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Abstract

In 1983, Conley and Zehnder [11] proved a remarkable theorem on the
periodic problem associated with a general Hamiltonian system, giving a
partial answer to a conjecture by V.I. Arnold. Their pioneering paper has
been extended in different directions by several authors. In 2017, Fonda
and Ureña [30] established a deeper relation between the results in [11]
and the Poincaré–Birkhoff Theorem. The main theorem in [30] was then
extended in 2020 by Fonda and Gidoni to systems whose Hamiltonian
function includes a nonresonant quadratic term. It is the aim of this
paper to further extend this fertile theory to Hamiltonian systems which,
besides the periodicity-twist conditions always required in the Poincaré–
Birkhoff Theorem, also include a term involving a pair of well-ordered
lower and upper solutions.

1 Introduction
In 1983, C.C. Conley and E.J. Zehnder [11] proved a remarkable result on the
periodic problem associated with a general Hamiltonian system

Jż = ∇H(t, z) , (1)

giving a partial answer to a conjecture by V.I. Arnold [1, 2]. Here, J =
(
0 −I
I 0

)
is the standard symplectic matrix, H : R × R2N → R is T -periodic in t, and
∇H(t, z) denotes its gradient with respect to z. Let us write z = (q, p), with
q = (q1, . . . , qN ) and p = (p1, . . . , pN ), so that the system reads as

q̇ = ∂pH(t, q, p) , ṗ = −∂qH(t, q, p) .

Their paper contains two main results.

In a first theorem, assuming the Hamiltonian function H(t, z) to be periodic
in all variables q1, . . . , qN and p1, . . . , pN , they prove that system (1) has at least
2N + 1 geometrically distinct T -periodic solutions.

In a second theorem, they assume H to be periodic in q1, . . . , qN and to
have a quadratic behaviour in p; namely, that there exist a constant R > 0 and
a symmetric regular matrix A such that H(t, q, p) = 1

2 〈Ap, p〉 + “lower order
terms”, when |p| ≥ R. In this setting, they prove that system (1) has at least
N + 1 geometrically distinct T -periodic solutions.
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They also mention a possible relation of this second result with the Poincaré–
Birkhoff Theorem (the title of the paper is however a bit misleading). This
theorem was first conjectured by Poincaré [46] in 1912, shortly before his death,
and then proved by Birkhoff in [4, 5]. Both of them were interested in proving
it because of its consequences in the existence of periodic solutions for some
Hamiltonian systems originating from Celestial Mechanics. As mentioned by
Zehnder in [50], Arnold called this theorem “the seed of symplectic topology” (cf.
also [43]). See [24] for a brief historical account till the centennial anniversary
of the theorem.

The pioneering results in [11] have been extended in different directions by
several authors (see, e.g., [9, 15, 23, 33, 37, 38, 40, 41, 47, 49]).

More recently, a deeper relation between these results and the Poincaré–
Birkhoff Theorem has been established by the first author jointly with A.J.
Ureña [30]. Taking, e.g., D = B(0, R), the closed ball with radius R, and
assuming H to be periodic in q1, . . . , qN , the existence of N + 1 geometrically
distinct T -periodic solutions was established under the following hypothesis:
there exist a constant R > 0 and a symmetric regular matrix A such that the
solutions z(t) = (q(t), p(t)) of (1) starting with p(0) ∈ D are defined on [0, T ]
and satisfy a “twist condition” like〈

q(T )− q(0) ,Ap(0)
〉
> 0 , when p(0) ∈ ∂D .

It is easily checked that this result generalizes the second Conley–Zehnder The-
orem described above. Variants of the twist condition were also proposed
in [30, 31].

The results in [30] have been extended in [17] by the first author and P.
Gidoni in order to include both the above quoted Conley–Zehnder theorems,
assuming H to be periodic in q1, . . . , qN and possibly also in p1, . . . , pL, for
some L ∈ {1, . . . , N}, together with a very general twist condition, thus finding
N + L + 1 periodic solutions. The same authors further extended the theory,
in a second paper [18], to the case when the Hamiltonian function includes
a nonresonant quadratic term. Possible resonance has also been investigated
in [10], assuming some Ahmad–Lazer–Paul conditions.

These general existence results have found so far several applications (see [7,
16, 18, 25, 26, 28, 30]), thus generalizing some previously established results for
second order equations (cf. [8, 13, 14, 22, 27, 35, 36]). They have even been
extended to the study of infinite-dimensional systems [6, 19].

It is the aim of this paper to further extend this fertile theory to systems
which, besides the periodicity-twist conditions illustrated above, also present a
pair of well-ordered lower and upper solutions. In order to better explain this
situation, let the considered Hamiltonian system be of the type{

q̇ = ∂pH(t, q, p, u, v) , ṗ = −∂qH(t, q, p, u, v) ,

u̇ = ∂vH(t, q, p, u, v) , v̇ = −∂uH(t, q, p, u, v) .
(2)

Here H : R × R4 → R is T -periodic in t, periodic in q, and has a twist in-
volving the (q, p) variables; at the same time, we also assume that there exist
some constant lower/upper solutions α ≤ β involving the (u, v) variables. In
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this situation we are able to prove the existence of two geometrically distinct
T -periodic solutions. The result will then be extended to higher dimensional
systems.

The reader is surely familiar with the method of lower/upper solutions in
the case of scalar equations like, e.g.,

ü = f(t, u) .

This method has a long history, dating back to the pioneering papers [44, 45, 48]
(see the book [12] for a detailed exposition). We recall that the T -periodic
functions α, β : R → R are said to be a lower solution and an upper solution,
respectively, if

α̈(t) ≥ f(t, α(t)) , β̈(t) ≤ f(t, β(t)) ,

for every t ∈ [0, T ]. Recently the theory has been extended to periodic planar
systems in [20, 29]; this will be the approach adopted here, even if we will only
be able to deal with the case of constant lower and upper solutions.

Let us briefly explain why we need to reduce to constant lower/upper so-
lutions. The standard proof procedure in lower/upper solutions theorems is as
follows: a) modify the problem below α(t) and above β(t), in the u component,
by the use of a truncating function; b) show that the modified problem has a
solution; c) prove that the u component of this solution stays between α(t) and
β(t). The technical difficulty encountered in the present paper is that we need
to maintain the Hamiltonian structure, hence the modification of the problem
has to be made in the Hamiltonian function itself, being careful to preserve the
differentiability of the new function. Once the modification has been made, we
are allowed to apply the results in [18]. We believe that this technical difficulty
could be overcome, but for now the case of nonconstant lower/upper solutions
remains an open problem.

Another open problem arises in the case of non-well-ordered lower and upper
solutions. Assuming some nonresonance conditions with respect to the higher
part of the spectrum, this case is usually treated by topological degree methods.
We do not know how to adapt this type of technique to our situation.

In order to maintain a friendly exposition we preferred writing this paper
following an increasing order of complexity, first presenting the main ideas in
the simplest situation, then extending them to more general systems. The paper
is thus organized as follows.

In Section 2 we state our result in the simple case of system (2). The proof is
provided in Section 3. Then, in Section 4, we provide some variants of the first
theorem. In particular, we state a version of the theorem involving a topological
annulus, in the spirit of Poincaré’s original statement. In Section 5 we illustrate
several examples of applications.

In Section 6 we extend the result to higher dimensions, thus generalizing
both the Conley–Zehnder theorems presented above. The proof is provided in
Section 7. In Section 8 we extend the higher dimensional result to systems whose
Hamiltonian function further involves a quadratic term and some examples of
possible applications are given in Section 9. In Section 10 we provide a further
application to the study of periodic solutions to perturbations of completely
integrable systems.
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Finally, in Section 11 we establish the most general result of this paper,
where the twist condition is stated as an “avoiding cones condition”.

2 Statement of the first result
In this section we consider the Hamiltonian system (2), where the Hamiltonian
function H : R × R4 → R is assumed to be continuous, T -periodic in t, and
continuously differentiable in the q, p, u, v variables.

Let us state our assumptions.

Assumption 1 (Periodicity). The function H(t, q, p, u, v) is periodic in q.

To fix the ideas, we will assume the period in q to be equal to 2π. Under this
setting, T -periodic solutions of (2) appear in equivalence classes made of those
solutions whose components q(t) differ by an integer multiple of 2π. We say
that two T -periodic solutions are geometrically distinct if they do not belong to
the same equivalence class.

Assumption 2 (Lower and upper solutions). There exist some constants δ > 0
and α ≤ β such that

v ∂vH(t, q, p, u, v) > 0 , when u ∈ [α− δ, α] ∪ [β, β + δ] and v 6= 0 , (3)

and {
∂uH(t, q, p, u, 0) ≥ 0 , when u ∈ [α− δ, α] ,

∂uH(t, q, p, u, 0) ≤ 0 , when u ∈ [β, β + δ] .
(4)

The above assumption comes from the definition of lower and upper solutions
given in [20, 29]. We require here that these lower and upper solutions are
constant. More precisely, all constants in [α − δ, α] are lower solutions, and all
constants in [β, β + δ] are upper solutions. In the sequel, the constant δ > 0
provided by Assumption 2 will be used without further mention.

Assumption 3 (Nagumo condition). There exist d > 0 and two continuous
functions f, ϕ : [d,+∞[→ ]0,+∞[ , with∫ +∞

d

f(s)

ϕ(s)
ds = +∞ ,

satisfying the following property. If u ∈ [α− δ, β + δ], then{
∂vH(t, q, p, u, v) ≥ f(v) , when v ≥ d ,

∂vH(t, q, p, u, v) ≤ −f(−v) , when v ≤ −d ,

and
|∂uH(t, q, p, u, v)| ≤ ϕ(|v|) , when |v| ≥ d .

Assumption 4 (Linear growth). For every K > 0 there is a constant CK > 0
such that

|∂qH(t, q, p, u, v)| ≤ CK(|p|+ 1) , when u ∈ [α− δ, β + δ] and |v| ≤ K .

4



Remark 1. Notice that, under the above assumption, for any two continuous
functions U, V : [0, T ]→ R, with

α− δ ≤ U(t) ≤ β + δ , for every t ∈ [0, T ] , (5)

the solutions of the system

q̇ = ∂pH(t, q, p, U(t), V (t)) , ṗ = −∂qH(t, q, p, U(t), V (t)) (6)

are defined on [0, T ]. Indeed, let (q(t), p(t)) be a solution of system (6) starting
at time t = 0 from some (q(0), p(0)) = (q0, p0). This solution is defined on
a maximal interval of future existence [0, T ] ∩ [0, ω[ . Set K = ‖V ‖∞. By
Assumption 4,

|ṗ(t)| ≤ CK(|p(t)|+ 1) , for every t ∈ [0, T ] ∩ [0, ω[ ,

which, combined with the Gronwall Lemma, yields

|p(t)| ≤ (|p0|+ 1) eCKT , for every t ∈ [0, T ] ∩ [0, ω[ .

Then, since H is periodic in q, we have that there is a constant C > 0 depending
only on U , V and |p0|, such that

|q̇(t)| ≤ C , for every t ∈ [0, T ] ∩ [0, ω[ .

Hence,
|q(t)| ≤ |q0|+ CT , for every t ∈ [0, T ] ∩ [0, ω[ .

This implies that the solution (q(t), p(t)) must be defined on [0, T ], i.e., that
ω > T .

Here is our first result.

Theorem 2. Let Assumptions 1, 2, 3 and 4 hold. Assume that there exist
a < b and ρ > 0 with the following property: For any two continuous functions
U, V : [0, T ]→ R satisfying (5), the solutions of system (6) are such that{

q(T )− q(0) < 0 , when p(0) ∈ [a− ρ, a] ,

q(T )− q(0) > 0 , when p(0) ∈ [b, b+ ρ] .
(7)

Then, there exist at least two geometrically distinct T -periodic solutions of sys-
tem (2), such that p(0) ∈ ]a, b[ and

α ≤ u(t) ≤ β , for every t ∈ R . (8)

The same conclusion holds if (7) is replaced by{
q(T )− q(0) > 0 , when p(0) ∈ [a− ρ, a] ,

q(T )− q(0) < 0 , when p(0) ∈ [b, b+ ρ] .

3 The proof of Theorem 2
The proof is based on [18, Corollary 2.4], and will be divided in two steps. In
the first step we analyze the dynamics focusing on the (u, v) variables. In the
second one, we draw our attention on the (q, p) variables.
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3.1 Working with the (u, v) coordinates
Let us focus our attention on the couple of variables (u, v). At first, we are going
to modify the original problem (2) outside some suitably chosen set V ⊆ R4.
We will then prove that all the T -periodic solutions of the modified system must
be such that z(t) = (q(t), p(t), u(t), v(t)) ∈ V for every t ∈ [0, T ]; hence, such
solutions will solve the original problem (2), too.

Assumption 3 permits us to apply the reasoning in [29, Theorem 3.1] (see
also [20, Lemma 15]) in order to find two continuously differentiable functions
γ± : R→ R satisfying

γ−(s) < −d < d < γ+(s) , (9)

for every s ∈ [α− δ, β + δ], and

−∂uH
(
t, q, p, u, γ+(u)

)
> ∂vH

(
t, q, p, u, γ+(u)

)
γ′+(u) , (10)

−∂uH
(
t, q, p, u, γ−(u)

)
< ∂vH

(
t, q, p, u, γ−(v)

)
γ′−(u) , (11)

for every (t, q, p, u) ∈ [0, T ] × [0, 2π] × R × [α − δ, β + δ]. Correspondingly, we
introduce the set

V = {z = (q, p, u, v) | α ≤ u ≤ β , γ−(u) < v < γ+(u)} .

Now we can choose a constant d̂ > d satisfying

−d̂ < γ−(s) < γ+(s) < d̂ ,

for every s ∈ [α− δ, β + δ].

We consider a continuously differentiable function ζ : R→ R such that

ζ(u) =


α− δ , if u ≤ α− 2δ ,

u , if α ≤ u ≤ β ,
β + δ , if u ≥ β + 2δ ,

(12)

and
ζ ′(u) > 0 , when u ∈ ]α− 2δ, β + 2δ[ . (13)

Notice that
α− δ ≤ ζ(u) ≤ β + δ , for every u ∈ R .

Then, we introduce a continuously differentiable function χ : [α−δ, β+δ]×R→
R satisfying the following properties:

χ(u, v) =


−d̂ , if v < −d̂− 1 ,

v , if γ−(u) ≤ v ≤ γ+(u) ,

d̂ , if v > d̂+ 1 .

(14)

Moreover, we assume that

∂vχ(u, v) > 0 , when |v| < d̂+ 1 . (15)

Let Ĥ : R× R4 → R be defined as

Ĥ(t, q, p, u, v) = H
(
t, q, p, ζ(u), χ(ζ(u), v)

)
+ H (u, v) ,
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with

H (u, v) =
1

2

[[
(v − d̂ )+

]2
+
[
(v + d̂ )−

]2
−
[
(u− β)+

]2 − [(u− α)−
]2]

,

where, as usual, ξ+ = max{ξ, 0} and ξ− = max{−ξ, 0}. We consider the modi-
fied Hamiltonian system{

q̇ = ∂pĤ(t, q, p, u, v) , ṗ = −∂qĤ(t, q, p, u, v) ,

u̇ = ∂vĤ(t, q, p, u, v) , v̇ = −∂uĤ(t, q, p, u, v) .
(16)

Notice that Ĥ = H in the closure of the set V. Our aim is to prove the following
a priori bound.

Lemma 3. If z = (q, p, u, v) is a T -periodic solution of (16), then z(t) ∈ V for
every t ∈ [0, T ], hence it solves (2).

The proof of this lemma needs some preparation, hence it will be provided
at the end of the section.

In what follows, for every z = (q, p, u, v) we introduce the notation

z̃ = (q, p, ζ(u), χ(ζ(u), v)) .

We can explicitly compute

∂qĤ(t, z) = ∂qH
(
t, z̃) , ∂pĤ(t, z) = ∂pH

(
t, z̃) , (17)

∂uĤ(t, z) = [∂uH
(
t, z̃) + ∂vH

(
t, z̃) ∂uχ(ζ(u), v)] ζ ′(u) + ∂uH (u, v) , (18)

∂vĤ(t, z) = ∂vH
(
t, z̃) ∂vχ(ζ(u), v) + ∂vH (u, v) . (19)

Proposition 4. Any solution of (16) satisfies, for every t0 ∈ R,

[u(t0) < α and v(t0) = 0] ⇒ v̇(t0) < 0 ,

[u(t0) > β and v(t0) = 0] ⇒ v̇(t0) > 0 .

Proof. We first note that, as an immediate consequence of (3), we have

∂vH(t, q, p, u, 0) = 0 , when u ∈ [α− δ, α] ∪ [β, β + δ] . (20)

We prove the first implication, the second one being similar. Let t0 ∈ R be
such that u(t0) < α and v(t0) = 0. Let z(t) be a solution of (16), with z(t0) =
(q(t0), p(t0), u(t0), 0). Then, z̃(t0) = (q(t0), p(t0), ζ(u(t0)), 0). By (18) and (20)
we have that

v̇(t0) = −∂uĤ(t0, z(t0)) = −∂uH(t0, z̃(t0))ζ ′(u(t0))− ∂uH (u(t0), 0)

= −∂uH(t0, z̃(t0))ζ ′(u(t0)) + u(t0)− α , (21)

so that
v̇(t0) < −∂uH(t0, z̃(t0))ζ ′(u(t0)) .

Then, (4) and (13) give the negative sign when u(t0) ∈ ]α − 2δ, α[ . On the
other hand, ζ ′(u) vanishes when u ≤ α − 2δ and the conclusion easily follows
from (21).
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Proposition 5. Any solution of (16) satisfies, for every t0 ∈ R,

[u(t0) ≤ α and v(t0) < 0] ⇒ u̇(t0) < 0 ,

[u(t0) ≤ α and v(t0) > 0] ⇒ u̇(t0) > 0 ,

[u(t0) ≥ β and v(t0) < 0] ⇒ u̇(t0) < 0 ,

[u(t0) ≥ β and v(t0) > 0] ⇒ u̇(t0) > 0 .

Proof. Let us prove the first assertion, the proof of the others being similar. Let
t0 ∈ R be such that u(t0) ≤ α and v(t0) < 0. Since ζ(u) ∈ [α− δ, α] when u ≤ α
and χ(u, v) < 0 when v < 0, recalling (3), (15), and (19), if −d̂− 1 < v(t0) < 0
we get

u̇(t0) = ∂vH(t0, z̃(t0))∂vχ(ζ(u(t0)), v(t0))− (v(t0) + d̂ )−

≤ ∂vH(t0, z̃(t0))∂vχ(ζ(u(t0)), v(t0)) < 0 .

On the other hand, if v(t0) ≤ −d̂ − 1, then ∂vχ(ζ(u(t0)), v(t0)) = 0, so that
u̇(t0) = −(v(t0) + d̂ )− < 0.

We define the open sets

ANW = {z ∈ R4 | u < α , v > 0} , ANE = {z ∈ R4 | u > β , v > 0} ,
ASW = {z ∈ R4 | u < α , v < 0} , ASE = {z ∈ R4 | u > β , v < 0} .

As a consequence of the previous propositions, the following can be easily
proved.

Proposition 6. For every solution z of (16) the following assertions hold:

if there is t0 ∈ R such that z(t0) ∈ ANW then z(t) ∈ ANW for every t < t0 ,

if there is t0 ∈ R such that z(t0) ∈ ANE then z(t) ∈ ANE for every t > t0 ,

if there is t0 ∈ R such that z(t0) ∈ ASW then z(t) ∈ ASW for every t > t0 ,

if there is t0 ∈ R such that z(t0) ∈ ASE then z(t) ∈ ASE for every t < t0 .

Hence, ANE and ASW are positively invariant sets, while ASE and ANW are
negatively invariant.

Proposition 7. Any solution of (16) satisfies, for every t0 ∈ R,

[α ≤ u(t0) ≤ β and v(t0) > d] ⇒ u̇(t0) > 0 ,

[α ≤ u(t0) ≤ β and v(t0) < −d] ⇒ u̇(t0) < 0 .

Proof. Let us prove the first implication. Since u(t0) ∈ [α, β] and v(t0) > d, we
have that ζ(u(t0)) = u(t0) and

u̇(t0) = ∂vH(t0, z̃(t0))∂vχ(u(t0), v(t0)) + (v(t0)− d̂ )+ .

If v(t0) ≥ d̂+ 1, then ∂vχ(u(t0), v(t0)) = 0 and (v(t0)− d̂ )+ > 0. On the other
hand, if d < v(t0) < d̂ + 1, then ∂vχ(u(t0), v(t0)) > 0 and (v(t0) − d̂ )+ ≥ 0;
moreover, ∂vH(t0, z̃(t0)) > 0 by Assumption 3, thus proving that u̇(t0) > 0 in
both cases.
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Proof of Lemma 3. Let z be a T -periodic solution of (16). We begin proving
that α ≤ u(t) ≤ β for every t. By contradiction, assume that there exists t0 ∈ R
such that u(t0) > β. If z(t0) ∈ ANE , by Proposition 6, since the function
is periodic, z(t) ∈ ANE for every t ∈ R. Then, we get a contradiction using
Proposition 5. Similarly we cannot have z(t0) ∈ ASE . Finally, if v(t0) = 0,
Proposition 4 takes us to the previous contradicting situations. We have thus
proved that u(t) ≤ β for every t ∈ R. A similar argument proves that u(t) ≥ α
for every t ∈ R.

Now we show that v(t) < γ+(u(t)) for every t ∈ R. Let us define the function
G+(t) = v(t) − γ+(u(t)). By Proposition 7, it cannot be that G+(t) > 0 for
every t ∈ [0, T ]. Assume by contradiction the existence of t0 ∈ R such that
G+(t0) = 0. Then, since ∇H(t, z) = ∇Ĥ(t, z) for z in the closure of V, by (10)
we have

G′+(t0) = −∂uH(t0, z(t0))− γ′+(u(t0)) ∂vH(t0, z(t0)) > 0 ,

where z(t0) =
(
q(t0), p(t0), u(t0), γ+(u(t0))

)
. This implies that G+(t) > 0 for

every t > t0, which is in contradiction with the periodicity of z. We have thus
proved that G+(t) < 0 for every t ∈ [0, T ].

We can similarly prove that γ−(u(t)) < v(t) for every t ∈ R, using (11).

3.2 Working with the (q, p) coordinates
Let us fix K > 0 such that

|χ(ζ(u), v)| < K , for every (u, v) ∈ R2 .

Let z(t) = (q(t), p(t), u(t), v(t)) be a solution of system (16) starting at time
t = 0 with p(0) ∈ [a − ρ, b + ρ]. This solution is defined on a maximal interval
of future existence [0, ω[ . By Assumption 4, recalling (17),

|ṗ(t)| ≤ CK(|p(t)|+ 1) , for every t ∈ [0, ω[ , (22)

hence, setting
c = (max{|a|, |b|}+ ρ+ 1) eCKT , (23)

by Gronwall Lemma we have that

|p(t)| ≤ c , for every t ∈ [0, T ] ∩ [0, ω[ . (24)

Let η : R→ R be a C∞-smooth nonincreasing function such that

η(s) =

{
1 , if s ≤ c ,
0 , if s ≥ c+ 1 .

(25)

We can rewrite the Hamiltonian Ĥ as

Ĥ(t, q, p, u, v) =
1

2
(v2 − u2) + ĥ(t, q, p, u, v) , (26)

and define the new Hamiltonian function

H̃(t, q, p, u, v) =
1

2
(v2 − u2) + h̃(t, q, p, u, v) , (27)
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where
h̃(t, q, p, u, v) = η(|p|) ĥ(t, q, p, u, v) .

Notice that

|p| ≥ c+ 1 ⇒ h̃(t, q, p, u, v) = 0 for every (t, q, u, v) ∈ R× R3 .

The Hamiltonian H̃ induces the system{
q̇ = ∂ph̃(t, q, p, u, v) , ṗ = −∂qh̃(t, q, p, u, v) ,

u̇ = v + ∂vh̃(t, q, p, u, v) , v̇ = u− ∂uh̃(t, q, p, u, v) .
(28)

Since the Hamiltonian function is periodic in q and the functions ζ, ζ ′, χ, ∇χ,
η and η′ are all bounded, there exists a constant C̃ > 0 such that∣∣∂qh̃(t, z)

∣∣+
∣∣∂ph̃(t, z)

∣∣+
∣∣∂uh̃(t, z)

∣∣+
∣∣∂vh̃(t, z)

∣∣ ≤ C̃ ,
for every (t, z) ∈ R × R4. Hence, the Hamiltonian function H̃ is the sum of a
nonresonant quadratic term and a function with bounded gradient ∇h̃(t, z). In
particular, all solutions of (28) are globally defined on [0, T ].

We now verify the twist condition for system (28). Let z = (q, p, u, v) be a
solution of (28) such that p(0) ∈ [a− ρ, b+ ρ]. As long as |p(t)| ≤ c, we have

|ṗ(t)| = |∂qH(t, q(t), p(t), ζ(u(t)), χ(ζ(u(t)), v(t)))| ≤ CK(|p(t)|+ 1) .

Hence, by Gronwall Lemma, we conclude that |p(t)| ≤ c for every t ∈ [0, T ].
So, z = (q, p, u, v) is a solution of (16). Then, (q, p) is a solution of (6) with
U(t) = ζ(u(t)) and V (t) = χ(ζ(u(t)), v(t)), condition (5) is verified and, by (7),{

p(0) ∈ [a− ρ, a] ⇒ q(T ) < q(0) ,

p(0) ∈ [b, b+ ρ] ⇒ q(T ) > q(0) .

Hence, we can apply [18, Corollary 2.4] so to find two T -periodic solutions
z = (q, p, u, v) of (28) such that p(0) ∈ ]a, b[ . By the above estimates, these are
indeed solutions of (16) and, recalling Lemma 3, we conclude that they are the
T -periodic solutions of the original system (2) we were looking for.

4 Some variants of Theorem 2
Let us start with two observations.

Remark 8. Assumption 2 can be generalized by asking that there further exist
vα, vβ such that{

(v − vα) ∂vH(t, q, p, u, v) > 0 , when u ∈ [α− δ, α] and v 6= vα ,

(v − vβ) ∂vH(t, q, p, u, v) > 0 , when u ∈ [β, β + δ] and v 6= vβ ,

and {
∂uH(t, q, p, u, vα) ≥ 0 , when u ∈ [α− δ, α] ,

∂uH(t, q, p, u, vβ) ≤ 0 , when u ∈ [β, β + δ] .
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Remark 9. Instead of a fixed interval [a, b], we could have a varying interval
[a(q), b(q)], where a, b : R→ R are continuous 2π-periodic functions. Indeed, if
a and b are continuously differentiable, this case can be reduced to the previous
one by the symplectic change of variables

Ψ(q, p, u, v) =

(∫ q

0

b(s)− a(s)

2
ds ,

2p− b(q)− a(q)

b(q)− a(q)
, u, v

)
,

cf. [43, Exercise 1, p. 132]. If a and b are just continuous, they can be re-
placed by smooth functions by the use of Fejer Theorem. Notice that the new
Hamiltonian H̃(t, q̃, p̃, u, v) = H(t,Ψ−1(q̃, p̃, u, v)) is periodic in q̃, with period
τ := 1

2

∫ 2π

0
(b(s)− a(s)) ds.

We now propose a variant of our result which is more in the spirit of the
Poincaré–Birkhoff Theorem as originally stated by Poincaré [46]. We first recall
the definition of rotation number. For t1 < t2, let η : [t1, t2] → R2 be a
continuous curve such that η(t) 6= (0, 0) for every t ∈ [t1, t2]. Writing η(t) =
ρ(t)(cos θ(t), sin θ(t)), with ρ : R→ ]0,+∞[ and θ : R→ R continuous, we define

Rot (η; [t1, t2]) = −θ(t2)− θ(t1)

2π
.

We need to suitably modify Assumption 4, in the following way

Assumption 5 (Energy growth). For every K > 0 there is a constant CK > 0
such that∣∣q ∂pH(t, q, p, u, v)− p ∂qH(t, q, p, u, v)

∣∣ ≤ CK(q2 + p2 + 1) ,

when u ∈ [α− δ, β + δ] and |v| ≤ K .

In the sequel, we denote by D(Γ) the open bounded region delimited by a
planar Jordan curve Γ.

Theorem 10. Let Assumptions 2, 3, and 5 hold. Let k be an integer and
assume that there exist ρ > 0, ρ̃ > 0 and two planar Jordan curves Γ1, Γ2,
strictly star-shaped with respect to the origin, with

0 ∈ D(Γ1) ⊆ D(Γ1) ⊆ D(Γ2) ,

such that, for any two continuous functions U, V : [0, T ] → R satisfying (5),
the solutions of system (6) with dist

(
(q(0), p(0)),D(Γ2) \ D(Γ1)

)
≤ ρ which are

defined on [0, T ] satisfy

q(t)2 + p(t)2 ≥ ρ̃ , for every t ∈ [0, T ] ,

and, if (q(0), p(0)) /∈ D(Γ2) \ D(Γ1),

Rot ((q, p); [0, T ]) < k , when dist
(
(q(0), p(0)),Γ1

)
≤ ρ ,

Rot ((q, p); [0, T ]) > k , when dist
(
(q(0), p(0)),Γ2

)
≤ ρ .

(29)

Then, the Hamiltonian system (2) has at least two T -periodic solutions zi(t),
i = 1, 2, satisfying (8), with

(qi(0), pi(0)) ∈ D(Γ2) \ D(Γ1) ,
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and
Rot ((qi, pi); [0, T ]) = k.

The same is true if (29) is replaced by

Rot ((q, p); [0, T ]) > k , when dist
(
(q(0), p(0)),Γ1

)
≤ ρ ,

Rot ((q, p); [0, T ]) < k , when dist
(
(q(0), p(0)),Γ2

)
≤ ρ .

Proof. At first, let R0 > 0 be such that

dist
(
(q(0), p(0)),D(Γ2)

)
≤ ρ ⇒ q(0)2 + p(0)2 ≤ R0 . (30)

We modify the Hamiltonian H introducing the function Ĥ, arguing as in Sec-
tion 3.1, thus finding the a priori bound in Lemma 3. Let K > 0 be such
that

|χ(ζ(u), v)| < K , for every (u, v) ∈ R2 .

Let z(t) = (q(t), p(t), u(t), v(t)) be any solution of system (16) starting at time
t = 0 from a point z(0) satisfying q(0)2 + p(0)2 ≤ R0. This solution is defined
on a maximal interval of future existence [0, ω[ . Defining r(t) = q(t)2 + p(t)2,
by Assumption 5,

|ṙ(t)| ≤ CK(r(t) + 1) , for every t ∈ [0, ω[ ,

hence, setting
c = (R0 + 1) eCKT ,

by Gronwall Lemma we have that

r(t) ≤ c , for every t ∈ [0, T ] ∩ [0, ω[ .

Let η be the function introduced in (25). Arguing as above, we can write Ĥ as
in (26) and define H̃ as in (27), where now

h̃(t, q, p, u, v) = η(q2 + p2) ĥ(t, q, p, u, v) .

The Hamiltonian function H̃ induces the system (28), whose solutions are glob-
ally defined on [0, T ].

Let z(t) = (q(t), p(t), u(t), v(t)) be any solution of system (28) with starting
point z(0) satisfying dist

(
(q(0), p(0)),D(Γ2) \ D(Γ1)

)
≤ ρ. Set U(t) = ζ(u(t))

and V (t) = χ(ζ(u(t), v(t)). Notice that (5) is satisfied. It can be verified that
r(t) = q(t)2 + p(t)2 ≤ c for every t ∈ [0, T ], with the same constant c as above.
Therefore, the couple (q(t), p(t)) is a solution of (6). So, by the assumption of
the theorem, we get

r(t) ≥ ρ̃ , for every t ∈ [0, T ] . (31)

We now introduce a new smooth cut-off increasing function η̃ : R→ [0, 1] such
that

η̃(s) =

{
0 , if r ≤ ρ̃/2 ,
1 , if r ≥ ρ̃ .

and the new Hamiltonian function

H(t, q, p, u, v) =
1

2
(v2 − u2) + h(t, q, p, u, v) ,

where h(t, q, p, u, v) = η̃(q2 + p2)h̃(t, q, p, u, v).
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For the new Hamiltonian system Jż = ∇H(t, z), we introduce the symplectic
change of variables

q(t) =
√

2r(t) cos
(
θ(t)− 2π

T kt
)
, p(t) =

√
2r(t) sin

(
θ(t)− 2π

T kt
)
,

so to get a Hamiltonian system{
θ̇ = ∂rH(t, θ, r, u, v) , ṙ = −∂θH(t, θ, r, u, v) ,

u̇ = ∂vH(t, θ, r, u, v) , v̇ = −∂uH(t, θ, r, u, v) ,
(32)

defined for r > 0. This system can now be extended also for r ≤ 0, preserving
the regularity. Now, the periodicity Assumption 1 is recovered in the vari-
able θ, while Assumption 5 implies that the linear growth Assumption 4 holds
for the new variables (θ, r) instead of (q, p). Then Theorem 2 applies, in view
of Remark 9, providing the existence of two geometrically distinct T -periodic
solutions of (32), which are then translated, by the inverse change of variables
(θ, r) 7→ (q, p), into the T -periodic solutions of (2) we are looking for.

5 Examples of applications
Both Theorem 2 and Theorem 10 open the way to a multitude of applications.
We will just sketch here a few.

Let us consider for example a system of the type{
−q̈ = g(t, q)− e(t) + ∂qP (t, q, u) ,

−ü = −f(u) + ∂uP (t, q, u) ,
(33)

where all functions are continuous and T -periodic in t, with
∫ T
0
e(t) dt = 0. Let

P (t, q, u) be 2π-periodic in q and continuously differentiable in (q, u). Assume
moreover g(t, q) to be 2π-periodic in q, with

∫ 2π

0
g(t, s) ds = 0.

Then system (33) is of the type (2), with

H(t, q, p, u, v) =
1

2
(p+ E(t))2 +

1

2
v2 +

∫ q

0

g(t, s) ds−
∫ u

0

f(σ) dσ + P (t, q, u) ,

where E(t) =
∫ t
0
e(s) ds. Precisely, we have{
q̇ = p+ E(t) , ṗ = −g(t, q)− ∂qP (t, q, u) ,

u̇ = v , v̇ = f(u)− ∂uP (t, q, u) .

Corollary 11. In the above setting, assume moreover that there exist two con-
stants α < β such that

f(α) < ∂uP (t, q, α), ∂uP (t, q, β) < f(β), (34)

for all (t, q) ∈ [0, T ]× [0, 2π]. Then, system (33) has at least two geometrically
distinct T -periodic solutions (q, u), with α ≤ u ≤ β.
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Proof. Notice that H(t, q, p, u, v) is 2π-periodic in q. By continuity, there is a
sufficiently small δ > 0 such that Assumption 2 is satisfied. Also Assumption 3
is easily verified, taking f(s) = s and ϕ(s) constant. Moreover, there exist
R > 0 with the following property: For any continuous function U : [0, T ]→ R
such that α− δ ≤ U(t) ≤ β + δ for every t ∈ [0, T ], the solutions of

−q̈ = g(t, q)− e(t) + ∂qP (t, q, U(t))

satisfy {
q(T )− q(0) < 0 , when q̇(0) < −R ,
q(T )− q(0) > 0 , when q̇(0) > R .

Then, taking b = −a = R+ ‖E‖∞, Theorem 2 applies.

As an immediate consequence, we have the following.

Corollary 12. The system of coupled pendulums of the form{
q̈ + a sin q = e(t)− ∂qP (t, q, u),

ü+ b sinu = −∂uP (t, q, u),
(35)

where P (t, q, u) and e(t) are as above, has at least two geometrically distinct
T -periodic solutions, for any a > 0, if ‖∂uP‖∞ < b.

We thus extend two classical results on the pendulum equation (cf. [42]).
The first one states that, if e(t) is T -periodic and

∫ T
0
e(t) dt = 0, then

q̈ + a sin q = e(t)

has at least two geometrically distinct T -periodic solutions, for any a > 0. The
second one states that, if ê(t) is T -periodic and ‖ê‖∞ ≤ b, then

ü+ b sinu = ê(t)

has at least two geometrically distinct T -periodic solutions.

Here are some other possible examples of applications.

1. Let f(u) = |u|`−1u, with ` > 0, and let P be a function as above, and such
that

lim
u→±∞

∂uP (t, q, u)

|u|`
= 0 , uniformly in (t, q) ∈ [0, T ]× [0, 2π] .

Then, there exist two constants β = −α > 0 large enough such that (34) is
satisfied. In particular, if ∂uP is bounded, it is enough to take

α < −‖∂uP‖1/`∞ , β > ‖∂uP‖1/`∞ .

Notice that this includes, e.g., the case of ∂uP being periodic in u. Hence, in
this situation, there exist at least two geometrically distinct T -periodic solutions
of system (33).
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2. Let f(u) = |u|` sin(u), with ` > 0, and let P be as in the previous exam-
ple. Then (34) is satisfied for an infinite number of positive and negative pairs
(αi, βi). Hence, there exist infinitely many T -periodic solutions of system (33)
with positive u component and infinitely many T -periodic solutions with nega-
tive u component.

3. Consider f(u) = arctan(u). Then, if ∂uP is bounded, with

‖∂uP‖∞ <
π

2
,

there exist at least two geometrically distinct T -periodic solutions of system (33).
It is sufficient to take β = −α > 0 large enough.

When P (t, q, u) is not periodic in q, we can appeal to Theorem 10. Consider
for example the system{

−q̈ = g(q) + ∂qP (t, q, u) ,

−ü = −f(u) + ∂uP (t, q, u) ,
(36)

where P (t, q, u) is continuously differentiable in (q, u). We can prove the follow-
ing.

Corollary 13. Assume that

lim
|q|→∞

g(q)

q
= +∞ , (37)

and that ∂qP is bounded. If there exist two constants α < β such that (34)
holds, then system (36) has infinitely-many T -periodic solutions.

Proof. We will briefly explain the main arguments. At first we modify sys-
tem (36) by introducing the functions

f̂(u) = (u− β)+ − (u− α)− + f(ζ(u))ζ ′(u) ,

P̂ (t, q, u) = P (t, q, ζ(u)) ,

thus obtaining {
q̇ = p , ṗ = −g(q)− ∂qP̂ (t, q, u) ,

u̇ = v , v̇ = f̂(u)− ∂uP̂ (t, q, u) ,
(38)

and denoting by Ĥ(t, z) = 1
2 (v2 − u2) + ĥ(t, z) its Hamiltonian, for a suitable

choice of ĥ. Let B(0, R) ⊆ R2 be the ball of radius R > 0 centered at the origin,
and set BR := B(0, R) × R2. Then, following the arguments in [13, Section 2],
we can prove that any solution of system (38) is globally defined in the interval
[0, T ]. Moreover, by the elastic property stated in [13, Lemma 1] we can find
r3 > r2 > r1 > 0 such that any solution z(t) = (q(t), p(t), u(t), v(t)) of (38)
starting at t = 0 from a point belonging to ∂Br2 satisfies z(t) ∈ Br3\Br1 for every
t ∈ [0, T ]. For such solutions we can find k > 0 such that Rot ((q, p); [0, T ]) < k.

Let us fix any k′ ≥ k. Assumption (37) provides the existence of R1 > 0
such that every solution z of (38), with z(t) /∈ BR1 for any t ∈ [0, T ], satisfies
Rot ((q, p); [0, T ]) > k′. Then, using again [13, Lemma 1], we can find R3 >
R2 > R1 such that any solution z of (38) starting at t = 0 from a point
belonging to ∂BR2

satisfies z(t) ∈ BR3
\BR1

for every t ∈ [0, T ]. Hence, we have
for such solutions Rot ((q, p); [0, T ]) > k′.
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Now, we introduce a smooth cut-off function η̂ : [0,+∞[→ [0, 1] such that

η̂(r) =

{
0 if r ∈ [0, r1/2] ∪ [2R3,+∞[ ,

1 if r ∈ [r1, R3] .

and the new Hamiltonian H̃(t, z) = 1
2 (v2 − u2) + h̃(t, z) where now

h̃(t, z) = η̂
(√

q(t)2 + p(t)2
)
ĥ(t, z) .

Finally, we are able to apply Theorem 10 to system (38) thus obtaining two
T -periodic solutions satisfying Rot ((q, p); [0, T ]) = k′ with starting point z(0) ∈
BR2
\ Br2 . Then, we can easily see that they are indeed solutions of (36).
Since the above construction can be made for every k′ ≥ k, we have proved

the existence of infinitely many T -periodic solutions.

We thus extend a result by Ding and Zanolin [13], stating that, if g(q)
satisfies (37) and e(t) is T -periodic, the scalar equation

q̈ + g(q) = e(t)

has infinitely-many T -periodic solutions. A similar result for system (33) re-
mains an open problem, because global existence of the solutions is not guar-
anteed. However, one could follow the lines of [25, 34, 35, 36] by assuming that
the first equation has 0 as an equilibrium point, and then prove that there are
infinitely many T -periodic solutions.

Whenever the function g has a sublinear growth at infinity, the existence of
periodic solutions whose minimal period is an arbitrarily large integer multiple
of T has been investigated in [14]. These are called subharmonic solutions. We
could also state such kind of result here, but we avoid the details, for briefness.

Another situation where our results can be applied is when the system in
(q, p) has a different rotational behaviour at zero and at infinity. There are many
papers dealing with such a problem (see, e.g., [39] and the references therein).
This type of situation can be also exploited when dealing with some kind of
asymmetric oscillators as, e.g., in [7], where the so-called jumping nonlinearities
are treated. We do not enter into details, again, to be brief.

6 Going to higher dimensions
We consider system (1), assuming the Hamiltonian function H : R×R2N → R to
be continuous, T -periodic in its first variable t, and continuously differentiable
with respect to its second variable z, with corresponding gradient ∇H(t, z).

For z ∈ R2N , we write z = (φ, ψ, q, p, u, v), where, for some nonnegative
integers L, M and D,

φ = (φ1, . . . , φL) ∈ RL, ψ = (ψ1, . . . , ψL) ∈ RL,
q = (q1, . . . , qM ) ∈ RM , p = (p1, . . . , pM ) ∈ RM ,
u = (u1, . . . , uD) ∈ RD, v = (v1, . . . , vD) ∈ RD.

Notice that one or more of these integers could be equal to zero, in which case
the corresponding group will not be taken into account; for example, if L = 0,
then φ and ψ will disappear from the list.
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Our system (1) then reads as
φ̇ = ∂ψH(t, z) , ψ̇ = −∂φH(t, z) ,

q̇ = ∂pH(t, z) , ṗ = −∂qH(t, z) ,

u̇ = ∂vH(t, z) , v̇ = −∂uH(t, z) .

(39)

Let us introduce our assumptions.

Assumption 6 (Periodicity). The function H(t, z) is periodic in each of the
variables included in φ, ψ, q.

To fix the ideas, we assume that all periods are equal to 2π. The total number
of variables in which our Hamiltonian function is 2π-periodic is thus 2L + M .
Under this setting, T -periodic solutions z(t) of (1) appear in equivalence classes
made of those solutions whose components in φ(t), ψ(t), q(t), differ by an integer
multiple of 2π. We say that two T -periodic solutions are geometrically distinct
if they do not belong to the same equivalence class.

In the sequel, inequalities ≤ involving vectors are to be interpreted compo-
nentwise. Moreover, for any σ ∈ R, we use the notation σ̄ = (σ, . . . , σ) ∈ RD.

Assumption 7 (Lower and upper solutions). There exist some constants δ >
0, α = (α1, . . . , αD) and β = (β1, . . . , βD) with α ≤ β, having the following
property. If α− δ̄ ≤ u ≤ β + δ̄, then, for every j ∈ {1, . . . , D},

vj ∂vjH(t, z) > 0 , when uj ∈ [αj − δ, αj ] ∪ [βj , βj + δ] and vj 6= 0 ,

and {
∂uj

H(t, z) ≥ 0 , when uj ∈ [αj − δ, αj ] and vj = 0 ,

∂uj
H(t, z) ≤ 0 , when uj ∈ [βj , βj + δ] and vj = 0 .

In the sequel, the constant δ > 0 provided by Assumption 7 will be used
without further mention.

Assumption 8 (Nagumo condition). For every j ∈ {1, . . . , D} there exist dj >
0 and two continuous functions fj , ϕj : [dj ,+∞[→ ]0,+∞[ , with∫ +∞

dj

fj(s)

ϕj(s)
ds = +∞ ,

satisfying the following property. If α− δ̄ ≤ u ≤ β + δ̄, then{
∂vjH(t, z) ≥ fj(vj) , when vj ≥ dj ,

∂vjH(t, z) ≤ −fj(−vj) , when vj ≤ −dj ,

and ∣∣∂uj
H(t, z)

∣∣ ≤ ϕj(|vj |) , when |vj | ≥ dj .

Assumption 9 (Linear growth). For every K > 0 there is a constant CK > 0
with the following property. If α− δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K, then

|∂qH(t, z)| ≤ CK(|p|+ 1) .
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Adapting the argument in Remark 1, under the above assumption, for any
two continuous functions U, V : [0, T ]→ RD with

α− δ̄ ≤ U(t) ≤ β + δ̄ , for every t ∈ [0, T ] , (40)

the solutions of the system
φ̇ = ∂ψH(t, φ, ψ, q, p, U(t), V (t)) ,

ψ̇ = −∂φH(t, φ, ψ, q, p, U(t), V (t)) ,

q̇ = ∂pH(t, φ, ψ, q, p, U(t), V (t)) ,

ṗ = −∂qH(t, φ, ψ, q, p, U(t), V (t)) ,

(41)

are defined on [0, T ] and, setting K = ‖V ‖∞,

|p(t)| ≤ (|p(0)|+ 1) eCKT , for every t ∈ [0, T ] . (42)

In the following, we consider a convex body D of RM , i.e., a closed convex
bounded set with nonempty interior. We denote by πD : RM \ D̊ → ∂D the
projection on the convex set D and by νD(ζ) the unit outward normal at ζ ∈ ∂D,
assuming that D has a smooth boundary. We say that D is strongly convex if,
for any p ∈ ∂D, the function F : D → R defined as F(η) = 〈η − p, νD(p)〉 has a
unique maximum point at η = p.

Here is our first result in this higher dimensional setting, generalizing The-
orem 2.

Theorem 14. Let Assumptions 6, 7, 8, and 9 hold. Assume that there exist
ρ > 0, a symmetric regular M ×M matrix A and a strongly convex body D
of RM , having a smooth boundary, with the following property: For any two
continuous functions U, V : [0, T ] → RD satisfying (40), the solutions of (41)
with p(0) /∈ D̊ and dist(p(0), ∂D) ≤ ρ are such that〈

q(T )− q(0) , AνD
(
πD(p(0))

)〉
> 0 .

Then, system (39) has at least 2L + M + 1 geometrically distinct T -periodic
solutions, satisfying

p(0) ∈ D̊ ,

and
α ≤ u(t) ≤ β , for every t ∈ R . (43)

7 Proof of Theorem 14
Since the arguments will be similar to those provided in Section 3, we will try
to be brief.

At first we need to suitably modify the Hamiltonian system working com-
ponentwise in the (u, v) variables.

For every j ∈ {1, . . . , D}, from Assumption 8 we can find some continuously
differentiable functions γ±j : R→ R and then d̂j > 0 such that

−d̂j < γ−j (s) < −dj , dj < γ+j (s) < d̂j ,
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for every s ∈ [αj − δ, βj + δ], satisfying

−∂uj
H
(
t, z
)
> ∂vjH

(
t, z
)
(γ+j )′(uj) , when vj = γ+j (uj) ,

−∂uj
H
(
t, z
)
< ∂vjH

(
t, z
)
(γ−j )′(uj) , when vj = γ−j (uj) ,

for every (t, z) ∈ [0, T ]× R2N with uj ∈ [αj − δ, βj + δ].

We then define γ± : RD → RD as

γ±(u) = (γ±1 (u1), . . . , γ±D(uD)) ,

and introduce the set

V = {z = (φ, ψ, q, p, u, v) | α ≤ u ≤ β , γ−(u) < v < γ+(u)} ,

recalling that we need to check the inequalities componentwise. We can then
introduce some functions ζj : R→ R and χj : [αj − δ, βj + δ]×R→ R similarly
as in (12) and (14), define

ζ(u) = (ζ1(u1), . . . , ζD(uD)) ,

χ(u, v) = (χ1(u1, v1), . . . , χD(uD, vD)) ,

and consider the modified Hamiltonian Ĥ : R× R2N → R as

Ĥ(t, φ, ψ, q, p, u, v) = H
(
t, φ, ψ, q, p, ζ(u), χ(ζ(u), v)

)
+ H (u, v) ,

with

H (u, v) =
1

2

D∑
j=1

[[
(vj−d̂j)+

]2
+
[
(vj+d̂j)

−
]2
−
[
(uj−βj)+

]2− [(uj−αj)−]2].
The modified Hamiltonian system

Jż = ∇Ĥ(t, z) (44)

complies the following a priori bound, whose proof can be given adapting the
one of Lemma 3, arguing separately on every couple of variables (uj , vj), and
verifying the validity of some analogues of Propositions 4, 5, 6, and 7.

Lemma 15. If z = (φ, ψ, q, p, u, v) is a T -periodic solution of (44), then z(t) ∈
V for every t ∈ [0, T ], hence it solves (39).

The next step involves the (q, p) variables. The reasoning in Section 3.2 can
be adapted to higher dimension. We fix K > 0 such that

|χ(ζ(u), v)| < K , for every (u, v) ∈ R2D, (45)

and, given the convex body D and the constant ρ > 0 as in the statement of
the theorem, we set

P0 = max{|p| : p ∈ D} , and c = (P0 + ρ+ 1)eCKT .
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Let z(t) be a solution of system (44) having [0, ω[ as its maximal interval of
future existence, starting with p(0) satisfying dist(p(0),D) ≤ ρ. Arguing as at
the beginning of Section 3.2, from Assumption 9 and (42), we have that

|p(t)| ≤ c , for every t ∈ [0, T ] ∩ [0, ω[ . (46)

So, we can introduce the cut-off function η as in (25) in order to change the
Hamiltonian function

Ĥ(t, z) =
1

2
(|v|2 − |u|2) + ĥ(t, z) .

into the new Hamiltonian function

H̃(t, z) =
1

2
(|v|2 − |u|2) + h̃(t, z) .

with h̃(t, z) = η(|p|) ĥ(t, z). Notice that |∇h̃(t, z)| ≤ C̃ for a certain positive
constant C̃.

Our aim is now to apply [18, Corollary 2.3] to the modified system

Jż = ∇H̃(t, z) . (47)

Any solution z = (φ, ψ, q, p, u, v) of (47) is defined on [0, T ]. As in the proof
of Theorem 2, we can prove that, if dist(p(0),D) ≤ ρ, then |p(t)| ≤ c for every
t ∈ [0, T ]. In particular it is a solution of (44). Then, if we set U(t) = ζ(u(t))
and V (t) = χ(ζ(u(t)), v(t)), we see that (φ, ψ, q, p) is a solution of (41). By the
assumption of the theorem, if the solution starts with dist(p(0), ∂D) ≤ ρ and
p(0) /∈ D̊, then 〈

q(T )− q(0) , AνD
(
πD(p(0))

)〉
> 0 . (48)

The application of [18, Corollary 2.3] provides us 2L+M + 1 geometrically
distinct T -periodic solutions of (47) satisfying p(0) ∈ D̊. Then, by the above
estimates, they are solutions of (44). Finally, from Lemma 15, these are indeed
solutions of the original Hamiltonian system (39), and they satisfy α ≤ u(t) ≤ β,
for every t ∈ R.

8 Variants in higher dimensions
Here are two variants of Theorem 14. In the first one, the twist is formulated
as an avoiding rays condition.

Theorem 16. Let Assumptions 6, 7, 8, and 9 hold. Assume that there exist
ρ > 0 and a convex body D of RM , having a smooth boundary, with the following
property: For any two continuous functions U, V : [0, T ]→ RD satisfying (40),
the solutions of system (41) with p(0) /∈ D̊ and dist(p(0), ∂D) ≤ ρ are such that

q(T )− q(0) /∈ {λνD
(
πD(p(0))

)
: λ ≥ 0} . (49)

Then, the same conclusion of Theorem 14 holds.

Proof. The argument follows the lines of the proof of Theorem 14, with the only
difference of applying [18, Corollary 2.1] instead of [18, Corollary 2.3].
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Notice that the twist condition (49) may as well be replaced by

q(T )− q(0) /∈ {λνD
(
πD(p(0))

)
: λ ≤ 0} ,

and the same conclusion of Theorem 14 still holds.

We now consider the case when D is a M -cell, namely

D = [a1, b1]× · · · × [aM , bM ] .

Theorem 17. Let Assumptions 6, 7, 8, and 9 hold. Assume that there exist ρ >
0 and a M -tuple σ = (σ1, . . . , σM ) ∈ {−1, 1}M , with the following property: For
any two continuous functions U, V : [0, T ] → RD satisfying (40), the solutions
of (41) with p(0) /∈ D̊ and dist(p(0), ∂D) ≤ ρ are such that, for every i ∈
{1, . . . ,M}, {

σi(qi(T )− qi(0)) < 0 , when pi(0) ∈ [ai − ρ, ai] ,

σi(qi(T )− qi(0)) > 0 , when pi(0) ∈ [bi, bi + ρ] .

Then, the same conclusion of Theorem 14 holds.

Proof. Again the proof is similar to the one of Theorem 14, just applying [18,
Corollary 2.4] instead of [18, Corollary 2.3].

Remark 18. As noticed in Remark 9, instead of the fixed intervals [ai, bi]
defining the M -cell D, we could have varying intervals [ai(qi), bi(qi)], where
ai, bi : R→ R are continuous 2π-periodic functions.

We now generalize Theorem 10; we thus drop the periodicity in the q-
variables, still maintaining it in the φ and ψ variables, as stated below.

Assumption 10 (Periodicity). The function H(t, z) is periodic in each of the
variables included in φ, ψ.

We also need to suitably modify Assumption 4, in the following way

Assumption 11 (Energy growth). For every K > 0 there is a constant CK > 0
such that, for every i ∈ {1, . . . ,M},∣∣qi ∂piH(t, q, p, u, v)− pi ∂qiH(t, q, p, u, v)

∣∣ ≤ CK(q2i + p2i + 1) ,

when u ∈ [α− δ, β + δ] and |v| ≤ K .

Here is the generalization of Theorem 10.

Theorem 19. Let Assumptions 7, 8, 10 and 11 hold. Let k1, . . . , kM be integers
and assume that that there exist ρ > 0, ρ̃ > 0 and, for each i ∈ {1, . . . ,M} there
exist two planar Jordan curves Γi1, Γi2, strictly star-shaped with respect to the
origin, with

0 ∈ D(Γi1) ⊆ D(Γi1) ⊆ D(Γi2) ,

such that, for any two continuous functions U, V : [0, T ] → R satisfying (40),
the solutions of system (41) with

dist
(
(qi(0), pi(0)),D(Γi2) \ D(Γi1)

)
≤ ρ for every i ∈ {1, . . . ,M}
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which are defined on [0, T ], satisfy

qi(t)
2 + pi(t)

2 ≥ ρ̃ , for every t ∈ [0, T ] ,

and, if (qi(0), pi(0)) /∈ D(Γi2) \ D(Γi1),

Rot ((qi, pi); [0, T ]) < ki , when dist
(
(qi(0), pi(0)),Γi1

)
≤ ρ ,

Rot ((qi, pi); [0, T ]) > ki , when dist
(
(qi(0), pi(0)),Γi2

)
≤ ρ .

(50)

Then, system (39) has at least 2L+M + 1 distinct T -periodic solutions

z(1)(t) , . . . , z(2L+M+1)(t) ,

satisfying (43), with

(q
(n)
i (0), p

(n)
i (0)) ∈ D(Γi2) \ D(Γi1) ,

and
Rot ((q

(n)
i , p

(n)
i ); [0, T ]) = ki ,

for every i = 1, . . . ,M and n = 1, . . . , 2L + M + 1. The same is true if, for
some i ∈ {1, . . . ,M}, assumption (50) is replaced by

Rot ((qi, pi); [0, T ]) > ki , when dist
(
(qi(0), pi(0)),Γi1

)
≤ ρ ,

Rot ((qi, pi); [0, T ]) < ki , when dist
(
(qi(0), pi(0)),Γi2

)
≤ ρ .

Proof. It is perfectly analogous to the one of Theorem 10, the only difference
being the use of Theorem 17 (and Remark 18) instead of Theorem 2.

Let us now add a further equation, and consider the more general system
φ̇ = ∂ψH(t, z) , ψ̇ = −∂φH(t, z) ,

q̇ = ∂pH(t, z) , ṗ = −∂qH(t, z) ,

u̇ = ∂vH(t, z) , v̇ = −∂uH(t, z) ,

Jẇ = ∂wH(t, z) .

(51)

Here, and in the following, the symbol J is always used as the standard sym-
plectic matrix, in different dimensions. Moreover, now z = (φ, ψ, q, p, u, v, w).
We will generalize Theorem 14. Assumptions 6, 7 and 8 will remain the same,
while Assumption 9 needs to be modified as follows.

Assumption 12 (Linear growth). Let

H(t, z) = 1
2

〈
B(t)w,w

〉
+H(t, z) ,

where the symmetric matrix B(t) is continuous, T -periodic, and such that

w(t) ≡ 0 is the only T -periodic solution of Jẇ = B(t)w .

The function H is such that for every K > 0 there is a constant CK > 0 with
the following property: If α− δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K, then

|∂qH(t, z)|+ |∂wH(t, z)| ≤ CK(|p|+ 1) .
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Under the above assumption, given any two continuous functions U, V :
[0, T ]→ RD, with

α− δ̄ ≤ U(t) ≤ β + δ̄ , for every t ∈ [0, T ] , (52)

the solutions of the system

φ̇ = ∂ψH(t, φ, ψ, q, p, U(t), V (t), w) ,

ψ̇ = −∂φH(t, φ, ψ, q, p, U(t), V (t), w) ,

q̇ = ∂pH(t, φ, ψ, q, p, U(t), V (t), w) ,

ṗ = −∂qH(t, φ, ψ, q, p, U(t), V (t), w) ,

Jẇ = ∂wH(t, φ, ψ, q, p, U(t), V (t), w) ,

(53)

are defined on [0, T ], cf. Remark 1.

Theorem 20. Let Assumptions 6, 7, 8 and 12 hold. Assume that there exist
ρ > 0, a symmetric regular M ×M matrix A and a strongly convex body D
of RM , having a smooth boundary, with the following property: For any two
continuous functions U, V : [0, T ] → RD satisfying (52), the solutions of (53)
with p(0) /∈ D̊ and dist(p(0), ∂D) ≤ ρ are such that〈

q(T )− q(0) , AνD
(
πD(p(0))

)〉
> 0 . (54)

Then, system (51) has at least 2L + M + 1 geometrically distinct T -periodic
solutions, such that p(0) ∈ D̊, and α ≤ u(t) ≤ β, for every t ∈ R.

Proof. Following the lines of the proof of Theorem 14, we can introduce a mod-
ified system ruled by a Hamiltonian function of the type

Ĥ(t, z) = 1
2

〈
B(t)w,w

〉
+

1

2
(|v|2 − |u|2) + ĥ(t, z) .

Moreover, Ĥ can be introduced so to guarantee that every T -periodic solution
of Jż = ∇Ĥ(t, z) satisfies an a priori bound as in Lemma 15, in particular
α ≤ u ≤ β. Then, from Assumption 12, we can introduce K > 0 as in (45) such
that, if α− δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K, then

|∂qĥ(t, z)|+ |∂wĥ(t, z)| ≤ ĈK(|p|+ 1) .

Hence, we can find a constant c > 0 such that any solution of Jż = ∇Ĥ(t, z)
starting with z(0) satisfying dist(p(0),D) ≤ ρ is such that (46) holds.

Again, we can introduce the cut-off function η, as in (25), and the Hamilto-
nian function

H̃(t, z) = 1
2

〈
B(t)w,w

〉
+

1

2
(|v|2 − |u|2) + h̃(t, z) ,

where h̃(t, z) = η(|p|)ĥ(t, z). Using Assumption 12 we get

|∇h̃(t, z)| ≤ C̃ ,

for a certain positive constant C̃. We can rewrite the previous Hamiltonian as

H̃(t, z) = 1
2

〈
M(t)

(
w, (u, v)

)
,
(
w, (u, v)

)〉
+ h̃(t, z) ,
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where
M(t)

(
w, (u, v)

)
=
(
B(t)w, (−u, v)

)
.

Our aim is to apply [18, Corollary 2.3] to the modified system Jż = ∇H̃(t, z).
We easily verify the nonresonance condition

ω(t) ≡ 0 is the only T -periodic solution of Jω̇ = M(t)ω ,

where ω = (w, (u, v)).
We finally verify, with the usual argument, that any solution z of the previous

system with 0 < dist(p(0),D) ≤ ρ is such that

〈q(T )− q(0),Ap(0)〉 > 0 . (55)

The application of [18, Corollary 2.3] provides us 2L+M + 1 geometrically
distinct T -periodic solutions of Jż = ∇H̃(t, z) satisfying p(0) ∈ D̊. Then, as
in the previous proofs we end showing that they are solutions of (51), too, and
they satisfy α ≤ u(t) ≤ β, for every t ∈ R.

Clearly enough, the twist condition (54) could be replaced by an avoiding
rays condition, as in Theorem 16, or by a sign condition on the edges of an
M -cell, like in Theorem 17. Also, we could provide a statement on an annu-
lus, similarly as in Theorem 19. Or even some combination of these could be
considered. We avoid the details, for briefness.

9 Examples in higher dimensions
In this section we just briefly mention how the examples given in Section 5
generalize to higher dimensions applying the results of Sections 6 and 8. To this
aim, consider a system of the form

φ̇ = ∂ψP (t, φ, ψ, q, u) , ψ̇ = −∂φP (t, φ, ψ, q, u) ,

−q̈i = gi(t, qi)− ei(t) + ∂qiP (t, φ, ψ, q, u) , i = 1, . . . ,M,

−üj = −hj(uj) + ∂ujP (t, φ, ψ, q, u) , j = 1, . . . , D,

(56)

where all functions are continuous and T -periodic in t. For simplicity, we assume
that P (t, φ, ψ, q, u) is 2π-periodic in each of the variables included in φ, ψ and q,
so, due to this, we fix an arbitrary cube in R2L+M of length [0, 2π], denoting it
by Θ. Moreover, let P (t, φ, ψ, q, u) be continuously differentiable in (φ, ψ, q, u)
and assume that, for every i ∈ {1, . . . ,M},∫ T

0

ei(t)dt = 0 and
∫ 2π

0

gi(t, s)ds = 0 .

Then system (56) is of the type (39), with

H(t, z) =
1

2
|p+ E(t)|2 +

1

2
|v|2 +

M∑
i=1

∫ qi

0

g(t, s) ds

−
D∑
j=1

∫ uj

0

hj(σ) dσ + P (t, φ, ψ, q, u) ,

where z = (φ, ψ, q, p, u, v) and E = (E1, . . . , EM ) : [0, T ] → RM is a primitive
of the field e(t) = (e1(t), . . . , eM (t)).
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Let us state the analogues of Corollaries 11 and 12.

Corollary 21. In the above setting, assume moreover that there exist two vec-
tors α, β ∈ RD, with α ≤ β, such that, for all j ∈ {1, . . . , D},

hj(αj) < ∂ujP (t, φ, ψ, q, u), when uj = αj ,

hj(βj) > ∂ujP (t, φ, ψ, q, u), when uj = βj ,
(57)

for all (t, φ, ψ, q) ∈ [0, T ] × Θ and all u ∈ RD such that α ≤ u ≤ β. Then,
system (33) has at least 2L+M + 1 geometrically distinct T -periodic solutions,
with α ≤ u ≤ β.

Proof. All the assumptions of Theorem 17 are easily verified, whence the con-
clusion.

As an immediate consequence, we have the following.

Corollary 22. The system
φ̇ = ∂ψP (t, φ, ψ, q, u) , ψ̇ = −∂φP (t, φ, ψ, q, u) ,

q̈i + ai sin qi = ei(t)− ∂qiP (t, φ, ψ, q, u) , i = 1, . . . ,M,

üj + bj sinuj = −∂uj
P (t, φ, ψ, q, u) , j = 1, . . . , D,

(58)

where P (t, φ, ψ, q, u) and e(t) are as above, has at least 2L+M+1 geometrically
distinct T -periodic solutions, for any ai > 0, if ‖∂uj

P‖∞ < bj for every j ∈
{1, . . . , D}.

All the other examples presented in Section 5 can be displayed in this more
general setting, also with a mixing of assumptions on each component. In
particular, we thus generalize, e.g., the results in [7, 8, 10, 13, 14, 25, 28, 32, 35,
36, 40, 41]. Also equations with singularities could be considered, as in [22, 26].
We will avoid entering further into details, for briefness.

A further example of application is analyzed in the next section.

10 Periodic perturbations of completely integra-
ble systems

In [3, 18], perturbations of completely integrable Hamiltonian systems were
studied (see also [19], and the references therein). We will now add an extra
term to the Hamiltonian function, involving lower and upper solutions.

We consider the system{
ϕ̇ = ∇K(I) + ε∂IP (t, ϕ, I, u) , İ = −ε∂ϕP (t, ϕ, I, u) ,

−ü = ∂uG(t, u) + ε∂uP (t, ϕ, I, u) .
(59)

Here, we have (ϕ, I) ∈ R2M and u ∈ RD. We assume that K : RM → R is
continuously differentiable and the same for G : R × RD → R with respect
to the second variable. The perturbation function P : R × R2M+D → R is
continuous, T -periodic in t, and continuously differentiable with respect to all
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the other variables, with a bounded gradient. Moreover, the function P is τi-
periodic in each ϕi, i.e., for every i ∈ {1, . . . ,M},

P (. . . , ϕi + τi, . . . ) = P (. . . , ϕi, . . . ) .

We also assume that there exist some integers m1, . . . ,mM for which

T∇K(I 0) = (m1τ1, . . . ,mMτM ) .

The expert reader will recognize that we are dealing with a completely resonant
torus. Here is our result.

Theorem 23. In the above setting, assume that there exist I 0 ∈ RM , a sym-
metric invertible M ×M matrix A and ρ̄ > 0 such that

0 < |I − I 0| ≤ ρ̄ ⇒ 〈∇K(I)−∇K(I 0),A(I − I 0)〉 > 0 . (60)

Moreover, let there exist some constants δ > 0, ς > 0, α = (α1, . . . , αD) and
β = (β1, . . . , βD) with α ≤ β, having the following property: If α−δ̄ ≤ u ≤ β+δ̄,
for every j ∈ {1, . . . , D} one has{

∂uj
G(t, u) ≥ ς , when uj ∈ [αj − δ, αj ] ,

∂ujG(t, u) ≤ −ς , when uj ∈ [βj , βj + δ] .

Then, for every σ > 0 there exists ε̄ > 0 such that, if |ε| ≤ ε̄, there are at least
M + 1 geometrically distinct solutions of system (59) satisfying

ϕ(t+ T ) = ϕ(t) + T∇K(I 0) , I(t+ T ) = I(t) ,

u(t+ T ) = u(t) , v(t+ T ) = v(t) ,

and such that

|ϕ(t)− ϕ(0)− t∇K(I0)|+ |I(t)− I0| < σ ,

and
α ≤ u(t) ≤ β ,

for every t ∈ R.

Proof. Since we are looking for solutions with I(t) in the open ball B(I0, σ), we
can suitably modify the function K outside this set and assume that it has a
bounded gradient. We perform the change of variables

q(t) = ϕ(t)− t∇K(I 0) , p(t) = I(t)− I0 ,

thus obtaining the new Hamiltonian function

H (t, q, p, u, v) = K (p) + 1
2 |v|

2 +G(t, u) + εQ(t, q, p, u) ,

where the functions

K (p) = K(I)−
〈
∇K(I 0) , I − I 0

〉
, Q(t, q, p, u) = P (t, ϕ, I, u)
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are implicitly defined. We notice that Q is periodic in q1, . . . , qM and both Q
and K have bounded gradient: so, there are CK , CQ > 0 such that

|∇K (p)| ≤ CK , |∇Q(t, q, p, u)| ≤ CQ ,

for every (t, q, p, u) ∈ [0, T ] × R2M+D. Our goal is now to prove that for every
σ > 0 there exists ε > 0 such that, if |ε| ≤ ε, there are M + 1 geometrically
distinct T -periodic solutions z = (q, p, u, v) of the system

Jż = ∇H (t, z) , (61)

satisfying max{|q(t)− q(0)| , |p(t)|} < σ and α ≤ u(t) ≤ β, for every t ∈ R.

Let us fix σ ∈ ]0, ρ[ . We are in the setting of Theorem 20. Assumptions 6, 7, 8
and 12 can be easily checked. We need to verify the twist condition (54).

Since ∇K (0) = 0, we can choose r < σ/4 such that

|p| ≤ 4r ⇒ 2T |∇K (p)| < σ , (62)

and by (60) there is ` > 0 such that

r ≤ |p| ≤ 4r ⇒ 〈∇K (p),Ap)〉 > 4` . (63)

Let us fix δ > 0 satisfying

δ < min

{
r ,

2`

CK ‖A‖

}
.

Reducing ε if necessary, every solution of (61), with |ε| ≤ ε, is such that |p(t)−
p(0)| < δ for every t ∈ [0, T ].

Let us consider a solution z of (61) with |ε| ≤ ε and initial condition sat-
isfying 2r ≤ |p(0)| ≤ 3r. Then, r ≤ |p(t)| ≤ 4r for every t ∈ [0, T ], and so,
by (63),

〈∇K (p(t)),Ap(t)〉 > 4` , for every t ∈ [0, T ] .

Reducing ε if necessary, we have that

〈∂pH(t, z(t)),Ap(0)〉 =

= 〈∇K (p(t)),Ap(t)〉 − 〈∇K (p(t)),A(p(t)− p(0))〉+ ε〈∂pQ(t, z(t)),Ap(0))〉
> 4`− CK ‖A‖δ − 3εCQ‖A‖r > ` .

Integrating the previous estimate in the interval [0, T ], we get

〈q(T )− q(0),Ap(0)〉 > `T > 0 .

We can thus apply Theorem 20, choosing D = B(0, 2r) and ρ = r. We have
that

|p(t)| ≤ |p(0)|+ δ < 2r + δ < 3r < σ , for every t ∈ [0, T ] .

Moreover, by (62), we deduce that |q(t)− q(0)| < σ, for every t ∈ [0, T ].
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The T -periodic solutions we have found are then translated, by the inverse
change of variables, into the solutions of (59) we are looking for.

Remark 24. The twist condition (60) is surely verified if K is twice continu-
ously differentiable with detK′′(I 0) 6= 0, by taking A = K′′(I 0).

Remark 25. A more general twist condition (see [16]) can be considered, e.g.,

0 ∈ cl
{
r ∈ ]0,+∞[ : min

|I−I 0|=r
〈∇K(I)−∇K(I 0),A(I − I 0)〉 > 0

}
.

Remark 26. The same type of result holds, with the due changes, for a more
general system of the type

φ̇ = ε∂ψP (t, φ, ψ, ϕ, I, u, w) , ψ̇ = −ε∂φP (t, φ, ψ, ϕ, I, u, w) ,

ϕ̇ = ∇K(I) + ε∂IP (t, φ, ψ, ϕ, I, u, w) , İ = −ε∂ϕP (t, φ, ψ, ϕ, I, u, w) ,

−ü = ∂uG(t, u) + ε∂uP (t, φ, ψ, ϕ, I, u, w) ,

Jẇ = B(t)w + ε∂wP (t, φ, ψ, ϕ, I, u, w) ,

when P is also periodic in φ1, . . . , φL and ψ1, . . . , ψL, and B(t) is a symmetric
matrix, continuous and T -periodic, such that w(t) ≡ 0 is the only T -periodic
solution of Jẇ = B(t)w.

Remark 27. It would be interesting to see how Theorem 23 could be extended
to infinite dimensions, in the spirit of [19].

11 The general result
We consider system (1), assuming the Hamiltonian function H : R×R2N → R to
be continuous, T -periodic in its first variable t, and continuously differentiable
with respect to the variable z, with corresponding gradient ∇H(t, z).

For z ∈ R2N , we use the notation z = (x, y), with x = (x1, . . . , xN ) ∈ RN
and y = (y1, . . . , yN ) ∈ RN . Moreover, we gather into five groups the variables
of x and y, respectively, thus writing

x = (xa, xb, xc, xd, xe), y = (ya, yb, yc, yd, ye),

where, for some nonnegative integers Na, N b, N c, Nd, Ne,

xa = (xa1 , . . . , x
a
Na) ∈ RNa

, ya = (ya1 , . . . , y
a
Na) ∈ RNa

,
xb = (xb1, . . . , x

b
Nb) ∈ RNb

, yb = (yb1, . . . , y
b
Nb) ∈ RNb

,
xc = (xc1, . . . , x

c
Nc) ∈ RNc

, yc = (yc1, . . . , y
c
Nc) ∈ RNc

,
xd = (xd1, . . . , x

d
Nd) ∈ RNd

, yd = (yd1 , . . . , y
d
Nd) ∈ RNd

,
xe = (xe1, . . . , x

e
Ne) ∈ RNe

, ye = (ye1, . . . , y
e
Nc) ∈ RNe

.

and we also introduce the notation

za = (xa, ya) , zb = (xb, yb) , zc = (xc, yc) , zd = (xd, yd) , ze = (xe, ye) .

Notice that one or more of these integers could be equal to zero, in which case
the corresponding group will not be taken into account; for example, if Na = 0,
then xa, ya and za will disappear from the list. In the following, for simplicity
we sometimes write (u, v) instead of (xe, ye), and D = Ne.
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Let us introduce our assumptions in this general setting.

Assumption 13 (Periodicity). The function H(t, z) is periodic in each of the
variables included in xa, xb, ya, yc.

The total number of variables in which our Hamiltonian function is peri-
odic is thus 2Na + N b + N c. Under this setting, T -periodic solutions z(t)
of (1) appear in equivalence classes made of those solutions whose components
in xa(t), xb(t), ya(t), yc(t) differ by an integer multiple of the corresponding pe-
riods. We say that two T -periodic solutions are geometrically distinct if they do
not belong to the same equivalence class.

Assumption 14 (Lower and upper solutions). There exist some constants δ >
0, α = (α1, . . . , αD) and β = (β1, . . . , βD) with α ≤ β, having the following
property. If α− δ̄ ≤ u ≤ β + δ̄, then, for every j ∈ {1, . . . , D},

vj ∂vjH(t, z) > 0 , when uj ∈ [αj − δ, αj ] ∪ [βj , βj + δ] and vj 6= 0 ,

and {
∂uj

H(t, z) ≥ 0 , when uj ∈ [αj − δ, αj ] and vj = 0 ,

∂uj
H(t, z) ≤ 0 , when uj ∈ [βj , βj + δ] and vj = 0 .

Assumption 15 (Nagumo condition). For every j ∈ {1, . . . , D} there exist
dj > 0 and two continuous functions fj , ϕj : [dj ,+∞[→ ]0,+∞[ , with∫ +∞

dj

fj(s)

ϕj(s)
ds = +∞ ,

satisfying the following property. If α− δ̄ ≤ u ≤ β + δ̄, then{
∂vjH(t, z) ≥ fj(vj) , when vj ≥ dj ,

∂vjH(t, z) ≤ −fj(−vj) , when vj ≤ −dj ,

and ∣∣∂uj
H(t, z)

∣∣ ≤ ϕj(|vj |) , when |vj | ≥ dj .

Assumption 16 (Linear growth). There exists a symmetric 2Nd×2Nd matrix
B(t), T -periodic and continuous in t, satisfying the nonresonance condition

zd(t) ≡ 0 is the only T -periodic solution of Jżd(t) = B(t)zd(t) ,

and such that, writing

H(t, z) = 1
2

〈
B(t)zd, zd

〉
+H(t, z) ,

for every K > 0 there is a CK > 0 with the following property: If α − δ̄ ≤ u ≤
β + δ̄ and |v| ≤ K, then

|∂xbH(t, z)|+ |∂ycH(t, z)|+ |∂xdH(t, z)|+ |∂ydH(t, z)| ≤ CK(|yb|+ |xc|+ 1) .

The above assumption guarantees that, for any two continuous functions
U, V : [0, T ]→ RD, with

α− δ ≤ U(t) ≤ β + δ , for every t ∈ [0, T ] , (64)
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setting W (t) = (U(t), V (t)) and

H(t, z) = H(t, za, zb, zc, zd,W (t)) ,

the solutions of
Jż = ∇H(t, z) (65)

are defined on [0, T ], cf. Remark 1.

Let us also introduce a C1-function h : RNb+Nc → R and a regular symmetric
(N b +N c)× (N b +N c) matrix S such that, for some positive constants C1, C2,

|h(υ)− 1
2 〈Sυ, υ〉| ≤ C1 and |∇h(υ)− Sυ| ≤ C2 , for every υ ∈ RN

b+Nc

,

and let
D = {υ ∈ RN

b+Nc

: ∇h(υ) = 0} .

We assume that such a set is compact. Our main result is the following.

Theorem 28. Let Assumptions 13, 14, 15, and 16 hold. Assume moreover
that there exists ρ > 0 such that, for any two continuous functions U, V :
[0, T ] → RD satisfying (64), the solutions of (65) with (yb(0), xc(0)) /∈ D̊ and
dist((yb(0), xc(0)),D) ≤ ρ are such that

(xb(T )− xb(0), yc(T )− yc(0)) /∈ {λJ∇h((yb(0), xc(0))) : λ ≥ 0} .

Then, system (1) has at least 2Na+N b+N c+1 geometrically distinct T -periodic
solutions z(t), such that

(yb(0), xc(0)) ∈ D̊ ,

and
α ≤ u(t) ≤ β , for every t ∈ R .

Proof. With the same procedure adopted in the proof of Theorem 16 provided in
Section 7, dealing with the ze = (u, v) coordinates, we can introduce a modified
problem ruled by a Hamiltonian of the type

Ĥ(t, z) = 1
2

〈
B(t)zd, zd

〉
+

1

2
(|v|2 − |u|2) + ĥ(t, z) .

Moreover, Ĥ can be introduced so to guarantee that every T -periodic solution
of Jż = ∇Ĥ(t, z) satisfies an a priori bound as in Lemma 15, in particular
α ≤ u ≤ β. Then, from Assumption 16, we can introduce K > 0 as in (45) so
to obtain

|∂xb ĥ(t, z)|+ |∂yc ĥ(t, z)| ≤ CK(|yb|+ |xc|+ 1) .

when α − δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K. Hence, as in (46), we can find a
constant c > 0 such that, if z(t) is a solution of Jż = ∇Ĥ(t, z) starting with
dist((yb(0), xc(0),D) ≤ ρ, with maximal interval of future existence [0, ω[ , then

max{|yb(t)| , |xc(t)|} ≤ c , for every t ∈ [0, T ] ∩ [0, ω[ .

Again, we can introduce the cut-off function η as in (25), and the Hamiltonian

H̃(t, z) = 1
2

〈
B(t)zd, zd

〉
+

1

2
(|v|2 − |u|2) + h̃(t, z) ,
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where h̃(t, z) = η(|yb|)η(|xc|)ĥ(t, z). Using Assumption 16 we get

|∇h̃(t, z)| ≤ C̃ ,

for a certain positive constant C̃.
We can rewrite the previous Hamiltonian as

H̃(t, z) = 1
2

〈
M(t)(zd, ze), (zd, ze)

〉
+ h̃(t, z) ,

where
M(t)

(
zd, ze

)
= M(t)

(
zd, (u, v)

)
=
(
B(t)zd, (−u, v)

)
.

In particular, we can verify the nonresonance condition

zd,e(t) ≡ 0 is the only T -periodic solution of Jżd,e(t) = M(t)zd,e(t) ,

where zd,e = (zd, ze). Our aim is to apply [18, Theorem 1.1] to the modified
system Jż = ∇H̃(t, z). Its solutions are globally defined on [0, T ].

Let z = (za, zb, zc, zd, ze) be a solution of Jż = ∇H̃(t, z). As in the above
proofs we can show that if dist((yb(0), xc(0),D) ≤ ρ, then max{|yb(t)| , |xc(t)|} ≤
c for every t ∈ [0, T ]. Hence, z solves Jż = ∇Ĥ(t, z) and, setting W (t) =(
ζ(u(t)), χ(ζ(u(t)), v(t))

)
, we see that (za, zb, zc, zd) is a solution of (65).

If 0 < dist((yb(0), xc(0)),D) ≤ ρ, then

(xb(T )− xb(0), yc(T )− yc(0)) /∈ {λJ∇h((yb(0), xc(0))) : λ ≥ 0} , (66)

by the hypothesis of the theorem.
The application of [18, Theorem 1.1] provides us 2Na+N b+N c+1 geomet-

rically distinct T -periodic solutions of Jż = ∇H̃(t, z) satisfying (yb(0), xc(0)) ∈
D̊. Then, following the argument of the previous proofs, it can be seen that
they are solutions of Jż = ∇H(t, z), as well, and α ≤ u ≤ β.

Remark 29. Theorem 28 generalizes all three Theorems 14, 16 and 17 pre-
viously stated. For example, let the assumptions of Theorems 14 hold. We
consider a smooth function σ : R→ R such that

σ(s) =

{
0 , if s ≤ 0 ,

1 , if s ≥ 1 ,
and σ′(s) > 0 if s ∈ ]0, 1[ ,

and, adapting the notations, we define the function h : RNb+Nc → R by

h(p) = −ξ(p)〈A(p− πD(p)), p− πD(p)〉 ,

where

ξ(p) =

{
0 , if p ∈ D ,
1
2σ(|p− πD(p)|) , if p /∈ D .

Following the proof of [18, Corollary 2.3] one can verify that h satisfies the
assumptions in Theorem 28.

Having extended with Theorem 28 the main theorem in [18], we thus have
generalized, e.g., the results in [9, 11, 17, 30, 33, 37, 38, 40].
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