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Abstract
We extend the theory of lower and upper solutions to planar systems of

ordinary differential equations with separated boundary conditions, both
in the well-ordered and in the non-well-ordered cases. We are able to
deal with general Sturm–Liouville boundary conditions in the well-ordered
case, and we analyze the Dirichlet problem in the non-well-ordered case.
Our results apply in particular to scalar second order differential equa-
tions, including those driven by the mean curvature operator. Higher
dimensional systems are also treated, with the same approach.

1 Introduction
The method of lower and upper solutions has been developed for more than a
century with the aim of studying boundary value problems associated with ordi-
nary and partial differential equations of different types. It has been employed
in thousands of papers and it still is one of the most useful tools for localizing
solutions and providing information about their behaviour.

Since 1893, Picard [22] introduced lower and upper solutions in order to prove
the existence of solutions for separated boundary value problems associated
with scalar second order ordinary differential equations. The theory was then
developed by Scorza-Dragoni [23] and Nagumo [17] in the thirties, thus reaching
its modern form concerning classical solutions. It was then extended to different
types of ordinary differential equations [5, 19], difference equations [4], and to
some type of partial differential equations: elliptic [1], parabolic [9], and special
kinds of hyperbolic equations like the transport equation [3] and the telegraph
equation [21]. (The given references are obviously not exhaustive.)

Let us describe a typical situation by considering the Dirichlet problem{
x′′ = g(t, x, x′) ,

x(a) = A , x(b) = B .
(1)

A classical lower solution for this problem is a C2-function α : [a, b] → R such
that {

α′′(t) ≥ g(t, α(t), α′(t)) , for every t ∈ [a, b] ,

α(a) ≤ A , α(b) ≤ B ,

while a classical upper solution is a C2-function β : [a, b]→ R such that{
β′′(t) ≤ g(t, β(t), β′(t)) , for every t ∈ [a, b] ,

β(a) ≥ A , β(b) ≥ B .
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In [17], the following theorem was proved.

Theorem 1. Assume the existence of a pair of classical lower/upper solutions
α, β such that α ≤ β. Moreover, let ϕ : R → R be a continuous function such
that

|g(t, x, y)| ≤ ϕ(|y|) , for every (t, x, y) ∈ [a, b]× [µ,M]× R ,

with µ = minα,M = maxβ, and∫ +∞

0

s

ϕ(s)
ds = +∞ .

Then, problem (1) has a solution such that α ≤ x ≤ β.

The above theorem has been generalized in several directions (see e.g. [7]
and the references therein). In this paper we will extend it to planar systems in
the spirit of [12, 13], where the periodic case was studied. To this aim, we will
provide a definition of lower and upper solutions for a system of the type

x′ = f(t, x, y) , y′ = g(t, x, y) , (2)

with general boundary conditions of Sturm–Liouville type; roughly speaking the
starting point of the solution will lie on a straight line `S and the arrival point
on another line `A.

When α ≤ β, we say that the lower and upper solutions are well-ordered.
Without this assumption the statement of Theorem 1 would not be true. For
instance, there are no solutions of the problem{

x′′ = −n2x+ sin(nt) ,

x(0) = 0 , x(π) = 0 ,

when n is a positive integer. However, when n ≥ 2, the functions α(t) = c sin t
and β(t) = −c sin(t) are a lower and an upper solution, respectively, taking
c > 0 sufficiently large; clearly, α 6≤ β. This is why, in order to recover the
existence of solutions when α and β are not well-ordered, some nonresonance
assumptions with respect to the higher part of the spectrum of the differential
operator −x′′ with Dirichlet boundary conditions are usually imposed.

For simplicity, in the non-well-ordered case α 6≤ β we will limit our analysis
to nonlinearities that are bounded perturbations of linear ones, and to homoge-
neous Dirichlet boundary conditions x(0) = 0 = x(π). It is well known that, if
the associated linear system is non-resonant (i.e., it only has the trivial zero so-
lution), the existence of a solution is an immediate consequence of the Schauder
fixed point theorem. This is why we assume, on the contrary, that the asso-
ciated linear system is at resonance. However, we must avoid the interaction
with the higher order eigenvalues, as seen in the above example. So, we found
it natural to choose in system (2) the functions

f(t, x, y) = y + p(t, x, y) , g(t, x, y) = −x+ q(t, x, y) ,

with p, q bounded. In this setting, we will be able to prove the existence of a
solution. We believe that there is still some work to be done in order to better
understand this situation.
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The paper is organized as follows.

In Section 2 we introduce the setting of our problem, together with the main
definitions of lower and upper solutions for a system like (2) with starting point
on a line `S and arrival point on a line `A.

In Section 3 we provide our first existence results in the well-ordered case.
The section is divided in four subsections: in the first one we deal with the case
when both lines `S and `A are not vertical; in the second subsection, one of the
two lines is allowed to be vertical, but not both; in the third one, the case when
both lines are vertical is settled. Some applications are given, in particular for
an equation involving the mean curvature operator.

In Section 4 we prove an existence result in the non-well-ordered case α 6≤ β.
We use the ideas introduced and developed in the papers [2, 8, 14, 15, 20]: after
having constructed an extra lower solution α̂ and an extra upper solution β̂
such that α̂ < min{α, β} ≤ max{α, β} < β̂, the existence follows by topological
degree arguments. We also provide an example of application when a condition
of Landesman–Lazer type is assumed.

In Section 5 we suggest a possible extension of our results to higher dimen-
sional systems of the type

x′j = fj(t, xj , yj) , y′j = gj(t, x1, . . . , xN ) ,

with j = 1, . . . , N . Some examples of applications are also suggested.

Finally, we postpone to the Appendix the proof of some technical claims
stated in the text.

2 Setting of the problem
Let `S and `A be two lines in the plane, the “starting line” and the “arrival line”,
respectively. Given a < b, we are interested in the two-point problem

(P )

{
x′ = f(t, x, y) , y′ = g(t, x, y) ,

(x(a), y(a)) ∈ `S , (x(b), y(b)) ∈ `A ,

where f : [a, b]× R2 → R and g : [a, b]× R2 → R are continuous functions.

We denote the closed half-planes determined by `S and `A as follows:

H+
S is the one above `S or, when `S is vertical, the one to the left of it;

H−S is the one below `S or, when `S is vertical, the one to the right of it;

H+
A is the one above `A or, when `A is vertical, the one to the right of it;

H−A is the one below `A or, when `A is vertical, the one to the left of it.

Notice that the notations differ for the two lines when they are vertical.

Definition 2. A continuously differentiable function α : [a, b] → R is said to
be a lower solution for problem (P ) if there exists a continuously differentiable
function yα : [a, b]→ R such that, for every t ∈ [a, b],{

y < yα(t) ⇒ f(t, α(t), y) < α′(t) ,

y > yα(t) ⇒ f(t, α(t), y) > α′(t) ,
(3)
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y′α(t) ≥ g(t, α(t), yα(t)) , (4)

and
(α(a), yα(a)) ∈ H+

S , (α(b), yα(b)) ∈ H−A . (5)

Definition 3. A continuously differentiable function β : [a, b]→ R is said to be
an upper solution for problem (P ) if there exists a continuously differentiable
function yβ : [a, b]→ R such that, for every t ∈ [a, b],{

y < yβ(t) ⇒ f(t, β(t), y) < β′(t) ,

y > yβ(t) ⇒ f(t, β(t), y) > β′(t) ,
(6)

y′β(t) ≤ g(t, β(t), yβ(t)) , (7)

and
(β(a), yβ(a)) ∈ H−S , (β(b), yβ(b)) ∈ H+

A . (8)

From (3) we have that

α′(t) = f(t, α(t), yα(t)) , for every t ∈ [a, b] , (9)

and yα(t) is the only value for which this identity holds. Similarly, from (6) we
have

β′(t) = f(t, β(t), yβ(t)) , for every t ∈ [a, b] , (10)

and yβ(t) is uniquely defined on [a, b] by this identity.

It is well known in the case of scalar second order equations that if a function
is at the same time a lower and an upper solution, then it is a solution. Let us
write the analogous statement in our situation.

Proposition 4. Let x : [a, b] → R be at the same time a lower and an upper
solution for problem (P ). Then, there exists a function y : [a, b]→ R such that
(x, y) is a solution of problem (P ).

Proof. If x is at the same time a lower and an upper solution for problem (P ),
from (9) and (10) we deduce that the functions yα and yβ given by Definitions 2
and 3 coincide. We set y = yα = yβ and notice that x′(t) = f(t, x(t), y(t)), for
every t ∈ [a, b]. Moreover, by (4) and (7), we have that y′(t) = g(t, x(t), y(t)),
for every t ∈ [a, b]. Finally, from (5) and (8) we get (x(a), y(a)) ∈ `S and
(x(b), y(b)) ∈ `A , thus concluding the proof.

We say that (α, β) is a well-ordered pair of lower/upper solutions of prob-
lem (P ) if α and β are respectively a lower and an upper solution of problem (P ),
and α(t) ≤ β(t) for every t ∈ [a, b].

3 Well-ordered lower/upper solutions
In this section we always assume that (α, β) is a well-ordered pair of lower/up-
per solutions of problem (P ). We will distinguish the cases when both lines `S
and `A are not vertical, and those when one or both can be vertical.
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3.1 The non-vertical case
We start assuming that both lines `S and `A are not vertical. Their equations
are

y = mSx+ qS , y = mAx+ qA , (11)

respectively. Here is our first existence result.

Theorem 5. Assume the existence of a well-ordered pair (α, β) of lower/upper
solutions of problem (P ), with the lines `S and `A having equations (11). Set
µ = minα and M = maxβ, with µ < M. Let there exist two continuously
differentiable functions γ± : [µ,M] → R such that, for every t ∈ [a, b] and
x ∈ [α(t), β(t)],

γ−(x) < min{yα(t), yβ(t)} ≤ max{yα(t), yβ(t)} < γ+(x) , (12)

and

g
(
t, x, γ+(x)

)
> f

(
t, x, γ+(x)

)
γ′+(x) , (13)

g
(
t, x, γ−(x)

)
< f

(
t, x, γ−(x)

)
γ′−(x) . (14)

Assume moreover that

γ−(x) < mAξ + qA < γ+(x) , for every x, ξ ∈ [µ,M] . (15)

Then, there exists a solution of problem (P ) such that

α(t) ≤ x(t) ≤ β(t) and γ−(x(t)) < y(t) < γ+(x(t)) , for every t ∈ [a, b] . (16)

Proof. We are going to consider an auxiliary problem obtained by modifying
both the vector field and the boundary conditions. In order to modify f and g,
we introduce the functions

ζ(s; p, q) =


p , if s < p ,

s , if p ≤ s ≤ q ,
q , if s > q ,

(17)

e(s; p, q) = s− ζ(s; p, q) =


s− p , if s < p ,

0 , if p ≤ s ≤ q ,
s− q , if s > q .

(18)

Let D > 0 be such that

|γ±(x)| ≤ D , for every x ∈ [µ,M] , (19)

and define

f̃(t, x, y) =f
(
t, ζ
(
x;α(t), β(t)

)
, ζ
(
y;−D,D

))
+ e
(
y;−D,D

)
,

g̃(t, x, y) =g
(
t , ζ

(
x;α(t), β(t)

)
, ζ
(
y;−D,D

))
+ e
(
x;α(t), β(t)

)
.

We now modify the starting line. We introduce the polygonal line ˜̀S as follows:
if mS ≥ 0, then ˜̀S = `S ; otherwise, if mS < 0, then˜̀

S = {(x, y) ∈ R2 : y = mSζ(x;α(a), β(a)) + qS} .
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Similarly, we introduce the polygonal line ˜̀A as follows: if mA ≤ 0, then ˜̀A =
`A ; otherwise, if mA > 0, then

˜̀
A = {(x, y) ∈ R2 : y = mAζ(x;α(b), β(b)) + qA} .

We consider the problem

(P̃ )

{
x′ = f̃(t, x, y) , y′ = g̃(t, x, y) ,

(x(a), y(a)) ∈ ˜̀S , (x(b), y(b)) ∈ ˜̀A .
We will prove that problem (P̃ ) has a solution, which satisfies (16). Hence,
since the vector field and the starting and arrival lines have been modified only
outside the region identified by (16), this solution of (P̃ ) is indeed a solution
of (P ).

Since we are going to prove the existence of a solution of (P̃ ) by the use of
degree theory, we need to construct a suitable homotopy.

We define, for every λ ∈ [0, 1], the polygonal lines `λS and `λA as follows. If
mS ≥ 0, then `λS = ˜̀

S = `S . Otherwise, if mS < 0, let ZS be the segment
joining (α(a), yα(a)) and (β(a), yβ(a)), possibly reduced to a single point, and
let PS = (xS , yS) be an intersection point of ZS with `S (there could be more
than one); we set

`λS =
{

(x, y) ∈ R2 : y = (1− λ)
(
mSζ(x;α(a), β(a)) + qS

)
+ λyS

}
.

Similarly, if mA ≤ 0, then `λA = ˜̀
A = `A ; otherwise, if mA > 0, let ZA be

the segment joining (α(b), yα(b)) and (β(b), yβ(b)), and let PA = (xA, yA) be an
intersection point of ZA with `A; we choose

`λA =
{

(x, y) ∈ R2 : y = (1− λ)
(
mAζ(x;α(b), β(b)) + qA

)
+ λyA

}
.

We now consider the problem

(P̃λ)

{
x′ = f̃(t, x, y) , y′ = g̃(t, x, y) ,

(x(a), y(a)) ∈ `λS , (x(b), y(b)) ∈ `λA ,

with λ ∈ [0, 1]. Notice that (P̃0) coincides with (P̃ ).

Claim 1. All the solutions of (P̃λ) satisfy (16).

We postpone the proof of Claim 1 to Section A.1.

Assuming that Claim 1 holds true, let us consider the problem (P̃1). We are
going to construct a second homotopy which transforms it into a linear problem
whose only solution is the trivial one (x, y) = (0, 0).

Using this time σ ∈ [0, 1] as the homotopy parameter, we consider the prob-
lem

(Qσ)

{
x′ = (1− σ)f̃(t, x, y) + σy , y′ = (1− σ)g̃(t, x, y) + σx ,

(x(a), y(a)) ∈ `1S(σ) , (x(b), y(b)) ∈ `1A(σ) ,
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where the boundary conditions are constructed as follows. Recalling that the
equation of the line `1S is y = m1

Sx+ q1
S , with

m1
S =

{
mS , if mS ≥ 0 ,
0 , if mS < 0 , q1

S =

{
qS , if mS ≥ 0 ,
yS , if mS < 0 ,

we define `1S(σ) as the line of equation

y = Y σS (x) := m1
Sx+ (1− σ)q1

S .

Similarly, we define `1A(σ) as the line of equation

y = Y σA (x) := m1
Ax+ (1− σ)q1

A .

Notice that (Q0) is the same as (P̃1), while (Q1) is a linear problem whose only
solution is the trivial one.

Claim 2. There is a R > 0 such that every solution u = (x, y) of (Qσ) satisfies
‖u‖∞ < R.

We postpone the proof of Claim 2 to Section A.2.

Let us introduce our functional setting for the problem (Qσ). We define the
linear operator

L : C1([a, b],R2)→ C([a, b],R2)× R× R , L

(
x

y

)
=

((
x′

y′

)
, y(a), y(b)

)
,

and the nonlinear operator

Nσ : C([a, b],R2)→ C([a, b],R2)× R× R ,

Nσ

(
x

y

)
(t) =

((
fσ(t, x(t), y(t))

gσ(t, x(t), y(t))

)
, Y σS (x(a)) , Y σA (x(b))

)
,

where

fσ(t, x, y) = (1− σ)f̃(t, x, y) + σy , gσ(t, x, y) = (1− σ)g̃(t, x, y) + σx .

Setting u = (x, y), problem (Qσ) is thus equivalent to

Lu = Nσu .

By Mawhin’s Coincidence Degree [16] theory, the operator Nσ is L-completely
continuous, and by Claim 2 the degree DL(L−Nσ, BR) is well defined and its
value is independent of σ ∈ [0, 1]. Since (Q1) is linear and has only the trivial
zero solution, we have that

DL(L−N0, BR) = DL(L−N1, BR) = ±1 .

We now repeat the same procedure for the problem (P̃λ). By Claim 1, we can
enlarge the radius R, if necessary, so that any solution u = (x, y) of (P̃λ) satisfies
‖u‖∞ < R. Let us define

Ñλ : C([a, b],R2)→ C([a, b],R2)× R× R,

Ñλ

(
x

y

)
(t) =

((
f̃(t, x(t), y(t))

g̃(t, x(t), y(t))

)
, FλS (x(a)) , FλA(x(b))

)
,

7



where

FλS (x) =

{
mSx+ qS , if mS ≥ 0 ,
(1− λ)

(
mSζ(x;α(a), β(a)) + qS

)
+ λyS , if mS < 0 ,

and

FλA(x) =

{
mAx+ qA , if mA ≤ 0 ,
(1− λ)

(
mAζ(x;α(b), β(b)) + qA

)
+ λyA , if mA > 0 .

Problem (P̃λ) is thus equivalent to

Lu = Ñλu ,

and we can conclude that the coincidence degree DL(L−Ñλ, BR) is well defined
and independent of λ ∈ [0, 1], hence

DL(L− Ñ0, BR) = DL(L− Ñ1, BR) = DL(L−N0, BR) = ±1 .

Therefore problem (P̃0), which is the same as (P̃ ), has a solution. By Claim 1,
this solution solves (P ), since it satisfies (16).

3.2 Some extensions of Theorem 5
We first provide a variant of Theorem 5, concerning the curves γ±.

Theorem 6. Assume the existence of a well-ordered pair (α, β) of lower/upper
solutions of problem (P ), with the lines `S and `A having equations (11). Set
µ = minα and M = maxβ, with µ < M. Let there exist two continuously
differentiable functions γ̂± : [µ,M] → R such that, for every t ∈ [a, b] and
x ∈ [α(t), β(t)],

γ̂−(x) < min{yα(t), yβ(t)} ≤ max{yα(t), yβ(t)} < γ̂+(x) , (20)

and

g
(
t, x, γ̂+(x)

)
< f

(
t, x, γ̂+(x)

)
γ̂′+(x) , (21)

g
(
t, x, γ̂−(x)

)
> f

(
t, x, γ̂−(x)

)
γ̂′−(x) . (22)

Assume moreover that

γ̂−(x) < mSξ + qS < γ̂+(x) , for every x, ξ ∈ [µ,M] . (23)

Then, there exists a solution of problem (P ) such that

α(t) ≤ x(t) ≤ β(t) and γ̂−(x(t)) < y(t) < γ̂+(x(t)) , for every t ∈ [a, b]. (24)

Proof. The change of variables u(t) = µ+M− x(a+ b− t), v(t) = y(a+ b− t)
transforms problem (P ) into

(P̌ )

{
u′ = f̌(t, u, v) , v′ = ǧ(t, u, v) ,

(u(a), v(a)) ∈ ˇ̀
S , (u(b), v(b)) ∈ ˇ̀

A ,
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where

f̌(t, u, v) = f(a+ b− t, µ+M− u, v) ,

ǧ(t, u, v) = −g(a+ b− t, µ+M− u, v) ,

and

ˇ̀
S = {(x, y) ∈ R2 : (µ+M− x, y) ∈ `A} ,

ˇ̀
A = {(x, y) ∈ R2 : (µ+M− x, y) ∈ `S} .

Setting
α̌(t) = µ+M− β(a+ b− t) , yα̌(t) = yβ(a+ b− t) ,

and
β̌(t) = µ+M− α(a+ b− t) , yβ̌(t) = yα(a+ b− t) ,

we have a well-ordered pair of lower/upper solutions (α̌, β̌) for problem (P̌ ).
Setting

γ±(x) = γ̂±(µ+M− x) ,

we recover the curves satisfying the assumptions of Theorem 5, which thus
provides us the conclusion.

Remark 7. In Theorems 5 and 6 the curves γ± and γ̂± can also be chosen
with a different coupling. In Theorem 5 we had (γ− , γ+), while in Theorem 6
we have taken (γ̂− , γ̂+). However, we can also state another theorem with the
coupling (γ− , γ̂+), and a last theorem with (γ̂− , γ+). We will not write the
statements, for briefness.

We now extend Theorem 5 to the case when the equations of `S and `A are

x = xS , y = mAx+ qA , (25)

respectively. Here is the precise statement.

Theorem 8. Assume the existence of a well-ordered pair (α, β) of lower/upper
solutions of problem (P ), with the lines `S and `A having equations (25). Set
µ = minα and M = maxβ, with µ < M. Let there exist two continuously
differentiable functions γ± : [µ,M]→ R such that (12), (13) and (14) hold, for
every t ∈ [a, b] and x ∈ [α(t), β(t)]. Assume moreover that (15) holds. Then,
there exists a solution of problem (P ) satisfying (16).

Proof. It is almost exactly the same as the proof of Theorem 5, the only dif-
ference lying in the definition of the vertical line `1S(σ), whose equation now is
x = (1− σ)xS .

Now also Theorem 6 can be extended to the case when the equations of `S
and `A are

y = mSx+ qS , x = xA , (26)

respectively. Here is our existence result.
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Theorem 9. Assume the existence of a well-ordered pair (α, β) of lower/upper
solutions of problem (P ), with the lines `S and `A having equations (26). Set
µ = minα and M = maxβ, with µ < M. Let there exist two continuously
differentiable functions γ̂± : [µ,M]→ R such that (20), (21) and (22) hold, for
every t ∈ [a, b] and x ∈ [α(t), β(t)]. Assume moreover that (23) holds. Then,
there exists a solution of problem (P ) satisfying (24).

Proof. By the change of variables in the proof of Theorem 6, the assumptions
of Theorem 8 are verified, and the result follows.

As a consequence of the above results, we have the following.

Corollary 10. Assume the existence of a well-ordered pair (α, β) of lower/up-
per solutions of problem (P ), where `S and `A are not both vertical lines. Set
µ = minα andM = maxβ, with µ <M. Let the following assumptions hold:

(A1) there are a constant d > 0 and two continuous functions f+ : [d,+∞[→ R
and f− : ]−∞,−d]→ R such that{

y ≥ d ⇒ f(t, x, y) ≥ f+(y) > 0 ,

y ≤ −d ⇒ f(t, x, y) ≤ f−(y) < 0 ,

for every (t, x) ∈ [a, b]× [µ,M] ;

(A2) there is a positive continuous function ϕ : [0,+∞[→ R such that

|g(t, x, y)| ≤ ϕ(|y|) , for every (t, x, y) ∈ [a, b]× [µ,M]× R ;

(A3) the above functions are such that∫ +∞

d

f+(s)

ϕ(s)
ds = +∞ ,

∫ −d
−∞

f−(s)

ϕ(|s|)
ds = −∞ .

Then, there exists a solution of problem (P ) such that α ≤ x ≤ β.

Proof. The existence of the curves γ± and γ̂± follows from [12, Lemma 15] (see
also [13, Theorem 3.1]), so that one of the previous theorems apply.

3.3 Both vertical lines
We now consider the case when both lines `S and `A are vertical, having equa-
tions

x = xS , x = xA , (27)

respectively. Here is our result.

Theorem 11. Assume the existence of a well-ordered pair (α, β) of lower/up-
per solutions of problem (P ), with the lines `S and `A having equations (27).
Set µ = minα and M = maxβ, with µ < M. Let there exist four continu-
ously differentiable functions γ±, γ̂± : [µ,M] → R such that (12), (13), (14)
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and (20), (21), (22) hold, for every t ∈ [a, b] and x ∈ [α(t), β(t)]. Assume
moreover that, for every t ∈ [a, b] and x ∈ [xA, xS ],

y ≥ min{γ+(x), γ̂+(x)} ⇒ f(t, x, y) >
xA − xS
b− a

, (28)

y ≤ max{γ−(x), γ̂−(x)} ⇒ f(t, x, y) <
xA − xS
b− a

. (29)

Then, there exists a solution of problem (P ) such that

α(t) ≤ x(t) ≤ β(t) , (30)

and
min{γ−(x(t)), γ̂−(x(t))} < y(t) < max{γ+(x(t)), γ̂+(x(t))} , (31)

for every t ∈ [a, b].

Proof. Following the lines of the proof of Theorem 5, we introduce problem (P̃ )

with ˜̀S = `S and ˜̀A = `A, with (19) replaced by

max{|γ±(x)| , |γ̂±(x)|} ≤ D , for every x ∈ [µ,M] . (32)

It is not necessary in this situation to modify problem (P̃ ) by introducing the
family of problems (P̃λ), and Claim 1 is replaced by the following.

Claim 3. All the solutions of (P̃ ) satisfy (30) and (31), for every t ∈ [a, b].

The proof of this claim is provided in Section A.3. We then introduce the family
of problems (Qσ), where `1S(σ) and `1A(σ) have equations x = (1 − σ)xS and
x = (1 − σ)xA, respectively, and similarly prove the a priori bound given by
Claim 2. The topological degree argument completes the proof.

3.4 Some corollaries, in the well-ordered case
As a consequence of Theorems 5, 8, 9 and 11 we have the following result, which
extends [7, Theorem II,1.3] where the case f(t, x, y) = y was considered.

Corollary 12. Assume the existence of a well-ordered pair (α, β) of lower/upper
solutions of problem (P ), where `S and `A can be any two lines in the plane.
Set µ = minα andM = maxβ, with µ <M. Let the assumptions A1, A2 and
A3 of Corollary 10 hold, with the further requirement that

lim inf
y→+∞

f+(y) >
M− µ
b− a

, lim sup
y→−∞

f−(y) <
µ−M
b− a

. (33)

Then, there exists a solution of problem (P ) such that α ≤ x ≤ β.

Proof. As observed in the proof of Corollary 10, the existence of the curves γ±
and γ̂± follows from [12, Lemma 15] (see also [13, Theorem 3.1]). On the other
hand, assumption (33) guarantees that (28) and (29) hold. The result then
follows from Corollary 10 and Theorem 11.
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Let us provide a simpler version of the above result in the particular case
when the starting and arrival lines are of the type

y = mSx , with mS ≥ 0 , and y = mAx , with mA ≤ 0 , (34)

possibly including the cases when one or both are vertical, which will be iden-
tified assuming mS = +∞ or mA = −∞.

Corollary 13. Assume the existence of two constants α, β, with α < 0 < β,
such that

f(t, α, y) y > 0 , f(t, β, y) y > 0 , for every t ∈ [a, b] and y 6= 0 ,

and
g(t, α, 0) ≤ 0 ≤ g(t, β, 0) , for every t ∈ [a, b] .

Moreover, let there exist two constants r ≥ 0, c > 0 and a positive continuous
function ϕ : [0,+∞[→ R such that

lim inf
y→±∞

|f(t, x, y)|
|y|r

≥ c , uniformly in (t, x) ∈ [a, b]× R ,

|g(t, x, y)| ≤ ϕ(|y|) , for every (t, x, y) ∈ [a, b]× [α, β]× R ,

and ∫ +∞

1

sr

ϕ(s)
ds = +∞ .

Then, there exists a solution of problem (P ), when `S and `A are given by (34),
including the cases mS = +∞ or mA = −∞, such that α ≤ x ≤ β.

Proof. The constant functions α and β are a well-ordered pair of lower/upper
solutions, with corresponding functions yα(t) = yβ(t) = 0. Then, we can apply
Corollary 12 to conclude.

As an illustrative example of application, we propose the following:
x′ = F (t, x, y) |y|r−1y ,

y′ = x3 +G(t, x, y)|y|q−1y + e(t) ,

x(a) = 0 = x(b) ,

where q and r are nonnegative constants with q ≤ r + 1, all functions e, F,G
being continuous, with

F (t, x, y) ≥ c > 0 , |G(t, x, y)| ≤ C ,

for every (t, x, y) ∈ [a, b] × R2. One easily verifies that all the assumptions of
Corollary 13 are satisfied, taking the constants α < 0 < β, with |α| and β
sufficiently large. Hence, our problem has a solution.

12



3.5 The mean curvature equation
Consider now a problem of the type{(

φ(x′)
)′

= h(t, x, x′) ,

x(a) = xS , x(b) = xA ,
(35)

where φ : R → ] − 1, 1[ is an increasing odd homeomorphism. Problem (35) is
equivalent to problem (P ), with both vertical lines `S and `A, taking

f(t, x, y) = φ−1(y) , g(t, x, y) = h
(
t, x, φ−1(y)

)
.

Notice however that these functions are now only defined on [a, b]×R× ]−1, 1[ .

Corollary 14. Assume the existence of a well-ordered pair (α, β) of lower/up-
per solutions of problem (40), with yα , yβ : [a, b] → ] − 1, 1[ . Let there exist a
constant C > 0 such that

|h(t, x, z)| ≤ C , for every (t, x, z) ∈ [a, b]× R2, (36)

and
φ
( |xA − xS |

b− a

)
+ C(b− a) < 1 . (37)

Then, there exists at least one solution of problem (40) such that α ≤ x ≤ β.

Proof. For any c ∈ ]0, 1[ we define the functions fc : R→ R and gc : [a, b]×R2 →
R as

fc(y) =


φ−1(−c) + y + c , if y < −c ,
φ−1(y) , if |y| ≤ c ,
φ−1(c) + y − c , if y > c ,

gc(t, x, y) =


g(t, x,−c) , if y < −c ,
g(t, x, y) , if |y| ≤ c ,
g(t, x, c) , if y > c ,

and we consider the problem{
x′ = fc(y) , y′ = gc(t, x, y) ,

x(a) = xS , x(b) = xA .
(38)

It is easy to see that, when c is sufficiently near to 1, all the assumptions of
Corollary 12 hold, so that problem (38) has a solution (x, y) such that α ≤ x ≤ β.
We now show that, if c satisfies

φ
( |xA − xS |

b− a

)
+ C(b− a) < c < 1 , (39)

then |y(t)| < c for every t, implying that (x, y) is indeed a solution of prob-
lem (35). By Lagrange’s Mean Value Theorem, there is a ξ ∈ ]a, b[ such that

x′(ξ) =
xA − xS
b− a

.
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By (39), since φ
( |xA−xS |

b−a
)
< c, we have x′(ξ) = φ−1(y(ξ)) and hence, using

also (36),

|y(t)| =
∣∣∣y(ξ) +

∫ t

ξ

y′(s) ds
∣∣∣

≤ |φ(x′(ξ))|+
∣∣∣ ∫ t

ξ

gc(s, x(s), y(s)) ds
∣∣∣

≤ φ
( |xA − xS |

b− a

)
+ C(b− a) < c ,

thus ending the proof.

Remark 15. If xA = xS , condition (37) becomes

2C < λ̂1 :=
2

b− a
.

Note that λ̂1 is the first eigenvalue of the minus 1-Laplace operator −(sgn(x′))′

with homogeneous Dirichlet boundary conditions on [a, b], see [6].

Corollary 14 applies in particular to the Dirichlet problem associated with
the mean curvature equation

(
x′√

1 + (x′)2

)′
= h(t, x, x′) ,

x(a) = xS , x(b) = xA .

(40)

It can be worth noticing that, if the function h in (40) is constant, say h(t, x, z) =
C > 0, then a solution of the differential equation (φ(x′))′ = C is such that

x′(t) =
Ct+K√

1− (Ct+K)2
,

for some constant K ∈ R, hence

x(b)− x(a) =

∫ b

a

Ct+K√
1− (Ct+K)2

dt

=
1

C

(√
1− (Ca+K)2 −

√
1− (Cb+K)2

)
.

The function K 7→ 1
C

(√
1− (Ca+K)2 −

√
1− (Cb+K)2

)
is strictly increas-

ing on its domain [−1− Ca, 1− Cb], taking values in [−c̄, c̄], where

c̄ =

√
b− a
C

(
2− C(b− a)

)
.

Then, a necessary and sufficient condition for the existence of a solution of (40)
with h(t, x, x′) = C > 0 is

|xA − xS | ≤ c̄ ,

which is equivalent to

c̄
|xA − xS |
b− a

+ b− a ≤ 2

C
. (41)
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The same is true if h(t, x, x′) = −C, with C > 0. On the other hand, condi-
tion (37) is equivalent to

c̄
|xA − xS |
b− a

+ b− a < 1

C
.

The comparison with (41) naturally leads to the question whether our condi-
tion (37) could be improved. We propose this as an open problem.

Remark 16. The result in Corollary 14 should be compared with [18, The-
orem 1.2], where the existence of a bounded variation solution was proved for
the mean curvature equation. It was also shown in [18, Example 1.2] that, if
h(t, x, x′) = −C with C > λ̂1, then the problem does not have any bounded
variation solution.

4 Non-well-ordered lower/upper solutions
In this section we study the case when the lower and upper solutions are such
that α 6≤ β. For simplicity, we only deal with the following homogeneous Dirich-
let problem

(PDir)

{
x′ = y + p(t, x) , y′ = −x+ q(t, x, y) ,

x(0) = 0 = x(π) ,

where p : [0, π] × R → R is a locally Lipschitz continuous function and q :
[0, π]×R2 → R is continuous, both functions being uniformly bounded. We will
discuss in Section 4.2 the possibility of letting the function p depend also on y.

We denote by ϕ1(t) the function sin t, which is the first (positive) eigenfunc-
tion of the corresponding autonomous problem x′′ + x = 0. For any continuous
function ϕ : [0, π]→ R, we will write ϕ� 0 if there exists an ε > 0 such that

ϕ(t) ≥ εϕ1(t) , for every t ∈ [0, π] ,

and we write ϕ� ψ (or ψ � ϕ) if ϕ− ψ � 0.

4.1 The existence result
Let us state our result in the non-well-ordered case.

Theorem 17. Assume the existence of a non-well-ordered pair (α, β) of low-
er/upper solutions of problem (PDir), where p(t, x) is a locally Lipschitz continu-
ous function, q(t, x, y) is continuous, and both functions are uniformly bounded.
Then there exists a solution of problem (PDir) such that

α 6� x and x 6� β .

Proof. For every r ≥ 1, let φr : R → [0, 1] be a continuously differentiable
function such that

φr(s) = 1 if |s| ≤ r , φr(s) = 0 if |s| ≥ 2r .
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for every s ∈ R. We introduce the modified problems

(Pr)

{
x′ = y + pr(t, x) , y′ = −x+ qr(t, x, y) ,

x(0) = 0 = x(π) ,

where

pr(t, x) = φr(x)p(t, x) ,

qr(t, x, y) =
1

r
x+ φr(x)φr(y)

(
q(t, x, y)− 1

r
x
)
.

Moreover, we write p∞(t, x) = p(t, x) and q∞(t, x, y) = q(t, x, y).

Claim 4. There exists R ≥ 1 such that, if u = (x, y) is a solution of prob-
lem (Pr) satisfying α 6� x and x 6� β, with r ∈ [R,∞], then ‖u‖∞ < R.

We postpone the proof of this claim to Section A.4. By Claim 4, in particular,
if u is a solution of (Pr) satisfying α 6� x and x 6� β, with r ≥ R, then it is a
solution of (PDir).

We fix r ≥ R such that

r > max{‖α‖∞, ‖β‖∞, ‖yα‖∞, ‖yβ‖∞} ,

so that α and β are lower/upper solutions of (Pr), as well.

Let us introduce our functional setting for the problem (Pr). We use the
notation C0,1([0, π]) for the space of Lipschitz continuous real functions, and
define

C1
0 ([0, π]) = {x ∈ C1([0, π]) : x(0) = 0 = x(π)} ,

C1,1
0 ([0, π]) = {x ∈ C1

0 ([0, π]) : x′ ∈ C0,1([0, π])} ,
the linear operator

L : C1,1
0 ([0, π])× C1([0, π])→ C0,1([0, π])× C([0, π]) , L

(
x

y

)
=

(
x′ − y
y′

)
,

and the nonlinear operator

Nr : C1
0 ([0, π])× C([0, π])→ C0,1([0, π])× C([0, π]) ,

Nr

(
x

y

)
(t) =

(
pr(t, x(t))

−x(t) + qr(t, x(t), y(t))

)
.

We will need the following three lemmas.

Lemma 18. The operator L is invertible, with a continuous inverse

L−1 : C0,1([0, π])× C([0, π])→ C1,1
0 ([0, π])× C1([0, π]) ,

and problem (Pr) is equivalent to

u = L−1Nru ,

where u = (x, y) ∈ C1
0 ([0, π])× C([0, π]). Moreover, the operator

L−1Nr : C1
0 ([0, π])× C([0, π])→ C1

0 ([0, π])× C([0, π])

is completely continuous.
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Proof. If (x, y) ∈ C1,1
0 ([0, π]) × C1([0, π]) satisfies L(x, y) = (0, 0), then (x, y)

is constantly equal to (0, 0). Hence, given (h, k) ∈ C0,1([0, π]) × C([0, π]), the
problem {

x′ = y + h(t) , y′ = k(t) ,

x(0) = 0 = x(π) ,

has a unique solution (x, y) ∈ C1,1
0 ([0, π])×C1([0, π]), and the function (h, k) 7→

(x, y) is continuous.

Problem (Pr) is equivalent to Lu = Nru, with u = (x, y) ∈ C1,1
0 ([0, π]) ×

C1([0, π]). Then, it is also equivalent to u = L−1Nru, with u = (x, y) ∈
C1

0 ([0, π])× C([0, π]).

The operator Nr is continuous and transforms bounded sets of C1
0 ([0, π])×

C([0, π]) into bounded sets of C0,1([0, π]) × C([0, π]). Hence, L−1Nr is contin-
uous and transforms bounded sets in C1

0 ([0, π])×C([0, π]) into bounded sets in
C1,1

0 ([0, π]) × C1([0, π]). The conclusion follows, since the space C1,1
0 ([0, π]) ×

C1([0, π]) is compactly imbedded into C1
0 ([0, π])× C([0, π]).

Lemma 19. For any continuous function ϕ : [0, π]→ R, the sets

{x ∈ C1
0 ([0, π]) : ϕ� x} , {x ∈ C1

0 ([0, π]) : x� ϕ}

are open in C1
0 ([0, π]).

Proof. Let us prove the first one, the second being similar. If ϕ � x, there is
an ε > 0 such that

ϕ(t) + εϕ1(t) ≤ x(t) , for every t ∈ [0, π] .

It is easily seen that there is a δ > 0 such that, for any continuously differentiable
function ψ : [0, π]→ R,

‖ψ‖∞ + ‖ψ′‖∞ ≤ δ ⇒ |ψ| � 1
2εϕ1 . (42)

Then, if x̃ ∈ C1([0, π]) is such that

‖x̃− x‖∞ + ‖x̃′ − x′‖∞ < δ ,

by (42) we have that
ϕ(t) + 1

2εϕ1(t) ≤ x̃(t) ,

showing that ϕ� x̃.

Lemma 20. Let ϕ : [0, π]→ R be a continuously differentiable function. If

max{ϕ(0), ϕ(π)} ≤ 0 ,

then there exists a C > 0 such that ϕ� Cϕ1. If, on the contrary,

min{ϕ(0), ϕ(π)} ≥ 0 ,

then there exists a C > 0 such that ϕ� −Cϕ1.
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Proof. Take C1 > max{|ϕ′(0)|, |ϕ′(π)|}. Then, there is a δ > 0 such that

ϕ(t) < C1ϕ1(t) , for every t ∈ ]0, δ[∪ ]π − δ, π[ .

On the other hand, there is a C2 > 0 such that

ϕ(t) < C2ϕ1(t) , for every t ∈ [δ, π − δ] .

Taking C = max{C1, C2} we have the conclusion.

By Lemma 20, we can fix a constant C > 0 such that α � Cϕ1 and β �
−Cϕ1. Let us now introduce the function wr : [0, π]→ R, defined as

wr(t) =
2r cos

(
(t− π

2 )
√

r−1
r

)
cos
(
π
2

√
r−1
r

) .

Lemma 21. The functions αr, βr : [0, π]→ R defined by

αr(t) = −(Cϕ1(t) + wr(t)) , βr(t) = Cϕ1(t) + wr(t) ,

are a lower and an upper solution of problem (Pr), respectively. Moreover,

αr � β and α� βr .

Proof. First notice that

w′′r (t) +
r − 1

r
wr(t) = 0 , for every t ∈ [0, π] .

We set yαr = α′r and yβr = β′r. Since βr(t) ≥ 2r for every t ∈ [0, π] and
pr(t, x) = 0 when x ≥ 2r, conditions (6) and (8) are easily verified. Moreover,

y′βr
(t) = Cϕ′′1(t) + w′′r (t) = −Cϕ1(t)− r − 1

r
wr(t) = −βr(t) +

1

r
wr(t)

≤ −βr(t) +
1

r
βr(t) = −βr(t) + qr(t, βr(t), yβr (t)) ,

so that (7) holds, too. A similar argument can be applied for αr. The last
assertion in the statement of the lemma follows immediately from the choice of
the constant C.

Let us focus our attention on the three well-ordered pairs of lower/upper
solutions (αr, βr), (α, βr), and (αr, β). Since problem (Pr) satisfies hypotheses
A1, A2, and A3 in Corollary 10, by [12, Lemma 15] we can find some curves
γ± and γ̂± (the same for all the pairs) such that, for every t ∈ [0, π] and
x ∈ [αr(t), βr(t)], the conditions (13), (14), (21), (22) hold, together with

γ−(x) < min{yα(t), yαr (t), yβ(t), yβr (t)}
≤ max{yα(t), yαr (t), yβ(t), yβr (t)} < γ+(x) ,

γ̂−(x) < min{yα(t), yαr (t), yβ(t), yβr (t)}
≤ max{yα(t), yαr (t), yβ(t), yβr (t)} < γ̂+(x) .
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By Lemma 19, the sets

V1 = V(αr, βr, γ±, γ̂±) , V2 = V(αr, β, γ±, γ̂±) , V3 = V(α, βr, γ±, γ̂±) ,

with the notation

V(ϕ,ψ, γ±, γ̂±)=
{

(x, y) ∈ C1
0 ([0, π])× C([0, π]) : ϕ� x� ψ ,

min{γ−(x(t)), γ̂−(x(t))} < y(t) < max{γ+(x(t)), γ̂+(x(t))} ,

for every t ∈ [0, π]
}
,

are open in C1
0 ([0, π])× C([0, π]).

Still denoting by (ϕ,ψ) one of the three pairs (αr, βr), (α, βr), and (αr, β),
we modify problem (Pr). Set

gr(t, x, y) = −x+ qr(t, x, y) ,

and define

p̃ϕ,ψ(t, x) = pr(t, ζ(x;ϕ(t), ψ(t))) ,

g̃ϕ,ψ(t, x, y) = gr(t, ζ(x;ϕ(t), ψ(t)), y) + e(x;ϕ(t), ψ(t)) ,

with ζ(· ; ·, ·) and e(· ; ·, ·) as in (17), (18), so to obtain

(P̃ϕ,ψ)

{
x′ = y + p̃ϕ,ψ(t, x) , y′ = g̃ϕ,ψ(t, x, y) ,

x(0) = 0 = x(π) .

It can be verified that (ϕ,ψ) is a well-ordered pair of lower/upper solutions
of (P̃ϕ,ψ), for any of the three choices of (ϕ,ψ). Define the associated nonlinear
operator

Ñϕ,ψ : C1
0 ([0, π])× C([0, π])→ C0,1([0, π])× C([0, π]) ,

Ñϕ,ψ

(
x

y

)
(t) =

(
p̃ϕ,ψ(t, x(t))

g̃ϕ,ψ(t, x(t), y(t))

)
.

Indeed, if x ∈ C1
0 ([0, π]), then p̃ϕ,ψ(·, x(·)) ∈ C0,1([0, π]). Problem (P̃ϕ,ψ) is

then equivalent to
u = L−1Ñϕ,ψu ,

where u = (x, y) ∈ C1
0 ([0, π])× C([0, π]). Moreover, the operator

L−1Ñϕ,ψ : C1
0 ([0, π])× C([0, π])→ C1

0 ([0, π])× C([0, π])

is completely continuous (see Lemma 18).

An analogue of Claim 3 in the proof of Theorem 11 holds, i.e., every solution
u = (x, y) of problem (P̃ϕ,ψ) satisfies

ϕ(t) ≤ x(t) ≤ ψ(t) , (43)

and
min{γ−(x(t)), γ̂−(x(t))} < y(t) < max{γ+(x(t)), γ̂+(x(t))} , (44)

for every t ∈ [0, π]. Moreover, for any sufficiently large ρ > 0, denoting by Bρ
the open ball in C1

0 ([0, π]) × C([0, π]), centered at the origin, with radius ρ, it
can be proved that

dLS(I − L−1Ñϕ,ψ , Bρ) = 1 ,

where dLS denotes the Leray–Schauder degree. Let us fix a ρ > 0 with this
property, such that V(ϕ,ψ, γ±, γ̂±) ⊆ Bρ.
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Lemma 22. If there are no solutions of (Pr) on the boundary of V(ϕ,ψ, γ±, γ̂±),
then

dLS(I − L−1Nr , V(ϕ,ψ, γ±, γ̂±)) = 1 . (45)

Proof. Notice that, on the set V(ϕ,ψ, γ±, γ̂±), the two problems (Pr) and (P̃ϕ,ψ)

coincide. Since all the solutions of problem (P̃ϕ,ψ) satisfy (43) and (44), they
belong to the closure of V(ϕ,ψ, γ±, γ̂±). So, if there are no solutions on the
boundary of V(ϕ,ψ, γ±, γ̂±), by the excision property of the degree,

dLS(I − L−1Ñϕ,ψ , V(ϕ,ψ, γ±, γ̂±)) = dLS(I − L−1Ñϕ,ψ , Bρ) = 1 .

Since Ñϕ,ψ = Nr on V(ϕ,ψ, γ±, γ̂±), we have that

dLS(I − L−1Nr , V(ϕ,ψ, γ±, γ̂±)) = dLS(I − L−1Ñϕ,ψ , V(ϕ,ψ, γ±, γ̂±)) = 1 ,

and the lemma is thus proved.

Now we prove that there are no solutions of (Pr) on ∂V1. Let u = (x, y)
be a solution of (Pr) belonging to the closure of V1. We then have that both
αr(t) ≤ x(t) ≤ βr(t) and (44) hold, for every t ∈ [0, π]. Assume by contradiction
that x 6� βr. Since x(0) = 0 < 2r = βr(0) and x(π) = 0 < 2r = βr(π), there
must be a t0 ∈ ]0, π[ such that x(t0) = βr(t0) > 2r. Then,

x′(t0) = β′r(t0) and x′′(t0) ≤ β′′r (t0) .

Moreover, there is a neighborhood U0 of t0 in ]0, π[ on which x(t) > 2r, so that,
being pr(t, x) = 0 and qr(t, x, y) = 1

rx for |x| ≥ 2r, we have

x′(t) = y′(t) , y′(t) =
1− r
r

x(t) , and hence x′′(t) =
1− r
r

x(t) ,

for every t ∈ U0. On the other hand,

β′′r (t0) =
1− r
r

wr(t0)− Cϕ1(t0)

=
1− r
r

βr(t0)− C

r
ϕ1(t0)

<
1− r
r

βr(t0) =
1− r
r

x(t0) = x′′(t0) ,

a contradiction. Hence, x� βr. Similarly one proves that αr � x.

If there is a solution (x, y) of (Pr) in ∂V2, then we have x 6� β, while x ≤ β
still holds. Since α and β are non-well-ordered, then x(t0) ≤ β(t0) < α(t0) for
a certain t0 ∈ [0, π], implying α 6� x. The theorem is thus proved in this case.
A similar argument leads to the conclusion assuming the existence of a solution
in ∂V3.

Finally, if there are no solutions of (Pr) in ∂V2 ∪ ∂V3, then, by Lemma 22,

dL

(
I − L−1Nr , V1 \ V2 ∪ V3

)
=

= dL(I − L−1Nr , V1)−
(
dL(I − L−1Nr , V2) + dL(I − L−1Nr , V3)

)
= −1 .

Hence, there is a solution in V1 \ V2 ∪ V3, and the proof is thus completed.
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4.2 Remarks and further developments
The following proposition better clarifies the conclusion of Theorem 17.

Proposition 23. Let α, β : [0, π] → R be two continuously differentiable func-
tions satisfying

α(0) ≤ 0 ≤ β(0) , α(π) ≤ 0 ≤ β(π) .

If moreover there is a t0 ∈ ]0, π[ such that α(t0) > β(t0), then the set

{x ∈ C1
0 ([0, π]) : α 6� x and x 6� β}

coincides with the closure in C1
0 ([0, π]) of the set

{x ∈ C1
0 ([0, π]) : ∃t1, t2 ∈ [0, π] : x(t1) < α(t1), x(t2) > β(t2)} .

Proof. Let us denote by A the first set, and by B the second one. We want
to prove that A = B. Let us first show that B ⊆ A. Let x ∈ B, and assume
by contradiction that α � x. Let (xn)n be a sequence in C1

0 ([0, π]) such that
α 6≤ xn, xn 6≤ β, and xn → x in C1

0 ([0, π]). By Lemma 19, α � xn, for n
sufficiently large, contradicting α 6≤ xn. In the same way one can see that
x 6� β, as well. Hence, B ⊆ A.

In order to prove that A ⊆ B, fix x ∈ A. We consider three cases.

Case 1: β(t0) < x(t0) < α(t0). Then, x ∈ B, and we have finished.

Case 2: x(t0) ≤ β(t0). Then, x(t0) < α(t0). Moreover, since x 6� β, there is
a t̄ ∈ [0, π] such that x(t̄ ) = β(t̄ ). If t̄ ∈ ]0, π[ , it is possible to C1-perturb x
so to obtain a x̂ which satisfies x̂(t0) < α(t0) and x̂(t̄ ) > β(t̄ ). If t̄ = 0, then
necessarily x′(0) = β′(0) and it is possible to C1-perturb x so to obtain a x̂
which satisfies x̂(t0) < α(t0) and x̂(t) > β(t) for t > 0 near 0. Similarly, if
t̄ = π, then necessarily x′(π) = β′(π) and it is possible to C1-perturb x so to
obtain a x̂ which satisfies x̂(t0) < α(t0) and x̂(t) > β(t) for t < π near π. So, in
any case, x can be C1-approximated by some function x̂ ∈ B, hence x ∈ B.

Case 3: x(t0) ≥ α(t0). It is analogous to Case 2.

We have thus proved that A ⊆ B, hence the conclusion.

Notice that if p(t, x) = p(x) is continuously differentiable, setting

γ(x) = −p′(x) , h(t, x, w) = q(t, x, w − p(x)) ,

the differential system in problem (PDir) becomes a Liénard equation

x′′ + γ(x)x′ + x = h(t, x, x′) .

A more general system can be considered if we ask some more regularity on
the function q. We can deal with the Dirichlet problem

(P ∗Dir)

{
x′ = y + p(t, x, y) , y′ = −x+ q(t, x, y) ,

x(0) = 0 = x(π) .
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Corollary 24. Assume the existence of a non-well-ordered pair (α, β) of low-
er/upper solutions of problem (P ∗Dir), where p(t, x, y) and q(t, x, y) are locally
Lipschitz continuous uniformly bounded functions. Then there exists a solution
of problem (P ∗Dir) such that

α 6� x and x 6� β .

Proof. The only difference with the proof of Theorem 17 is that, in this case,
the functional setting would involve the linear operator

L : C1,1
0 ([0, π])×C1,1([0, π])→ C0,1([0, π])×C0,1([0, π]) , L

(
x

y

)
=

(
x′ − y
y′

)
,

and the nonlinear operator

N : C1
0 ([0, π])× C1([0, π])→ C0,1([0, π])× C0,1([0, π]) ,

N

(
x

y

)
(t) =

(
p(t, x(t), y(t))

−x(t) + q(t, x(t), y(t))

)
.

We omit the details, for briefness.

4.3 Two examples of applications
In this section, we will provide two examples in which non-well-ordered lower
and upper solutions can be constructed. They are inspired by [14].

Example 1. We consider the problem
x′ = y + p(t, x, y) ,

y′ = −x+ q(t, x, y) + h(t) ,

x(0) = 0 = x(π) ,

(46)

where the functions p, q are locally Lipschitz continuous, and h is continuous.

Proposition 25. Assume that p has a compact support, q is uniformly bounded,

q(t, x, y)x ≤ 0 , for every (t, x, y) ∈ [0, π]× R2, (47)

and ∫ π

0

h(t) sin t dt = 0 .

Then, there exists a solution of problem (46).

Proof. Let w(t) be the unique solution of{
w′′ + w = h(t) ,

w(0) = 0 = w(π) .

By the change of variables u = x− w(t), v = y − w′(t), problem (46) becomes
u′ = v + p̃(t, u, v) ,

v′ = −u+ q̃(t, u, v) ,

u(0) = 0 = u(π) ,

(48)
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where

p̃(t, u, v) = p(t, u+ w(t), v + w′(t)) , q̃(t, u, v) = q(t, u+ w(t), v + w′(t)) .

Notice that the functions p̃, q̃ are locally Lipschitz continuous. Since p̃ has
compact support, there exists R > 0 such that

p̃(t, u, v) = 0 , when u2 + v2 ≥ R2.

As a consequence, there is a constant P ≥ 0 for which

|p̃(t, u, v)| ≤ P , for every (t, u, v) ∈ [0, π]× R2 .

Let us check that, for k > 0 sufficiently large, the functions α(t) = k sin t and
β(t) = −k sin t are lower/upper solutions for problem (48), respectively, with
corresponding functions vα(t) = α′(t) and vβ(t) = β′(t). (Here we use the
notations vα and vβ instead of yα and yβ .)

We first check (3). Assume, for some t ∈ [0, π], that v < vα(t). If either
α(t) ≥ R, or 0 ≤ α(t) < R and |v| ≥ R, then p̃(t, α(t), v) = 0, hence

v + p̃(t, α(t), v) < vα(t) = α′(t) .

Assume now 0 ≤ α(t) < R and |v| < R. Taking k ≥
√

2(R+ P ), we have

v + p̃(t, α(t), v) < R+ P ≤ k
√

2

2
.

Moreover, recalling that 0 ≤ α(t) < R, it is sin t < R
k ≤

√
2

2 , hence cos t ≥
√

2
2

(since −R < v < vα(t) = k cos t, the case cos t ≤ −
√

2
2 is forbidden), and we

have

k

√
2

2
< k cos t = α′(t) .

We have thus verified that, if v < vα(t), then v + p̃(t, α(t), v) < α′(t). In a
similar way we can see that, if v > vα(t), then v+ p̃(t, α(t), v) > α′(t). We thus
proved (3). Moreover, taking k so large to ensure that k sin t + w(t) ≥ 0 for
every t ∈ [0, π], using (47) we have

v′α(t) = −k sin t = −α(t)

≥ −α(t) + q(t, α(t) + w(t), vα(t) + w′(t)) = −α(t) + q̃(t, α(t), vα(t)) ,

hence (4) holds. This proves that α is a lower solution for problem (48). Simi-
larly one proves that β is an upper solution. Corollary 24 can then be applied,
to conclude the proof.

Example 2. Let us now consider the problem
x′ = y + p(t, x, y) ,

y′ = −x+ q(t, x) ,

x(0) = 0 = x(π) ,

(49)

where the functions p, q are locally Lipschitz continuous. We will assume here
a Landesman–Lazer condition.
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Proposition 26. Assume that p has a compact support, q is uniformly bounded,
and that ∫ π

0

lim inf
x→−∞

q(t, x) sin t dt > 0 >

∫ π

0

lim sup
x→+∞

q(t, x) sin t dt . (50)

Then, there exists a solution of problem (49).

Proof. Let us construct a nonnegative lower solution α. First of all, being q
bounded, there is a Q > 0 such that

|q(t, x)| ≤ Q , for every (t, x) ∈ [0, π]× R .

As in [14] (see also [10, Proposition 3.1]), there are a constant s1 > 0 and a
function η ∈ L1(0, π) such that

q(t, s) ≤ η(t) , for every s ≥ s1 ,

and ∫ π

0

η(t) sin t dt < 0 .

Let δ > 0 be such that∫ π

0

η(t) sin t dt <

∫
[0,δ]∪[π−δ,π]

(η(t)−Q) sin t dt ,

and define the function η̃ ∈ L1(0, π) as

η̃(t) =

{
η(t) , if t ∈ ]δ, π − δ[ ,
Q , if t ∈ [0, δ] ∪ [π − δ, π] .

Notice that ∫ π

0

η̃(τ) sin τ dτ < 0 .

Let w(t) be the unique solution ofw′′ + w = η̃(t)− 2

π

(∫ π

0

η̃(τ) sin τ dτ
)

sin t ,

w(0) = 0 = w(π) .

Let us check that, if k > 0 is sufficiently large, the function α(t) = w(t)+k sin t is
a lower solution of problem (49), such that α� 0, with corresponding function
yα(t) = α′(t). Using a similar reasoning as in the proof of Proposition 25, it can
be seen that condition (3) holds true. Moreover,

y′α(t) = −α(t) + η̃(t)− 2

π

(∫ π

0

η̃(τ) sin τ dτ
)

sin t

≥ −α(t) + η̃(t) .

In order to obtain (4), we need to show that q(t, α(t)) ≤ η̃(t), for every t ∈ [0, π].
If t ∈ [0, δ] ∪ [π − δ, π], this is an immediate consequence of the choice of the
constant Q and the definition of η̃(t). If t ∈ ]δ, π − δ[ , taking k > 0 sufficiently
large we have that α(t) ≥ s1, hence q(t, α(t)) ≤ η(t) = η̃(t).
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A similar construction can be made so to find an upper solution β � 0.
Corollary 24 then applies, and the proof is completed.

Remark 27. We recall that, when p is identically equal to zero and q(t, ·)
is strictly decreasing, the Landesman–Lazer condition (50) is necessary and
sufficient for the existence of a solution to problem (49). Indeed, after noticing
that the differential system is in this case equivalent to the scalar second order
equation x′′ + x = q(t, x), assuming the existence of a solution x(t) such that
x(0) = 0 = x(π), multiplying the equation by sin t and integrating we get∫ π

0

q(t, x(t)) sin t dt = 0 .

Since, for every t ∈ ]0, π[ ,

lim
x→−∞

q(t, x) sin t > q(t, x(t)) sin t > lim
x→+∞

q(t, x) sin t ,

by the Monotone Convergence Theorem these functions are integrable, and
hence ∫ π

0

lim
x→−∞

q(t, x) sin t dt > 0 >

∫ π

0

lim
x→+∞

q(t, x) sin t dt .

5 Higher order systems
Let us start by considering a system of N second order scalar differential equa-
tions with Dirichlet boundary conditions,

(SDir)

{
x′′ = g(t, x) ,

x(a) = xS , x(b) = xA ,

where g : [a, b]× RN → RN is a continuous function. We use the notation

xS = (xS1 , . . . , x
S
N ) ∈ RN , xA = (xA1 , . . . , x

A
N ) ∈ RN .

Here is our definition of a well-ordered pair of lower and upper solutions, in
this case.

Definition 28. Given two C2-functions α, β : [a, b] → RN , we say that (α, β)
is a well-ordered pair of lower/upper solutions of problem (SDir) if, for every
j ∈ {1, . . . , N} and t ∈ [a, b],

αj(t) ≤ βj(t) ,

αj(a) ≤ xSj ≤ βj(a) , αj(b) ≤ xAj ≤ βj(b) ,

and, for every x ∈
∏N
m=1[αm(t), βm(t)],

α′′j (t) ≥ gj(t, x1, . . . , xj−1, αj(t), xj+1, . . . , xN ) ,

β′′j (t) ≤ gj(t, x1, . . . , xj−1, βj(t), xj+1, . . . , xN ) .

A similar situation has been studied in [11] for the periodic problem. Let us
state, for example, the analogue of [11, Theorem 2].
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Theorem 29. If there exists a well-ordered pair of lower/upper solutions (α, β),
then problem (SDir) has a solution x(t) such that

αj(t) ≤ xj(t) ≤ βj(t) , for every j ∈ {1, . . . , N} and t ∈ [a, b] . (51)

Instead of providing the proof of this result, let us generalize it, considering
the problem

(S∗Dir)


x′j = fj(t, xj , yj) ,

y′j = gj(t, x1, . . . , xN ) , j = 1, . . . , N ,

xj(a) = xSj , xj(b) = xAj ,

where the functions fj : [a, b]×R2 → R and gj : [a, b]×RN → R are continuous.
The definition of a well-ordered pair of lower and upper solutions now becomes
the following.

Definition 30. Given two C1-functions α, β : [a, b] → RN , we say that (α, β)
is a well-ordered pair of lower/upper solutions of problem (S∗Dir) if, for every
j ∈ {1, . . . , N} and t ∈ [a, b],

αj(t) ≤ βj(t) ,

αj(a) ≤ xSj ≤ βj(a) , αj(b) ≤ xAj ≤ βj(b) ,

and there exist two C1-functions yα, yβ : [a, b] → RN such that, for every j ∈
{1, . . . , N} and t ∈ [a, b],{

s < yαj (t) ⇒ fj(t, αj(t), s) < α′j(t) ,

s > yαj (t) ⇒ fj(t, αj(t), s) > α′j(t) ,
(52)

{
s < yβj (t) ⇒ fj(t, βj(t), s) < β′j(t) ,

s > yβj (t) ⇒ fj(t, βj(t), s) > β′j(t) ,
(53)

and, for every x ∈
∏N
m=1[αm(t), βm(t)],

(yαj )′(t) ≥ gj(t, x1, . . . , xj−1, αj(t), xj+1, . . . , xN ) , (54)

(yβj )′(t) ≤ gj(t, x1, . . . , xj−1, βj(t), xj+1, . . . , xN ) . (55)

Let us prove the following generalization of Theorem 29.

Theorem 31. Assume the existence of a well-ordered pair (α, β) of lower/upper
solutions of problem (S∗Dir), and that, for every j = 1, . . . , N ,

lim
s→−∞

fj(t, ξ, s) = −∞ , lim
s→+∞

fj(t, ξ, s) = +∞ , (56)

uniformly for (t, ξ) ∈ [a, b] × [minαj ,maxβj ]. Then, there exists a solution of
problem (S∗Dir) such that

αj(t) ≤ xj(t) ≤ βj(t) , (57)

for every j ∈ {1, . . . , N} and t ∈ [a, b].
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Proof. We can easily adapt the proof of Corollary 10 to this context and, like
in [12, Lemma 15], recover the curves γ±,j , γ̂±,j such that, for every t ∈ [a, b]
and x ∈

∏
j [αj(t), βj(t)],

γ−,j(xj) < min{yαj (t), yβj (t)} ≤ max{yαj (t), yβj (t)} < γ+,j(xj) ,

γ̂−,j(xj) < min{yαj (t), yβj (t)} ≤ max{yαj (t), yβj (t)} < γ̂+,j(xj) ,

and

fj
(
t, xj , γ+(xj)

)
γ′+(xj) < gj(t, x) < fj

(
t, xj , γ−(xj)

)
γ′−(xj) ,

fj
(
t, xj , γ̂−(xj)

)
γ̂′−(xj) < gj(t, x) < fj

(
t, xj , γ̂+(xj)

)
γ̂′+(xj) .

Moreover, using (56), these curves can be chosen so that

yj ≥ min{γ+,j(xj), γ̂+,j(xj)} ⇒ fj(t, xj , yj) >
xAj − xSj
b− a

,

yj ≤ max{γ−,j(xj), γ̂−,j(xj)} ⇒ fj(t, xj , yj) <
xAj − xSj
b− a

.

Following the main ideas of the proof of Theorem 11, after taking a constant
D such that

‖γ±,j‖∞ ≤ D , ‖γ̂±,j‖∞ ≤ D , for every j ∈ {1, . . . , N} ,

we can introduce the modified problem

(S̃∗Dir)


x′j = f̃j(t, xj , yj) ,

y′j = g̃j(t, x1, . . . , xN ) , j = 1, . . . , N ,

xj(a) = xSj , xj(b) = xAj ,

where

f̃j(t, xj , yj) = fj

(
t, ζ
(
xj ;αj(t), βj(t)

)
, ζ
(
yj ;−D,D

))
+ e
(
yj ;−D,D

)
,

g̃j(t, x1, . . . , xN ) = gj

(
t , ζ

(
x1;α1(t), β1(t)

)
, . . . , ζ

(
xN ;αN (t), βN (t)

))
+

+ e
(
xj ;αj(t), βj(t)

)
.

An analogue of Claim 3 holds, working separately on every pair of coor-
dinates (xj , yj) while considering the remaining components as parameters.
Hence, we can prove that all the solutions of (S̃∗Dir) satisfy (57) and

min{γ−,j(xj(t)), γ̂−,j(xj(t))} < yj(t) < max{γ+,j(xj(t)), γ̂+,j(xj(t))} , (58)

for every j ∈ {1, . . . , N} and t ∈ [a, b]. In such a way, following the lines of the
proof of Theorem 11, one easily concludes.

As an example of application, we consider the Dirichlet-Neumann problem
(φ1(x′1))′ + γ1(t, x1, x2, x

′
1, x
′
2)x′1 − |x1|σ1−1x1 = p1(t, x1, x2, x

′
1, x
′
2) ,

(φ2(x′2))′ + γ2(t, x1, x2, x
′
1, x
′
2)x′2 − |x2|σ2−1x2 = p2(t, x1, x2, x

′
1, x
′
2) ,

x1(a) = 0 = x1(b) ,

x′2(a) = 0 = x′2(b) ,

(59)
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ruled by some increasing homeomorphisms φ1, φ2 : R → R, with φ1(0) =
φ2(0) = 0. Here, σ1, σ2 are positive constants, the functions γ1, γ2, p1, p2 :
[a, b] × R4 → R are continuous, and p1, p2 are also bounded. Choosing the
constant functions α(t) = (−‖p1‖∞,−‖p2‖∞) and β(t) = (‖p1‖∞, ‖p2‖∞), with
corresponding functions yα(t) = yβ(t) = (0, 0), we see that (α, β) is a well-
ordered pair of lower and upper solutions of problem (59), which then has a
solution (x1, x2) such that

|x1(t)| ≤ ‖p1‖∞ and |x2(t)| ≤ ‖p2‖∞ , for every t ∈ [a, b] .

Concerning the non-well-ordered case, we can similarly deal with a system
like

(S0
Dir)


x′j = yj + pj(t, xj , yj) ,

y′j = −xj + qj(t, x1, . . . , xN ) , j = 1, . . . , N .

xj(0) = 0 = xj(π) ,

In this case, the definition of lower and upper solutions must be given separately,
assuming (54) and (55) to be true for every x ∈ RN . We can then state the
following result.

Theorem 32. Assume the existence of a non-well-ordered pair (α, β) of low-
er/upper solutions of problem (S0

Dir), where pj : [0, π] × R2 → R and qj :
[0, π] × RN → R are locally Lipschitz continuous and uniformly bounded, for
every j = 1, . . . , N . Then, there exists a solution (x, y) such that

αj 6� xj and xj 6� βj ,

for every j = 1, . . . , N .

Proof. It can be carried out following the lines of the proof of Theorem 17,
working separately on every pair of coordinates (xj , yj) while considering the
remaining components as parameters. We omit the details, for briefness.

It is now possible to provide a large number of examples, in the same spirit
of systems (46) and (49).

A Appendix. Proof of the claims
In this final section we provide the proofs of Claims 1–4 introduced in the
previous sections in order to obtain Theorems 5, 11, and 17.

A.1 Proof of Claim 1
Let us define the following regions

ANE = {(t, x, y) : t ∈ [a, b] , x > β(t) , y > yβ(t)} ,
ASE = {(t, x, y) : t ∈ [a, b] , x > β(t) , y < yβ(t)} ,
ASW = {(t, x, y) : t ∈ [a, b] , x < α(t) , y < yα(t)} ,
ANW = {(t, x, y) : t ∈ [a, b] , x < α(t) , y > yα(t)} .
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Lemma 33. Let u = (x, y) be a solution of

x′ = f̃(t, x, y) , y′ = g̃(t, x, y) . (60)

Then, for any t0 ∈ [a, b],

(t0, u(t0)) ∈ ASE ⇒ (t, u(t)) ∈ ASE for every t ∈ [a, t0] ,

(t0, u(t0)) ∈ ANW ⇒ (t, u(t)) ∈ ANW for every t ∈ [a, t0] ,

(t0, u(t0)) ∈ ANE ⇒ (t, u(t)) ∈ ANE for every t ∈ [t0, b] ,

(t0, u(t0)) ∈ ASW ⇒ (t, u(t)) ∈ ASW for every t ∈ [t0, b] .

Proof. From (3), (4), (6), and (7) we get, for every t ∈ [a, b],{
f̃(t, x, y) < α′(t) , if x ≤ α(t) and y < yα(t) ,

f̃(t, x, y) > α′(t) , if x ≤ α(t) and y > yα(t) ;
(61)

{
f̃(t, x, y) < β′(t) , if x ≥ β(t) and y < yβ(t) ,

f̃(t, x, y) > β′(t) , if x ≥ β(t) and y > yβ(t) ;
(62)

{
g̃(t, x, yα(t)) < y′α(t) , if x < α(t) ,

g̃(t, x, yβ(t)) > y′β(t) , if x > β(t) .
(63)

The proof can be obtained as an immediate consequence of the previous
estimates.

Lemma 34. Let u = (x, y) be a solution of (60). If, for any t0 ∈ [a, b],

x(t0) < α(t0) and y(t0) = yα(t0) ,

then there exists δ > 0 such that

t0 6= a , t ∈ ]t0 − δ, t0[ ⇒ (t, u(t)) ∈ ANW ,

t0 6= b , t ∈ ]t0, t0 + δ[ ⇒ (t, u(t)) ∈ ASW .

Similarly, if, for any t0 ∈ [a, b],

x(t0) > β(t0) and y(t0) = yβ(t0) ,

then there exists δ > 0 such that

t0 6= a , t ∈ ]t0 − δ, t0[ ⇒ (t, u(t)) ∈ ASE ,
t0 6= b , t ∈ ]t0, t0 + δ[ ⇒ (t, u(t)) ∈ ANE .

Proof. The proof is an immediate consequence of (63).

Lemma 35. For each λ ∈ [0, 1], all the solutions of (P̃λ) satisfy

α(t) ≤ x(t) ≤ β(t) , for every t ∈ [a, b] . (64)

29



Proof. Recalling that (α(a), yα(a)) ∈ H+
S and (β(a), yβ(a)) ∈ H−S , and applying

Lemmas 33 and 34, we can prove that, for every λ ∈ [0, 1],

(x(a), y(a)) ∈ `λS , x(a) < α(a) ⇒ (a, x(a), y(a)) ∈ ASW , x(a) < α(a)

⇒ (t, x(t), y(t)) ∈ ASW for every t ∈ ]a, b] ,

(x(a), y(a)) ∈ `λS , x(a) > β(a) ⇒ (a, x(a), y(a)) ∈ ANE , x(a) > β(a)

⇒ (t, x(t), y(t)) ∈ ANE for every t ∈ ]a, b] .

Similarly, since (α(b), yα(b)) ∈ H−A and (β(b), yβ(b)) ∈ H+
A then, for every λ ∈

[0, 1],

(x(b), y(b)) ∈ `λA , x(b) < α(b) ⇒ (b, x(b), y(b)) ∈ ANW , x(b) < α(b)

⇒ (t, x(t), y(t)) ∈ ANW for every t ∈ [a, b[ ,

(x(b), y(b)) ∈ `λA , x(b) > β(b) ⇒ (b, x(b), y(b)) ∈ ASE , x(b) > β(b)

⇒ (t, x(t), y(t)) ∈ ASE for every t ∈ [a, b[ .

The only reasonable conclusion is that α(a) ≤ x(a) ≤ β(a) and α(b) ≤ x(b) ≤
β(b). Indeed, if x(a) < α(a) then (t, x(t), y(t)) ∈ ASW for every t ∈ ]a, b]. In
particular (b, x(b), y(b)) ∈ ASW and so x(b) < α(b). Since (x(b), y(b)) ∈ `λA we
get (b, x(b), y(b)) ∈ ANW , too. We get a contradiction since ASW ∩ANW = ∅.
A similar argument rules out the other three cases.

With a similar reasoning, the validity of Lemmas 33 and 34 forbids the
existence of t0 ∈ ]a, b[ such that x(t0) < α(t0) or x(t0) > β(t0).

Lemma 36. For each λ ∈ [0, 1], all the solutions of (P̃λ) satisfy

γ−(x(t)) < y(t) < γ+(x(t)) , for every t ∈ [a, b] . (65)

Proof. By Lemma 35 we know that α(t) ≤ x(t) ≤ β(t) for every t ∈ [a, b].
Hence, (65) can be rephrased as

(t, x(t), y(t)) ∈ V , for every t ∈ [a, b] ,

where

V = {(t, x, y) ∈ [a, b]× R2 : α(t) ≤ x ≤ β(t) , γ−(x) < y < γ+(x)} .

Assumption (15) ensures that

γ−(x) < FλA(x) < γ+(x) , for every x ∈ [µ,M] .

In particular, (b, x(b), y(b)) ∈ V . By contradiction, assume the existence of
t0 ∈ [a, b[ such that y(t0) ≥ γ+(x(t0)). Then, defining G+(t) = y(t)− γ+(x(t)),
since G+(t0) ≥ 0 > G+(b) we can find t1 ∈ [t0, b[ such that G+(t1) = 0 and
G+(t) < 0 in a right neighborhood of t1. Computing

G′+(t1) = y′(t1)− γ′+(x(t1))x′(t1)

= g̃
(
t1, x(t1), γ+(x(t1))

)
− γ′+(x(t1))f̃

(
t1, x(t1), γ+(x(t1))

)
= g
(
t1, x(t1), γ+(x(t1))

)
− γ′+(x(t1))f

(
t1, x(t1), γ+(x(t1))

)
> 0 , (66)

we get a contradiction. The existence of a certain t0 ∈ [a, b[ such that y(t0) ≤
γ−(x(t0)) analogously leads to a contradiction.

Lemmas 35 and 36 complete the proof of Claim 1.
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A.2 Proof of Claim 2
System (Qσ) can be rewritten as

(Qσ)

{
x′ = y + (1− σ)fb(t, x, y) , y′ = x+ (1− σ)gb(t, x, y) ,

(x(a), y(a)) ∈ `1S(σ) , (x(b), y(b)) ∈ `1A(σ) ,

where fb(t, x, y) = f̃(t, x, y) − y and gb(t, x, y) = g̃(t, x, y) − x are bounded
functions.

We argue by contradiction and assume the existence of two sequences (σn)n
in [0, 1] and (un)n = (xn, yn)n in C1([a, b],R2), with limn ‖un‖∞ = +∞, where
un is a solution of (Qσn). We set wn = un/‖un‖∞. Then, wn = (ξn, υn) solves

ξ′ = υ + (1− σn) fb,n(t, ξ, υ) ,

υ′ = ξ + (1− σn) gb,n(t, ξ, υ) ,

‖un‖∞(ξ(a), υ(a)) ∈ `1S(σ) ,

‖un‖∞(ξ(b), υ(b)) ∈ `1A(σ) ,

(67)

where

fb,n(t, ξ, υ) =
1

‖un‖∞
fb(t, ξ‖un‖∞, υ‖un‖∞) ,

gb,n(t, ξ, υ) =
1

‖un‖∞
gb(t, ξ‖un‖∞, υ‖un‖∞) .

Since wn ∈ C1([a, b],R2) is such that ‖wn‖∞ = 1 for every n, we can deduce
that the sequence (‖w′n‖∞)n is bounded. Hence, by a compactness argument
there are σ̄ ∈ [0, 1] and w̄ = (ξ̄, ῡ) ∈ C([a, b],R2), with ‖w̄‖∞ = 1, such that, up
to a subsequence,

lim
n
σn = σ̄ , lim

n
‖wn − w̄‖∞ = 0 .

Since fb,n → 0 and gb,n → 0 uniformly, then, passing to the limit as n → +∞,
we see that w̄ = (ξ̄, ῡ) solves

ξ̄′ = ῡ , ῡ′ = ξ̄ . (68)

Let us now focus our attention on the boundary conditions the function
w̄ = (ξ̄, ῡ) must satisfy. We have

υn(a) = 1
‖un‖∞Y

σ
S (‖un‖∞ξn(a)) = m1

S ξn(a) + 1
‖un‖∞ (1− σn)q1

S ,

υn(b) = 1
‖un‖∞Y

σ
A (‖un‖∞ξn(b)) = m1

A ξn(b) + 1
‖un‖∞ (1− σn)q1

A ,

so that, passing to the limit as n→ +∞,

ῡ(a) = m1
S ξ̄(a) , ῡ(b) = m1

A ξ̄(b) ,

Recalling that m1
S ≥ 0, and so ξ̄(a)ῡ(a) ≥ 0, since w̄ 6= 0 solves (68) we

conclude that ξ̄(t)ῡ(t) > 0 for every t ∈ ]a, b]. Similarly, since m1
A ≤ 0 we get

ξ̄(t)ῡ(t) < 0 for every t ∈ [a, b[ . We get a contradiction.
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A.3 Proof of Claim 3
Since α(a) ≤ min{xS , xA} ≤ max{xS , xA} ≤ β(a) and α(b) ≤ min{xS , xA} ≤
max{xS , xA} ≤ β(b), recalling the validity of Lemmas 33 and 34 also in the
present situation, we can show that all the solutions of (P̃ ) satisfy (30) for every
t ∈ [a, b]. We are going now to prove the validity of (31) for every t ∈ [a, b], too.

We argue by contradiction and we assume the existence of a solution of (P̃ ),
such that y(t0) ≥ max{γ+(x(t0)), γ̂+(x(t0))}, for a certain t0 ∈ [a, b]. Recalling
the procedure adopted in order to get the contradicting estimate in (66), we can
prove that

y(t) ≥ γ+(x(t)) , for every t ∈ [t0, b] ,

y(t) ≥ γ̂+(x(t)) , for every t ∈ [a, t0] ,

thus obtaining

y(t) ≥ min{γ+(x(t)) , γ̂+(x(t))} , for every t ∈ [a, b] . (69)

We can find an interval [t1, t2] ⊆ [a, b] with the following property: x(t1) = xS ,
x(t2) = xA, and min{xS , xA} ≤ x(t) ≤ max{xS , xA} for every t ∈ [t1, t2]. Re-
calling the definition of f̃ , with D as in (32), and the hypothesis (28), since (69)
holds, we get

x′(t) = f̃(t, x(t), y(t)) >
xA − xS
b− a

, (70)

for every t ∈ [t1, t2]. If xS = xA then x′(t) > 0 when x(t) = xA = xS thus giving
a contradiction. Otherwise, the interval [t1, t2] is not trivial, and, integrating in
this interval, we get

(xA − xS)

(
1− t2 − t1

b− a

)
> 0 . (71)

If xA < xS we get a contradiction, so we need to consider the remaining case
xA > xS . The case [t1, t2] = [a, b] is forbidden by (71). Moreover, from (70),
we get x′(t) > 0 when x(t) ∈ [xS , xA], so that t1 = a and x(t) > xA in a right
neighborhood of t2. So, since x(b) = xA, we have necessarily the existence of
t3 ∈ ]t2, b] such that x(t3) = xA and x′(t3) ≤ 0 providing a contradiction also in
this case.

We have thus proved that y(t) < max{γ+(x(t)), γ̂+(x(t))}, for every t ∈
[a, b]. Analogously one proves that y(t) > min{γ−(x(t)), γ̂−(x(t))}, for every
t ∈ [a, b].

A.4 Proof of Claim 4
By contradiction, assume that there exist a sequence of numbers rn ≥ n and
some solutions un = (xn, yn) of problems (Prn) such that α 6� xn, xn 6� β,
and ‖un‖∞ > n. Define vn = xn/‖un‖∞ and wn = yn/‖un‖∞ . Then, (vn, wn)
solves{

v′n = wn + 1
‖un‖∞ prn(t, xn) , w′n = −vn + 1

‖un‖∞ qrn(t, xn, yn) ,

vn(0) = 0 = vn(π) .
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By a standard compactness argument there is a subsequence, still denoted by
(vn, wn)n, such that, for some (v, w) ∈ C1([0, π])×C([0, π]), we have that vn → v
in C1([0, π]) and wn → w uniformly; moreover, since prn and qrn are bounded
and both rn → +∞ and ‖un‖∞ → +∞, we deduce that w ∈ C1([0, π]) and
(v, w) solves {

v ′ = w , w ′ = −v ,
v(0) = 0 = v(π) .

Since ‖(v, w)‖∞ = 1, it has to be either (v, w) = (ϕ1, ϕ
′
1), or (v, w) = −(ϕ1, ϕ

′
1).

Assume that (v, w) = (ϕ1, ϕ
′
1). By Lemma 20, there exists C > 0 such that

α� Cϕ1. Since vn → ϕ1 in C1([0, π]), for n large enough it has to be vn � 1
2ϕ1

and
xn = ‖un‖∞vn � 1

2‖un‖∞ϕ1 � Cϕ1 � α ,

a contradiction. A similar contradiction is reached if (v, w) = −(ϕ1, ϕ
′
1), thus

completing the proof.
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