̇α(t)

)
(v(t)− vα(t))

−∂vf(t, vα(t))(v̇(t)− v̇α(t))

=
(
∂tf(t, v(t))− ∂tf(t, vα(t))− ∂2tvf(t, vα(t))(v(t)− vα(t))

)
+ (∂vf(t, v(t))− ∂vf(t, vα(t))) v̇(t)− ∂2vvf(t, vα(t))v̇α(t)(v(t)− vα(t)) .

Again by using the Lagrange Mean Value Theorem twice, for every t ∈ [0, T ]

there exist ξ(t) and η(t) in [vα(t), v(t)] such that

∂tf(t, v(t))− ∂tf(t, vα(t)) = ∂2tvf(t, ξ(t))(v(t)− vα(t)) , (3.13)

∂vf(t, v(t))− ∂vf(t, vα(t)) = ∂2vvf(t, η(t))(v(t)− vα(t)) . (3.14)
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Then,
d

dt
r(v(t)) =

(
∂2tvf(t, ξ(t))− ∂2tvf(t, vα(t))

)
(v(t)− vα(t))

+
(
∂2vvf(t, η(t))v̇(t)− ∂2vvf(t, vα(t))v̇α(t)

)
(v(t)− vα(t)) .

If v → vα in C1, the first term in the sum converges to 0 when divided by
||v − vα||C1 , uniformly on [0, T ], by the continuity of ∂2tvf . For the second
term, we have∣∣∂2vvf(t, η(t))v̇(t)− ∂2vvf(t, vα(t))v̇α(t)

∣∣ ≤
≤
∣∣∂2vvf(t, η(t))− ∂2vvf(t, vα(t))

∣∣ |v̇(t)|+
∣∣∂2vvf(t, vα(t))

∣∣ |v̇(t)− v̇α(t)| ,

which converges uniformly to 0 when v → vα in C1, since both |v̇(t)| and∣∣∂2vvf(t, vα(t))
∣∣ are bounded, v̇ → v̇α uniformly on [0, T ], and the map ∂2vvf

is continuous.

We have thus proved (3.12). Therefore,

dvF̃ (vα, 0) = ∂vf(·, vα(·)) Id ,

where Id : X → X is the identity map. By A5, we have that ∂vf(t, vα(t)) >

0, for every t ∈ [0, T ], so the map dvF̃ (vα, 0) : X → X is invertible.

By the Implicit Function Theorem, there exists an ε̄ > 0 and a map
ϕ : ] − ε̄, ε̄[→ BX(vα, ε̄), of class C1, such that, for every ε ∈ ] − ε̄, ε̄[ and
v ∈ BX(vα, ε̄),

F̃ (v, ε) = 0 ⇐⇒ v = ϕ(ε) .

Setting vεα = ϕ(ε), the proof is completed.

Lemma 3.2. There exists ε̃ > 0 such that, if |ε| < ε̃, then for every t ∈ [0, T ]

and u ∈ [A,B] the following inequalities hold:f̃(t, v) + ε ∂vP (t, u, v) < α̇(t) , if v < vεα(t) ,

f̃(t, v) + ε ∂vP (t, u, v) > α̇(t) , if v > vεα(t) ,
(3.15)

f̃(t, v) + ε ∂vP (t, u, v) < β̇(t) , if v < vεβ(t) ,

f̃(t, v) + ε ∂vP (t, u, v) > β̇(t) , if v > vεβ(t) ,
(3.16)

g̃(t, u)− ε ∂uP (t, q, p, u, v) < v̇εα(t) , if u ≤ α(t) ,

g̃(t, u)− ε ∂uP (t, q, p, u, v) > v̇εβ(t) , if u ≥ β(t) .
(3.17)

Proof. We only prove the first inequality in (3.15), the proof of the second
inequality in (3.15) and of the inequalities in (3.16) being similar.
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We first want to prove that, for |ε| small enough, we have

v < vεα(t) ⇒ f(t, v) + ε ∂vP (t, u, v) < α̇(t) . (3.18)

By A5, there exists λ > 0 such that ∂vf(t, vεα(t)) ≥ λ, and by A6 there exists
a constant Ĉ > 0 such that∣∣∂2vvP (t, u, vα(t))

∣∣ ≤ Ĉ , for every (t, u) ∈ [0, T ]× [A,B] .

So, if 2|ε|Ĉ < λ, we have

∂v
(
f(t, vεα(t)) + ε ∂vP (t, u, vεα(t))

)
≥ λ

2
, for every (t, u) ∈ [0, T ]× [A,B] .

By continuity, there exists a δ̄ > 0 such that

|v − vεα(t)| < δ̄ ⇒ ∂v
(
f(t, v) + ε ∂vP (t, u, v)

)
≥ λ

4
,

for every (t, u) ∈ [0, T ]× [A,B]. So, by (3.8), there exists τ > 0 such that

v ∈ [vεα(t)− τ, vεα(t)] ⇒ f(t, v) + ε ∂vP (t, u, v) < α̇(t) ,

v ∈ [vεα(t), vεα(t) + τ ] ⇒ f(t, v) + ε ∂vP (t, u, v) > α̇(t) .

Without loss of generality, we assume for d in A4 that

−d < α̇(t), vα(t), β̇(t), vβ(t) < d ,

and take |ε|, τ small enough so that

−d < vεα(t)− τ < vεα(t) + τ < d .

By (2.1) and A4, there exists % > 0 such that

f(t, v)− α̇(t) ≤ −% , for v ≤ −d ,

f(t, v)− α̇(t) ≥ % , for v ≥ d .

If |ε| is small enough, since ∂vP is bounded, we have that

f(t, v) + ε ∂vP (t, u, v)− α̇(t) ≤ −%
2
, for v ≤ −d ,

f(t, v) + ε ∂vP (t, u, v)− α̇(t) ≥ %

2
, for v ≥ d .

Now it remains only to check what happens in the intervals [vεα(t)+τ, d] and
[−d, vεα(t) − τ ]. Let us only consider the first interval, the argument being
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similar for the other one. If v ∈ [vεα(t) + τ, d], then, if |ε| is small enough, by
Lemma 3.1 and (2.1), using A5, we have

f(t, v) ≥ f(t, vεα(t) + τ) ≥ f
(
t, vα(t) +

τ

2

)
> α̇(t) .

By Weierstrass Theorem, there exists a m > 0 such that

f(t, v)− α̇(t) ≥ m,

for every t ∈ [0, T ] and v ∈ [vεα(t) + τ, d]. Then, for |ε| small enough,

f(t, v) + ε ∂vP (t, u, v)− α̇(t) > 0 ,

for every t ∈ [0, T ] and v ∈ [vεα(t) + τ, d]. We have thus proved (3.18).

Now, since −d̂ < vεα(t) < d̂ for |ε| small enough, we have the following
three cases.

Case 1. If −d̂ ≤ v < vεα(t), then by (3.3) and (3.18) we have

f̃(t, v) + ε ∂vP (t, u, v) = f(t, v) + ε ∂vP (t, u, v) < α̇(t) .

Case 2. If v ≤ −d̂− 1, then by (3.3) we have

f̃(t, v) + ε ∂vP (t, u, v) = v + ε ∂vP (t, u, v)

≤ −d̂+ ε ∂vP (t, u, v) < α̇(t) ,

for |ε| small enough, since ∂vP is bounded.

Case 3. If −d̂− 1 ≤ v < −d̂, then by (3.3) and (2.1) we have

f̃(t, v) + ε∂vP (t, u, v) = f(t, v)− (v + d̂)(v − f(t, v)) + ε ∂vP (t, u, v)

= (1 + (v + d̂))f(t, v)− (v + d̂)v + ε ∂vP (t, u, v)

< α̇(t) ,

for |ε| small enough, since −(v + d̂) ∈ [0, 1] and f(t, v) < α̇(t), v < α̇(t).

The proof of the first inequality in (3.15) is thus completed.

We now prove the first inequality in (3.17), the second one being analo-
gous. Suppose u ≤ α(t). By (3.2) and (3.4), we have

g̃(t, u)− ε ∂uP (t, q, p, u, v) = g(t, α(t))− α(t) + u− ε ∂uP (t, q, p, u, v)

≤ g(t, α(t))− ε ∂uP (t, q, p, u, v)

< v̇α(t)− ξ − ε ∂uP (t, q, p, u, v)

< v̇εα(t) ,
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for |ε| small enough, since v̇εα → v̇α uniformly. The proof of the first inequal-
ity in (3.17) is thus completed.

Let us define the open sets

ANW = {(t, u, v) ∈ R3 : u < α(t), v > vεα(t)} ,

ASW = {(t, u, v) ∈ R3 : u < α(t), v < vεα(t)} ,

ANE = {(t, u, v) ∈ R3 : u > β(t), v > vεβ(t)} ,

ASE = {(t, u, v) ∈ R3 : u > β(t), v < vεβ(t)} .

Lemma 3.3. For every solution z = (q, p, u, v) of system (3.7), the following
assertions hold true:

(t0, u(t0), v(t0)) ∈ ANW ⇒ (t, u(t), v(t)) ∈ ANW for every t < t0 ,

(t0, u(t0), v(t0)) ∈ ASE ⇒ (t, u(t), v(t)) ∈ ASE for every t < t0 ,

(t0, u(t0), v(t0)) ∈ ANE ⇒ (t, u(t), v(t)) ∈ ANE for every t > t0 ,

(t0, u(t0), v(t0)) ∈ ASW ⇒ (t, u(t), v(t)) ∈ ASW for every t > t0 .

Proof. We only prove the first assertion, since the remaining ones can be
proved similarly. We suppose on contrary that there exists t1 < t0 such that

(t0, u(t0), v(t0)) ∈ ANW ,

(t, u(t), v(t)) ∈ ANW , for t ∈ ]t1, t0[ ,

and
(t1, u(t1), v(t1)) ∈ ∂ANW .

Notice that

∂ANW = {t, u, v) ∈ R3 : u = α(t), v ≥ vεα(t)}

∪ {t, u, v) ∈ R3 : u ≤ α(t), v = vεα(t)} . (3.19)

Assume v(t1) > vεα(t1). Without loss of generality, we may assume that
there exists δ > 0 such that [t1, t1 + δ] ⊆ [t1, t0[ and v(t) > vεα(t) for every
t ∈ [t1, t1 + δ]. Now define w : [t1, t1 + δ]→ R by w(t) = u(t)− α(t). Then,
we have that w(t1 + δ) < 0 and, by Lemma 3.2,

ẇ(t) = u̇(t)− α̇(t) = f̃(t, v) + ε ∂vP (t, u(t), v(t))− α̇(t) > 0 ,

for every t ∈ ]t1, t1 + δ] and |ε| small enough. Hence, w(t1) < 0, implying
that u(t) < α(t) for every t ∈ [t1, t1 + δ]. Then, by (3.19), we necessarily
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have that v(t1) = vεα(t1). Now if we define the map G(t) = v(t)−vεα(t), then
G is continuous on [t1, t0], G(t1) = 0 and G(t) > 0 for every t ∈ ]t1, t0]. But
then, using (3.17) and the fact that u(t) ≤ α(t) for every t ∈ [t1, t0], we have

Ġ(t1) = v̇(t1)− v̇εα(t1) = g̃(t1, u(t1))− ε ∂uP (t, q, p, u, v)− v̇εα(t1) < 0 ,

for |ε| small enough; a contradiction.

We now define the sets

AW = {(t, u, v) ∈ R3 : u < α(t), v = vεα(t)} ,

AE = {(t, u, v) ∈ R3 : u > β(t), v = vεβ(t)} .

Lemma 3.4. If z = (q, p, u, v) is a solution of system (3.7) such that
(t0, u(t0), v(t0)) ∈ AW , then there exists a δ > 0 such that

t ∈ ]t0 − δ, t0[ ⇒ (t, u(t), v(t)) ∈ ANW ,

t ∈ ]t0, t0 + δ[ ⇒ (t, u(t), v(t)) ∈ ASW .

Similarly, if (t0, u(t0), v(t0)) ∈ AE, then there exists a δ > 0 such that

t ∈ ]t0 − δ, t0[ ⇒ (t, u(t), v(t)) ∈ ASE ,

t ∈ ]t0, t0 + δ[ ⇒ (t, u(t), v(t)) ∈ ANE .

Proof. We give only the proof of the first part, the proof of the second part
being similar. Let z = (q, p, u, v) be a solution of system (3.7) such that
(t0, u(t0), v(t0)) ∈ AW . Then v(t0) = vεα(t0) and u(t0) < α(t0). Let us define
a map G(t) = v(t) − vεα(t). Then, G is continuous with G(t0) = 0, and
by (3.17) we have

Ġ(t0) = v̇(t0)− v̇εα(t0)

= g̃(t0, u(t0))− ε ∂uP (t0, q(t0), p(t0), u(t0), v(t0))− v̇εα(t0) < 0 ,

for |ε| small enough. So, there exists δ > 0 such that G(t) > 0 for every
t ∈ ]t0 − δ, t0[ , and u(t) < α(t) for every t ∈ [t0 − δ, t0 + δ]. The conclusion
is thus proved.

Lemma 3.5. If z = (q, p, u, v) is a T -periodic solution of system (3.7), then
(t, z(t)) ∈ V, for every t ∈ R.

16



Proof. Let us first prove that, for every t ∈ R, we have

α(t) ≤ u(t) ≤ β(t) . (3.20)

Suppose that there exists a solution z = (q, p, u, v) of system (3.7) such
that u(t0) < α(t0) for some t0 ∈ [0, T ]. If (t0, u(t0), v(t0)) ∈ ANW , then
from Lemma 3.3 we have that (t, u(t), v(t)) ∈ ANW for every t < t0. Then,
by (3.15), we have

d

dt
(u− α)(t) = f̃(t, v(t)) + ε ∂vP (t, u(t), v(t))− α̇(t) > 0 ,

for |ε| small enough and every t < t0, which is clearly a contradiction, because
u−α is a periodic solution. The same reasoning applies if (t0, u(t0), v(t0)) ∈
ASW . Finally, if (t0, u(t0), v(t0)) ∈ AW , then by Lemma 3.4 we know that
the solution will be in ASW or in ANW at some time near t0, hence we obtain
a contradiction again. Then, u(t) ≥ α(t) for every t ∈ [0, T ]. In a similar
way we can prove that u(t) ≤ β(t) for every t ∈ [0, T ].

Finally we prove that

γ−(u(t)) ≤ v(t) ≤ γ+(u(t)) . (3.21)

For such a solution z = (q, p, u, v), by (3.2) and (3.20) we see that g̃(t, u(t)) =

g(t, u(t)). Now, define the T -periodic function H−(t) = v(t)− γ−(u(t)). Let
tm ∈ [0, T ] be such that H−(tm) = minH− and assume by contradiction
that H−(tm) < 0. Then,

Ḣ−(tm) = v̇(tm)− γ′−(u(tm))u̇(tm)

= g(tm, u(tm))− ε ∂uP (t, q(tm), p(tm), u(tm), v(tm))− µu̇(tm)

= g(tm, u(tm))− µf̃(tm, v(tm))

−ε (∂uP (tm, q(tm), p(tm), u(tm), v(tm)) + µ∂vP (tm, u(tm), v(tm))) .

We now consider the following cases:

Case 1. If −d̂ ≤ v(tm) ≤ γ−(u(tm)), then f̃(tm, v(tm)) = f(tm, v(tm)) and
so we have

Ḣ−(tm) ≤ C − µ · (−c)

−ε (∂uP (tm, q(tm), p(tm), u(tm), v(tm)) + µ∂vP (tm, u(tm), v(tm)))

< 0 ,

for |ε| small enough, since g(tm, u(tm)) ≤ C and µ < −C
c .
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Case 2. If v(tm) < −d̂− 1, then f̃(tm, v(tm)) = v(tm) and so we have

Ḣ−(tm) ≤ C − µ v(tm)

−ε (∂uP (tm, q(tm), p(tm), u(tm), v(tm)) + µ∂vP (tm, u(tm), v(tm)))

< C − µ · (−d̂− 1)

−ε (∂uP (tm, q(tm), p(tm), u(tm), v(tm)) + µ∂vP (tm, u(tm), v(tm)))

< 0 ,

for |ε| small enough, since g(tm, u(tm)) ≤ C and d̂ > C/|µ|.

Case 3. If −d̂− 1 ≤ v(tm) ≤ −d̂, then f̃(tm, v(tm)) is a linear interpolation
between f(tm, v(tm)) and v(tm), hence

min{f(tm, v(tm)), v(tm)} ≤ f(tm, v(tm)) ≤ max{f(tm, v(tm)), v(tm)} ,

so we have

Ḣ−(tm) ≤ C − µmax{f(tm, v(tm)), v(tm)}

−ε (∂uP (tm, q(tm), p(tm), u(tm), v(tm)) + µ∂vP (tm, u(tm), v(tm))) .

If f(tm, v(tm)) ≤ v(tm), then

Ḣ−(tm) ≤ C + µd̂

−ε (∂uP (tm, q(tm), p(tm), u(tm), v(tm)) + µ∂vP (tm, u(tm), v(tm)))

< 0 ,

for |ε| small enough, since d̂ > c and µ < −C/c. On the other hand, if
v(tm) < f(tm, v(tm)), then again

Ḣ−(tm) ≤ C − µ · (−c)

−ε (∂uP (tm, q(tm), p(tm), u(tm), v(tm)) + µ∂vP (tm, u(tm), v(tm)))

< 0 ,

for |ε| small enough.

In all the above three cases we obtain contradictions, hence we have
proved that v(t) ≥ γ−(u(t)), for every t ∈ [0, T ]. In a similar way we can
prove that v(t) ≤ γ+(u(t)), for every t ∈ [0, T ].

We have thus proved that, if z = (q, p, u, v) is a solution of system (3.7),
then (t, z(t)) ∈ V, for every t ∈ R, and so z is a solution of system (1.1).
This completes the proof of Theorem 2.5.
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4 Consequences and applications of Theorem 2.5

Let φ : R → R be an increasing diffeomorphism with a bounded derivative,
such that φ(0) = 0. Consider the system

q̇ = ∂pH(t, q, p) + ε ∂pP (t, q, p, u) ,

ṗ = −∂qH(t, q, p)− ε ∂qP (t, q, p, u) ,

d
dt(φ(u̇)) = g(t, u)− ε ∂uP (t, q, p, u) ,

(4.1)

where P = P (t, q, p, u) is a perturbation term which is 2π-periodic in q and
has a bounded gradient with respect to (q, p, u). As a direct consequence of
the Theorem 2.5, we have the following result.

Corollary 4.1. Let A1 and A2 hold. Moreover, let there exist two T -periodic
C2-functions α, β : R→ R with α ≤ β, such that

d

dt
(φ(α̇))(t) > g(t, α(t)) ,

d

dt
(φ(β̇))(t) < g(t, β(t)) ,

for every t ∈ [0, T ]. Then there exists ε̄ > 0 such that, if |ε| ≤ ε̄, system (4.1)
has at least two geometrically distinct T -periodic solutions, such that p(0) ∈
]a, b[ and α ≤ u ≤ β.

Proof. Define vα, vβ : R→ R as

vα(t) = φ(α̇(t)) , vβ(t) = φ(β̇(t)) .

Setting f(t, v) = φ−1(v), all the assumptions of Theorem 2.5 are satisfied,
and so the conclusion follows.

Notice that, taking φ(s) = s for all s ∈ R, the last equation in (4.1)
becomes

ü = g(t, u)− ε ∂uP (t, q, p, u) .

Example 4.2. Consider the following system−q̈ = a sin q + ε ∂qP (t, q, u) ,

−ü = −g(t, u) + ε ∂uP (t, q, u) ,
(4.2)

where a > 0. Assume that P is 2π-periodic in q and has a bounded gradient
with respect to (q, u), and the function g satisfies the Landesman–Lazer
condition ∫ T

0
lim sup
u→−∞

g(t, u)dt < 0 <

∫ T

0
lim inf
u→+∞

g(t, u)dt . (4.3)
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By using (4.3) and [14, Lemma 2], we get a strict lower solution α and a
strict upper solution β of the equation ü = g(t, u). So, Corollary 4.1 applies,
and thus system (4.2) has at least two geometrically distinct solutions.

5 The higher dimensional case

We now consider the following system

q̇ = ∇pH(t, q, p) + ε∇pP (t, q, p, u, v) ,

ṗ = −∇qH(t, q, p)− ε∇qP (t, q, p, u, v) ,

u̇j = fj(t, vj) + ε ∂vjP (t, q, p, u, v) , j = 1, . . . , L ,

v̇j = gj(t, uj)− ε ∂ujP (t, q, p, u, v) , j = 1, . . . , L .

(5.1)

For z = (q, p, u, v) ∈ RN we write

q = (q1, . . . , qM ) ∈ RM , p = (p1, . . . , pM ) ∈ RM ,

u = (u1, . . . , uL) ∈ RL, v = (v1, . . . , vL) ∈ RL.

We assume all the involved functions to be continuous, and T -periodic in
their first variable t.

We first recall the definition of lower and upper solution for the T -periodic
problem associated with the system

u̇j = fj(t, vj) , v̇j = gj(t, uj) , j = 1, . . . , L . (5.2)

Definition 5.1. A T -periodic C1-function α : R → RL is said to be a
“lower solution” for the T -periodic problem associated with system (5.2) if
there exists a T -periodic C1-function vα : R → RL such that, for every
j = 1, . . . , L we haves < vα,j(t) ⇒ fj(t, s) < α̇j(t) ,

s > vα,j(t) ⇒ fj(t, s) > α̇j(t) ,
(5.3)

and
v̇α,j(t) ≥ gj(t, αj(t)) . (5.4)

The lower solution is “strict” if the strict inequalities in (5.4) hold.
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Definition 5.2. A T -periodic C1-function β : R → RL is said to be an
“upper solution” for the T -periodic problem associated with system (5.2) if
there exists a T -periodic C1-function vβ : R → RL such that, for every
j = 1, . . . , L we haves < vβ,j(t) ⇒ fj(t, s) < β̇j(t) ,

s > vβ,j(t) ⇒ fj(t, s) > β̇j(t) ,
(5.5)

and
v̇β,j(t) ≤ gj(t, βj(t)) . (5.6)

The upper solution is “strict” if the strict inequalities in (5.6) hold.

In the sequel, inequalities of n-tuples will be meant componentwise. It
will be useful to introduce the vector I = (1, . . . , 1) ∈ RL.

We say that D is a convex body of RM if it is a closed convex bounded
subset of RM having nonempty interior. By assuming that D has a smooth
boundary, we denote the unit outward normal at ζ ∈ ∂D by νD(ζ). Moreover,
we say that D is strongly convex if for any p ∈ ∂D, the map F : D → R
defined by F(ξ) = 〈ξ − p, νD(p)〉 has a unique maximum point at ξ = p.

Here are our hypotheses.

A1′. The function H(t, q, p) is 2π-periodic in each variable q1, . . . , qM .

A2′. There are a strongly convex body D of RM having a smooth boundary
and a symmetric regular M ×M matrix A such that all the solutions (q, p)

of system
q̇ = ∇pH(t, q, p) , ṗ = −∇qH(t, q, p) , (5.7)

starting with p(0) ∈ D are defined on [0, T ], and

p(0) ∈ ∂D ⇒ 〈q(T )− q(0) , AνD(p(0))〉 > 0 .

A3′. There exist a strict lower solution α and a strict upper solution β for
the T -periodic problem associated with system (5.2), such that α ≤ β.

A4′. There exist positive constants c, d such that |α̇j(t)| < c, |β̇j(t)| < c for
every t ∈ [0, T ], and fj(t, s) ≥ c , for s ≥ d ,

fj(t, s) ≤ −c , for s ≤ −d ,
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for every j = 1, . . . , L.
A5′. The second order partial derivatives ∂2tsfj(t, s) and ∂2ssfj(t, s) exist and
are continuous; moreover, there exists λ > 0 such that

∂sfj(t, s) ≥ λ , for every (t, s) ∈ [0, T ]× R ,

for every j = 1, . . . , L.

A6′. The function P (t, q, p, u, v) is 2π-periodic in q1, . . . , qM and has a
bounded gradient with respect to (q, p, u, v); moreover, the partial derivative
∇vP is independent of q and p, and the map ∇vP (t, u, v) is continuously
differentiable.

Here is our first generalization of Theorem 2.5.

Theorem 5.3. Assume that A1′ – A6′ hold true. Then there exists ε̄ > 0

such that, if |ε| ≤ ε̄, there are at least M+1 geometrically distinct T -periodic
solutions of system (5.1), with p(0) ∈ D̊ and α ≤ u ≤ β.

Proof. The arguments will be similar to the ones provided in Section 3, so
we will be very brief. Let Aj = minαj , Bj = maxβj , for j = 1, . . . , L, and

A = min{A1, . . . , AL} , B = max{B1, . . . , BL} .

Then there exists a constant C > 0 such that

|gj(t, s)| ≤ C , for every (t, s) ∈ [0, T ]× [A,B] ,

and every j = 1, . . . , L. We can find two straight lines γ± : R → R, whose
equations are

γ+(s) = µs+R , γ−(s) = µs−R ,

where µ < −C/c and R > 0 are chosen in such a way that

γ−(u) < −d < d < γ+(u) ,

and
γ−(u)I ≤ α̇(t) , vα(t) , β̇(t) , vβ(t) ≤ γ+(u)I , (5.8)

for every (t, u) ∈ [0, T ]× [A,B].
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We define the set

V = {(t, q, p, u, v) ∈ R2N+1 : α(t) ≤ u ≤ β(t), γ−(u)I ≤ v ≤ γ+(u)I} .

We can choose a constant d̂ > d such that d̂ > C/|µ|, d̂ > c and for every
s ∈ [A,B] we have

−d̂ < γ−(s) < γ+(s) < d̂ .

Now for j = 1, . . . , L we consider the function ηj : R× R→ R defined as

ηj(t, s) =


αj(t) , if s ≤ αj(t) ,

s , if αj(t) ≤ s ≤ βj(t) ,

βj(t) , if s ≥ βj(t) .

Now define the function g̃j : R× R→ R as in (3.2) by using ηj instead of η
and f̃j : R×R→ R as defined in (3.3). Similarly, by a cut-off function σ as
in (3.6) we set

Ĥ(t, q, p) = σ(|p|)H(t, q, p) .

Then, Ĥ has a bounded gradient with respect to (q, p). Consider now the
modified system

q̇ = ∇pĤ(t, q, p) + ε∇pP (t, q, p, u, v) ,

ṗ = −∇qĤ(t, q, p)− ε∇qP (t, q, p, u, v) ,

u̇j = f̃j(t, vj) + ε ∂vjP (t, q, p, u, v) , j = 1, . . . , L ,

v̇j = g̃j(t, uj)− ε ∂ujP (t, q, p, u, v) , j = 1, . . . , L ,

(5.9)

where the new Hamiltonian function H̃ : R× R2N → R is defined as

H̃(t, z) = Ĥ(t, q, p) +

L∑
j=1

(∫ vj

0
f̃j(t, s) ds−

∫ uj

0
g̃j(t, s) ds

)
+ εP (t, z) ,

where z = (q, p, u, v). The modified system (5.9) can be written as ż =

J∇H̃(t, z), where J =
(
0 −I
I 0

)
is the standard symplectic matrix. Notice

that
H̃(t, z) =

1

2
(|v|2 − |u|2) +K(t, z) ,

where K is a function having a bounded gradient with respect to z. More-
over, by A2′, since ∇pP and ∇qP are bounded, if |ε| is small enough, for
any solution (q, p, u, v) of (5.9) one still has that

p(0) ∈ ∂D ⇒ 〈q(T )− q(0) , AνD(p(0)〉 > 0 .
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Then, by [12, Corollary 2.3], we get that the modified system (5.9) has at
least M + 1 geometrically distinct T -periodic solutions such that p(0) ∈ D̊,
provided that |ε| is small enough.

We can now prove the analogues of Lemmas 3.1, 3.2, 3.3, 3.4 and 3.5.

In particular, all the M + 1 geometrically distinct T -periodic solutions
of system (5.9) are solutions of system (5.1). Thus system (5.1) has at least
M + 1 geometrically distinct solutions, with p(0) ∈ D̊ and α ≤ u ≤ β, and
this completes the proof of Theorem 5.3.

We now consider some variants of Theorem 5.3. Let us first state the
following “avoiding rays” assumption.

A2′′. There exists a convex body D of RM , having a smooth boundary, such
that all the solutions (q, p) of system (5.7) starting with p(0) ∈ D are defined
on [0, T ], and

p(0) ∈ ∂D ⇒ q(T )− q(0) /∈ {λνD(p(0)) : λ ≥ 0} .

Theorem 5.4. If in the statement of Theorem 5.3 we replace assumption
A2′ by A2′′, the same conclusion holds.

Proof. The argument of proof is the same as that of Theorem 5.3 with the
only difference that instead of applying [12, Corollary 2.3], we apply [12,
Corollary 2.1].

Now we consider the case when D is a rectangle in RM , i.e.

D = [a1, b1]× · · · × [aM , bM ] .

We state the following assumption.

A2′′′. There exists an M -tuple σ = (σ1, . . . , σM ) ∈ {−1, 1}M such that all
the solutions (q, p) of system (5.7) starting with p(0) ∈ D are defined on
[0, T ], and, for every i = 1, . . . ,M , we havepi(0) = ai ⇒ σi(qi(T )− qi(0)) < 0 ,

pi(0) = bi ⇒ σi(qi(T )− qi(0)) > 0 .

Theorem 5.5. If in the statement of Theorem 5.3 we replace assumption
A2′ by A2′′′, the same conclusion holds.
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Proof. The argument of proof is the same as that of Theorem 5.3 with the
only difference that instead of applying [12, Corollary 2.3], we apply [12,
Corollary 2.4].

Remark 5.6. Based on the Remark 2.7, we could have varying intervals
[ai(s), bi(s)] instead of the intervals [ai, bi] in the rectangle D, where ai, bi :

R→ R are 2π-periodic continuous functions.

We now provide a higher dimensional version of the Theorem 2.8.

Theorem 5.7. Assume that A3′ – A6′ hold true. Let k1, k2, . . . , kM be
integers and assume that, for each i ∈ {1, . . . ,M}, there exist two planar
Jordan curves Γi1, Γi2 , strictly star-shaped with respect to the origin, with

0 ∈ D(Γi1) ⊆ D(Γi1) ⊆ D(Γi2) ,

such that the solutions of system (5.7) with (qi(0), pi(0)) ∈ D(Γi2) \ D(Γi1))

for every i ∈ {1, . . . ,M} are defined on [0, T ] and satisfy

(qi(t), pi(t)) 6= (0, 0), ∀t ∈ [0, T ] ,

and (qi(0), pi(0)) ∈ Γi1 ⇒ Rot((qi, pi); [0, T ]) < ki ,

(qi(0), pi(0)) ∈ Γi1 ⇒ Rot((qi, pi); [0, T ]) < ki .
(5.10)

Then system (5.1) has at least M + 1 geometrically distinct T -periodic solu-
tions z(n)(t) for n = 1, . . . ,M + 1 such that

α ≤ u(n) ≤ β ,

(q
(n)
i (0), p

(n)
i (0)) ∈ D(Γi2) \ D(Γi1) ,

and
Rot((q

(n)
i , p

(n)
i ); [0, T ]) = ki ,

for i = 1, . . . ,M . The same is true if for some i ∈ {1, . . . ,M} the assump-
tion (5.10) is replaced by the following(qi(0), pi(0)) ∈ Γi1 ⇒ Rot((qi, pi); [0, T ]) < ki ,

(qi(0), pi(0)) ∈ Γi1 ⇒ Rot((qi, pi); [0, T ]) > ki .
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Example 5.8. Consider the following system−q̈i = ai sin qi + ε ∂qiP (t, q, u) , i = 1, . . . ,M ,

−üj = −gj(t, uj) + ε ∂ujP (t, q, u) , j = 1, . . . , L ,
(5.11)

where ai > 0. Assume that P is 2π-periodic in q1, . . . , qM and has a bounded
gradient with respect to (q, u), and for each j ∈ {1, . . . , L}, the function gj
satisfies the Landesman–Lazer condition∫ T

0
lim sup
s→−∞

gj(t, s) dt < 0 <

∫ T

0
lim inf
s→+∞

gj(t, s) dt . (5.12)

By using (5.12) and [14, Lemma 2], we get a strict lower solution αj and a
strict upper solution βj of the equation üj = gj(t, uj), with αj(t) < βj(t).
So all the assumptions of Theorem 5.3 hold and thus system (5.11) has at
least M + 1 geometrically distinct T -periodic solutions.

6 Twist with Hartman type condition

In this section we consider a system in R2M+2L of the type
q̇ = ∇pH(t, q, p) + ε∇pP (t, q, p, u) ,

ṗ = −∇qH(t, q, p)− ε∇qP (t, q, p, u) ,

u̇ = v , v̇ = ∇uG(t, u) + ε∇uP (t, q, p, u) .

(6.1)

Here again all functions involved are assumed to be continuous, and T -
periodic in t. We will assume the periodicity condition A1′ and one of the
twist conditions A2′, A2′′ or A2′′′, even if in the following statement we
concentrate on A2′. We also assume condition A6′ which, in this setting,
can be stated in the following simpler form.

A6′′. The function P (t, q, p, u) is 2π-periodic in q1, . . . , qM and has a bounded
gradient with respect to (q, p, u).

Here is our statement, involving a Hartman-type condition (see [9, 19]
and the references therein).

Theorem 6.1. Assume that A1′, A2′ and A6′′ hold true and that there exists
R > 0 such that

|u| = R ⇒ 〈∇uG(t, u), u〉 > 0 . (6.2)

26



Then there exists ε̄ > 0 such that for |ε| ≤ ε̄, there are at least M + 1

geometrically distinct T -periodic solutions of system (6.1) such that p(0) ∈ D̊
and |u(t)| ≤ R for every t ∈ R.

Proof. First of all, we modify the function G outside the ball BR = {u :

|u| ≤ R}. By (6.2) and the continuity of the inner product, there exists
ρ̃ > 0 and δ > 0 such that

R ≤ |u| ≤ R+ ρ̃ ⇒ 〈∇uG(t, u), u〉 ≥ δ . (6.3)

We can assume without loss of generality that

G(t, u) ≤ 0 , when R ≤ |u| ≤ R+ ρ̃ . (6.4)

Indeed, if it is not already the case, it is sufficient to replace G(t, u) by
G(t, u)−M , where

M = max{|G(t, u)| : 0 ≤ t ≤ T, R < |u| ≤ R+ ρ̃} .

Its gradient will not be changed.

Moreover, as in the previous proofs, after a truncation we can from now
on assume that H has a bounded gradient with respect to (q, p).

Now choose a C∞-function η : R→ R satisfying
η(s) = 1 , if s ≤ R ,

η̇(s) ≤ 0 , if R ≤ s ≤ R+ ρ̃ ,

η(s) = 0 , if s > R+ ρ̃ ,

and define the function

G̃(t, u) =


G(t, u) , if |u| ≤ R ,

η(|u|)G(t, u) + (1− η(|u|))12 |u|
2, if R ≤ |u| ≤ R+ ρ̃ ,

1
2 |u|

2, if |u| > R+ ρ̃ .

Notice that, outside the ball BR+ρ̃, the system becomes almost linear.

We now consider the new system
q̇ = ∇pH(t, q, p) + ε∇pP (t, q, p, u) ,

ṗ = −∇qH(t, q, p)− ε∇qP (t, q, p, u) ,

u̇ = v, v̇ = ∇uG̃(t, u) + ε∇uP (t, q, p, u) ,

(6.5)
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where the new Hamiltonian function is

H̃(t, q, p, u, v) = H(t, q, p) + 1
2 |v|

2 + G̃(t, u) + ε P (t, q, p, u) .

Writing the modified system (6.5) as ż = J∇H̃(t, z), we see that

H̃(t, z) =
1

2
(|v|2 − |u|2) +K(t, z) ,

with K(t, z) has a bounded gradient with respect to z = (q, p, u, v). Then,
by [12, Corollary 2.3], the modified system (6.5) has at least M + 1 geomet-
rically distinct T -periodic solutions, such that p(0) ∈ D̊, provided that |ε| is
small enough.

We need to prove that the T -periodic solutions of system (6.5) we have
found are such that |u(t)| ≤ R for every t ∈ [0, T ], so that they are indeed
solutions of system (6.1).

Assume by contradiction that there exists t0 ∈ R such that

|u(t0)| = max{|u(t)| : t ∈ [0, T ]} > R .

Consider the function f(t) = |u(t)|2. We have that ḟ(t0) = 0 and f̈(t0) ≤ 0.
Being ḟ(t) = 〈2u(t), u̇(t)〉, we compute

f̈(t) = 2〈u̇(t), u̇(t)〉+ 2 〈u(t), ü(t)〉

= 2|u̇(t)|2 + 2
〈
u(t),∇uG̃(t, u(t)) + ε∇uP (t, q(t), p(t), u(t))

〉
≥ 2

〈
u(t),∇uG̃(t, u(t)) + ε∇uP (t, q(t), p(t), u(t))

〉
. (6.6)

We have two cases.

Case 1. If |u(t0)| > R+ ρ̃, then by the Cauchy–Schwartz inequality and the
fact that |∇uP (t, q, p, u)| < C, the inequality (6.6) implies that

f̈(t0) ≥ 2 〈u(t0), u(t0) + ε∇uP (t0, q(t0), p(t0), u(t0))〉

≥ 2|u(t0)|2 − 2ε|u(t0)| |∇uP (t0, q(t0), p(t0), u(t0))|

≥ 2|u(t0)|
(
|u(t0)| − ε |∇uP (t0, q(t0), p(t0), u(t0))|

)
> 2R2 > 0 ,

for |ε| small enough, a contradiction.
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Case 2. If R < |u(t0)| < R+ ρ̃, then again (6.6) implies that

f̈(t0) ≥ 2

〈
u(t0), η̇ (|u(t0)|)

u(t0)

|u(t0)|
G(t0, u(t0)) + η (|u(t0)|)∇uG(t0, u(t0))

〉
+2

〈
u(t0),−η̇ (|u(t0)|)

u(t0)

|u(t0)|
1

2
|u(t0)|2 + (1− η (|u(t0)|))u(t0)

〉
−2|u(t0)|ε |∇uP (t0, q(t0), p(t0), u(t0))|

= 2η̇ (|u(t0)|) |u(t0)|G(t0, u(t0)) + 2η (|u(t0)|) 〈u(t0),∇uG(t0, u(t0))〉

−η̇ (|u(t0)|) |u(t0)|3 + 2 (1− η (|u(t0)|)) |u(t0)|2

−2|u(t0)|ε |∇uP (t0, q(t0), p(t0), u(t0))| .

By (6.3) and (6.4), since η̇ (|u(t0)|) ≤ 0 and

η (|u(t0)|) 〈u(t0),∇uG(t0, u(t0))〉+ (1− η (|u(t0)|)) |u(t0)|2 ≥ min{δ,R2} ,

we have that

f̈(t0) ≥ 2 min{δ,R2} − 2(R+ ρ̃)ε |∇uP (t0, q(t0), p(t0), u(t0))| > 0 ,

when |ε| is small enough, a contradiction. The proof is thus completed.

Remark 6.2. In the case L = 1, writing g(t, u) = ∇uG(t, u), the Hartman
condition becomes

g(t,−R) < 0 < g(t, R) .

It is thus seen that α = −R and β = R are constant strict lower/upper
solutions, with α < β.

7 Perturbations of completely integrable systems

There is a very large literature on the periodic problem for perturbations
of completely integrable systems (see, e.g., [3, 12] and references therein),
starting from Poincaré, who referred to Hamiltonian perturbation theory as
the “Problème général de la Dynamique”.

We will add now an extra term to the Hamiltonian function, involving a
Hartman-type situation. Consider the systemϕ̇ = ∇K(I) + ε∇IP (t, ϕ, I, u) , İ = −ε∇φP (t, ϕ, I, u) ,

−ü = ∇uG(t, u) + ε∇uP (t, ϕ, I, u) ,
(7.1)
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where (ϕ, I) ∈ R2M and u ∈ RL. As usual we assume that all the involved
functions are continuous and T -periodic in t. The perturbation function
P : R×R2M+L → R is assumed to have a bounded gradient with respect to
(ϕ, I, u). Moreover, it is τi-periodic in each variable ϕi, i.e.

P (t, . . . , ϕi + τi, . . . ) = P (t, . . . , ϕi, . . . ) ,

and we assume that there exist some integers m1, . . . ,mM such that

T∇K(I0) = (m1τ1, . . . ,mMτM ) .

We are thus dealing with a completely resonant torus. Here is our result.

Theorem 7.1. In the above setting, assume that there exist I0 ∈ RM , a
symmetric invertible M ×M matrix A and ρ > 0 such that

0 < |I − I0| ≤ ρ ⇒
〈
∇K(I)−∇K(I0) , A(I − I0)

〉
> 0 . (7.2)

Moreover, let there exist R > 0 such that

|u| = R ⇒ 〈∇uG(t, u), u〉 > 0 .

Then, for every σ > 0, there exists ε̃ > 0 such that, for |ε| < ε̃, there are at
least M + 1 geometrically distinct solutions of system (7.1), with

ϕ(t+ T ) = ϕ(t) + T∇K(I0), u(t+ T ) = u(t), I(t+ T ) = I(t) ,

|ϕ(t)− ϕ(0)− t∇K(I0)|+ |I(t)− I0| < σ ,

and
|u(t)| ≤ R ,

for every t ∈ R.

The proof is based on Theorem 6.1, following the same reasoning as in [10,
Theorem 23], so we omit it, for briefness.

Remark 7.2. It can easily be seen that assumption (7.2) is satisfied if the
function K is twice continuously differentiable at I0, with

detK′′(I0) 6= 0 .

It is indeed sufficient to choose A = K′′(I0).
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