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Abstract. We prove the existence of bounded and periodic solutions
for planar systems by introducing a notion of lower and upper solutions
which generalizes the classical one for scalar second order equations.
The proof relies on phase plane analysis; after suitably modifying the
nonlinearities, the Ważewski theory provides a solution which remains
bounded in the future. For the periodic problem, the Massera Theorem
applies, yielding the existence result. We then show how our result gen-
eralizes some well known theorems on the existence of bounded and of
periodic solutions. Finally, we provide some corollaries on the existence
of almost periodic solutions for scalar second order equations.

1 Introduction

The notion of lower and upper solutions for some second order scalar ordi-
nary differential equations, with separated boundary conditions, was already
introduced by Picard [26] in 1893. Concerning the general equation

x′′ = g(t, x, x′) , (1)

the first attempts towards a modern definition were made by Scorza Drag-
oni [30] in 1931, and few years later Nagumo [20] provided the by now classical
one, requiring that the lower solution α and the upper solution β satisfy the
familiar inequalities

α′′(t) ≥ g(t, α(t), α′(t)) , β′′(t) ≤ g(t, β(t), β′(t)) .

In order to get the existence of a solution in the presence of lower and upper
solutions α ≤ β, he also needed to assume what we call today a Nagumo
condition: there is a positive continuous function ϕ : [0,+∞[→ R such that

|g(t, x, y)| ≤ ϕ(|y|) , for every (t, x, y) ∈ R× [a, b]× R ,

where a = inf α, b = sup β, and∫ +∞

0

s

ϕ(s)
ds = +∞ .
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Many different variants of the Nagumo condition have been proposed since
then, and it has been shown that, in general, such a condition cannot be
completely avoided (see, e.g., [7, 12]). We refer to [5, 7] for a more complete
historical account.

Surprisingly enough, the first results for the periodic problem associated
to (1), due to Knobloch [17], appeared only in 1963. This is probably due
to the method of proof, which relied on the search of fixed points of some
nonlinear operators in a suitable Banach space of periodic functions, having
to face the difficulty that the differential operator is not invertible in this case.

The problem of boundedness of the solutions of equation (1) has a long his-
tory, as well (see, e.g., [1, 11, 22, 25, 32] and the references therein). Although
apparently different from usual boundary value problems, the existence of a
bounded solution of (1) has also been proved by the use of lower and upper
solutions [2, 19, 28].

The lower/upper solutions theory was developed in several directions, by
different methods. The first proofs made use of iterative methods; fixed point
theory played a central role, mainly by the use of topological degree; and, when
the nonlinearity does not depend on the derivative, also variational methods
have been proposed. The regularity of α and β has been considerably weak-
ened. The ordering α ≤ β has been exploited to provide minimal and maximal
solutions. The case α 6≤ β has also been analyzed, assuming some nonreso-
nance conditions with respect to the higher part of the spectrum of the dif-
ferential operator. Other types of differential operators have been considered,
even involving partial differential equations of elliptic or parabolic type (see,
e.g., [9, 10] and the references therein).

In particular, much attention has been given to the equation

(φ(x′))′ = h(t, x, x′) , (2)

assuming for α and β the inequalities

(φ(α′))′(t) ≥ h(t, α(t), α′(t)) , (φ(β′))′(t) ≤ h(t, β(t), β′(t)) .

Here, φ : I → J is an increasing homeomorphism between two intervals I
and J containing 0, and φ(0) = 0. Typical examples in the applications
involve the choice φ(υ) = |υ|p−2υ, leading to the so-called “scalar p-Laplacian”
operator, or φ(υ) = υ/

√
1 + υ2, providing a “mean curvature” operator, or

φ(υ) = υ/
√

1− υ2, providing a “relativistic” operator.

Notice that equation (2) can be written as an equivalent first order planar
system

x′ = φ−1(y) , y′ = g(t, x, y) ,

with g(t, x, y) = h(t, x, φ−1(y)). Concerning α and β, whose derivatives take
their values in the domain of φ, we can define the functions yα(t) = φ(α′(t))
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and yβ(t) = φ(β′(t)), so that the inequalities characterizing the lower and
upper solutions become

y′α(t) ≥ g(t, α(t), yα(t)) , y′β(t) ≤ g(t, β(t), yβ(t)) .

This simple observation will be our guide to provide a notion of lower and
upper solutions for a general planar system

x′ = f(t, x, y) , y′ = g(t, x, y) . (3)

Besides the fact that the function f may depend also on t and x, a major
improvement is achieved in that we do not need any monotonicity with respect
to y (cf. [3]).

The aim of this paper is twofold. On one hand, we are interested in finding
a bounded solution of system (3), i.e., a solution for which

sup
{
|x(t)|+ |y(t)| : t ∈ R

}
< +∞ .

On the other hand, assuming f and g to be T -periodic in their first variable t,
we want to prove the existence of a T -periodic solution of (3). As a consequence
of our results, we will also be able to deal with the problem of almost periodic
solutions. This is a much more delicate argument, in view of a counter-example
by Ortega and Tarallo [24] (see however [8, 33]).

Our results generalize some known theorems on the existence of bounded,
periodic or almost periodic solutions for scalar second order equations. How-
ever, concerning our definition of lower and upper solutions, we will not aim
at the greatest generality, in order to keep the exposition not too complicated.

Our approach is based on a dynamical study of the solutions of system (3).
We define an open set V in R3 whose projection on the (x, y)-plane is bounded,
and show that, after modifying f(t, x, y) and g(t, x, y) outside V (the closure of
V ), the Ważewski Theorem [35] can be applied. Having thus found a solution
which is bounded in the future, a simple argument provides a solution which
remains in V for all times. Concerning the periodic problem, once a bounded
solution is found, the Massera Theorem [18] provides a T -periodic solution of
the modified system. We then show that this solution remains in V , so that it
is indeed a solution of the original problem. In the case when the nonlinearity
is strictly increasing in the x variable and almost periodic in t, a theorem by
Corduneanu [6] will provide us an existence result for almost periodic solutions
for equations (1) and (2) with mean curvature and relativistic operators.

The Ważewski method was already used by many authors to study the
existence of solutions for boundary value problems [14, 15, 27]. Combined with
the Massera Theorem, it has been proposed in [2, 16] for the search of periodic
solutions of (1) in the framework of constant lower and upper solutions.
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The paper is organized as follows. In Section 2 we specify our setting,
introducing the notion of lower and upper solution for system (3), and we
state our main theorem, whose proof is given in Section 4 (see also Section 5,
where a more general version of the theorem will be proposed). In Section 3
we provide some corollaries and applications. In particular, we show how to
deal with the case when the Nagumo condition is satisfied; then, we consider
an equation with a mean curvature operator and provide existence results
assuming some bound on the forcing term; finally, we consider an equation
with a relativistic operator and prove that our results apply also to this case.
In Section 6 we treat the problem of existence of almost periodic solutions for
equations of the type (1) or (2) with mean curvature and relativistic operators.
The paper ends with an Appendix in which, for the reader’s convenience, we
state and prove Corduneanu’s Theorem on almost periodic solutions.

2 The main result

Our aim is to prove an existence result for bounded and for periodic solutions
of system (3), where f, g : R3 → R are continuous functions. We first give our
definition of lower and upper solutions.

Definition 1. A continuously differentiable function α : R → R is said to be
a lower solution for (3) if the following properties hold:

(i) there exists a unique function yα : R→ R such that{
y < yα(t) ⇒ f(t, α(t), y) < α′(t) ,

y > yα(t) ⇒ f(t, α(t), y) > α′(t) ;
(4)

(ii) yα is continuously differentiable, and

y′α(t) ≥ g(t, α(t), yα(t)) , for every t ∈ R ; (5)

(iii) there are two positive constants δ,m such that, when |y − yα(t)| ≤ δ,{
y < yα(t)−m|x− α(t)| ⇒ f(t, x, y) < α′(t) ,

y > yα(t) +m|x− α(t)| ⇒ f(t, x, y) > α′(t) .
(6)

We say that α is a strict lower solution if (5) holds with strict inequality.

Notice that the inequalities in (4) imply the identity

f(t, α(t), yα(t)) = α′(t) , for every t ∈ R . (7)

Here and in the sequel, the curve Γα : R→ R3, defined as

Γα(t) = (t, α(t), yα(t)) ,

will play an important role. We illustrate in Figure 1 the inequalities appearing
in (i) and (iii) above.
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Figure 1: In the red region f(t, x, y) > α′(t), in the green one f(t, x, y) < α′(t)

Remark 2. Whenever the function f(t, x, y) does not depend on x, condition
(i) implies (iii), hence (iii) does not need to be explicitly stated.

Remark 3. In the particular case when f : R3 → R is continuously differen-
tiable, condition (iii) holds assuming

∂f

∂y
(Γα(t)) ≥ c > 0 , for every t ∈ R .

In this case, by (7) and (ii), we have that a lower solution α is twice contin-
uously differentiable and, differentiating in (7), we see that (5) is equivalent
to

α′′(t) ≥ ∂f

∂t
(Γα(t)) +

∂f

∂x
(Γα(t))α′(t) +

∂f

∂y
(Γα(t))g(Γα(t)) ,

for every t ∈ R. Clearly, we have the strict inequality if α is a strict lower
solution.

We now give the analogous definition for an upper solution.

Definition 4. A continuously differentiable function β : R → R is said to be
an upper solution for (3) if the following properties hold:

(i) there exists a unique function yβ : R→ R such that{
y < yβ(t) ⇒ f(t, β(t), y) < β′(t) ,

y > yβ(t) ⇒ f(t, β(t), y) > β′(t) ;
(8)

5



(ii) yβ is continuously differentiable, and

y′β(t) ≤ g(t, β(t), yβ(t)) , for every t ∈ R ; (9)

(iii) there are two positive constants δ,m such that, when |y − yβ(t)| ≤ δ,{
y < yβ(t)−m|x− β(t)| ⇒ f(t, x, y) < β′(t) ,

y > yβ(t) +m|x− β(t)| ⇒ f(t, x, y) > β′(t) .
(10)

We say that β is a strict upper solution if (9) holds with strict inequality.

Notice that the inequalities in (8) imply the identity

f(t, β(t), yβ(t)) = β′(t) , for every t ∈ R . (11)

Observe also that (4) and (8) are of the same type, as well as (6) and (10),
while in (5) and (9) the inequalities are reversed. Again, if f(t, x, y) does not
depend on x, condition (iii) needs not to be explicitly stated.

As above, we can define Γβ : R→ R3 by

Γβ(t) = (t, β(t), yβ(t)) .

Whenever f : R3 → R is continuously differentiable with

∂f

∂y
(Γβ(t)) ≥ c > 0 , for every t ∈ R ,

we have that (iii) holds and, differentiating in (11), we see that (9) is equivalent
to

β′′(t) ≤ ∂f

∂t
(Γβ(t)) +

∂f

∂x
(Γβ(t))β′(t) +

∂f

∂y
(Γβ(t))g(Γβ(t)) ,

with strict inequality if β is a strict upper solution.

We now state our main theorem for the existence of bounded and periodic
solutions for system (3).

Theorem 5. Let f, g : R3 → R be continuous functions. Assume that there
exist a bounded lower solution α and a bounded upper solution β for (3), with
α(t) < β(t) for every t ∈ R, and let a = inf α, b = sup β. Assume moreover
that there exist two continuously differentiable functions γ± : [a, b] → R, such
that

γ−(x) < min{yα(t), yβ(t)} , f(t, x, γ−(x))γ′−(x) > g(t, x, γ−(x)) , (12)

and

γ+(x) > max{yα(t), yβ(t)} , f(t, x, γ+(x))γ′+(x) < g(t, x, γ+(x)) , (13)
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for every t ∈ R and x ∈ [α(t), β(t)]. Then, there exists a bounded solution
(x(t), y(t)) of (3) satisfying

α(t) ≤ x(t) ≤ β(t) and γ−(x(t)) ≤ y(t) ≤ γ+(x(t)) , for every t ∈ R . (14)

If, moreover, f and g are T -periodic in their first variable t, and α, β are also
T -periodic, then there exists a T -periodic solution (x(t), y(t)) of (3) satisfy-
ing (14).

The proof of this theorem is postponed to Section 4. In Section 5 we will
extend Theorem 13 to a more general setting, where the functions γ± may also
depend on t.

3 Some applications

In this section, divided in three subsections, we want to provide some more spe-
cific conditions in order to guarantee the existence of bounded and of periodic
solutions to system (3). First, we analyze the Nagumo condition. Then, equa-
tions involving mean curvature-like operators are studied. Finally, equations
of relativistic type are also treated.

3.1 The Nagumo condition

In the theorem below we introduce some Nagumo-type conditions for the func-
tions f and g.

Theorem 6. Let f, g : R3 → R be continuous functions. Assume the existence
of a bounded lower solution α and a bounded upper solution β for (3), with
α(t) < β(t) for every t ∈ R, and let a = inf α, b = sup β. Moreover, let the
following assumptions hold:

A1. there are a constant d > 0 and two continuous functions f+ : [0,+∞[→ R
and f− : ]−∞, 0]→ R such that{

y ≥ d ⇒ f(t, x, y) ≥ f+(y) > 0 ,

y ≤ −d ⇒ f(t, x, y) ≤ f−(y) < 0 ,
for every (t, x) ∈ R× [a, b] ;

A2. there is a positive continuous function ϕ : [0,+∞[→ R such that

|g(t, x, y)| ≤ ϕ(|y|) , for every (t, x, y) ∈ R× [a, b]× R ; (15)

A3. the above functions are such that∫ +∞

0

f+(s)

ϕ(s)
ds = +∞ ,

∫ 0

−∞

f−(s)

ϕ(|s|)
ds = −∞ . (16)

Then, there exists a bounded solution (x(t), y(t)) of (3), with

α(t) ≤ x(t) ≤ β(t) , for every t ∈ R . (17)
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If, moreover, f and g are T -periodic in their first variable t, and α, β are also
T -periodic, then there exists a T -periodic solution (x(t), y(t)) of (3) whose first
component satisfies (17).

Proof. We show that the assumptions A1, A2 and A3 permit us to construct
the two functions γ± : [a, b]→ R satisfying the conditions in the statement of
Theorem 5.

Let us construct γ+(x). For any y0 > 0, let Fy0 : [0,+∞[→ R be the
function defined as

Fy0(ξ) =

∫ ξ

y0

f+(s)

ϕ(s)
ds .

It is easy to check that Fy0 is strictly increasing on [d,+∞[ and, by the first
equality in (16), we see that

lim
ξ→+∞

Fy0(ξ) = +∞ .

Moreover, for any M ≥ 0, using the first equality in (16) again,

lim
y0→+∞

Fy0(ξ) = −∞ , uniformly for ξ ∈ [0,M ] . (18)

Take y0 > 0 large enough so that Fy0(0) < −2(b−a). Then, for every x ∈ [a, b]
there is a unique ξ ∈ ]0,+∞[ such that Fy0(ξ) = −2(x − a), and we define
γ+(x) = ξ; we thus have

Fy0(γ+(x)) = −2(x− a) , for every x ∈ [a, b] . (19)

By (18),

lim
y0→+∞

γ+(x) = +∞ , uniformly for x ∈ [a, b] ,

so that the first part of (13) holds, for y0 > d large enough. Differentiating
in (19), we see that γ′+(x) < 0 for every x ∈ [a, b], and

f(t, x, γ+(x))γ′+(x) ≤ f+(γ+(x))γ′+(x)

= −2ϕ(γ+(x)) < −ϕ(γ+(x))

≤ g(t, x, γ+(x)) ,

thus proving also the second part of (13).

Analogously we can construct γ−(x) satisfying (12). Hence, Theorem 5
applies, yielding the conclusion.

Let us now provide some examples where Theorem 6 applies. Assume for
instance that f(t, x, y) = f(y), so that we are dealing with the system

x′ = f(y) , y′ = g(t, x, y) . (20)
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Corollary 7. Let f : R→ R and g : R3 → R be continuous functions. Assume
the existence of a bounded lower solution α and a bounded upper solution β
for (20), with α(t) < β(t) for every t ∈ R, and let a = inf α, b = sup β.
Moreover, let there exist a constant d > 0 such that

y ≥ d ⇒ yf(y) > 0 ,

and a positive continuous function ϕ : [0,+∞[→ R such that (15) holds. If∫ +∞

0

f(s)

ϕ(s)
ds = +∞ ,

∫ 0

−∞

f(s)

ϕ(|s|)
ds = −∞ , (21)

then the same conclusions of Theorem 6 hold.

Proof. We can take f− = f = f+, and apply Theorem 6.

As a special case, assume f : R→ R to be a strictly increasing continuous
function, with f(0) = 0, and denote by ]ω−, ω+[ its image f(R). Setting
φ = f−1 : ]ω−, ω+[→ R, system (3) is equivalent to the scalar equation

(φ(x′))′ = h(t, x, x′) , (22)

where h(t, x, z) = g(t, x, φ(z)). In this case, if α and β are lower/upper solu-
tions, we have yα(t) = φ(α′(t)), yβ(t) = φ(β′(t)), and

(φ(α′))′(t) ≥ h(t, α(t), α′(t)) , (φ(β′))′(t) ≤ h(t, β(t), β′(t)) .

Assumptions (15) and (21) are satisfied if there is a positive continuous function
ψ : [0,+∞[→ R such that

|h(t, x, z)| ≤ ψ(|z|) , for every (t, x, z) ∈ R× [a, b]× ]ω−, ω+[ ,

and ∫ ω+

0

υφ′(υ)

ψ(υ)
dυ = +∞ ,

∫ 0

ω−

υφ′(υ)

ψ(|υ|)
dυ = −∞ .

We thus ensure the existence of bounded or T -periodic solutions of equa-
tion (22).

A typical example is provided by the choice f(y) = |y|q−2y, for some q ∈
]1, 2]. In this case, we have φ(υ) = |υ|p−2υ, with p ≥ 2 satisfying (1/p)+(1/q) =
1, so that we are considering a second order equation (22) with the so-called
“scalar p-Laplacian” differential operator. We thus obtain, with a different
approach, some well-known existence results (cf. [5, 34]).

Another well-studied example is provided by taking f(y) = y/
√

1 + y2,
so that φ(υ) = υ/

√
1− υ2. Here we are considering a second order scalar

equation (22) with the so-called “relativistic” differential operator. We will
come back to this equation at the end of this section, showing that, indeed, no
Nagumo condition is necessary in this case (as already observed in [4]).
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As another example, let f(y) = %(y)(1 + η sin y), with |η| < 1 and % : R→
R an increasing homeomorphism such that %(0) = 0. Notice that f is not
invertible any more. However, we can still apply our result, taking, e.g., as α
and β two constant functions. Indeed, assuming α < β and

g(t, α, 0) ≤ 0 ≤ g(t, β, 0) , for every t ∈ R ,

we have that α′ = β′ = 0, hence yα = yβ = 0, and α, β are a lower and an
upper solution, respectively. In this case, we still have to assume (15), with a
positive continuous function ϕ satisfying∫ +∞

0

%(s)

ϕ(s)
ds = +∞ ,

∫ 0

−∞

%(s)

ϕ(|s|)
ds = −∞ ,

so to ensure the existence of a bounded or a T -periodic solution of system (20).

3.2 The mean curvature operator

We consider the scalar equation (22), where φ : R → ] − 1, 1[ is an increasing
homeomorphism such that φ(0) = 0, and h : R3 → R is continuous. Setting
f(y) = φ−1(y) and g(t, x, y) = h(t, x, φ−1(y)), we have that equation (22) is
equivalent to system (20). Since f : ]− 1, 1[→ R and g : R×R× ]− 1, 1[→ R
are not defined on R and R3, respectively, we will need to modify and extend
these functions, so to be able to apply Theorem 5.

For simplicity, we assume φ (hence also f) to be an odd function. We define
the function F : ]− 1, 1[→ R as F (y) =

∫ y
0
f(s) ds, and set

F (1) =

∫ 1

0

f(s) ds = lim
y→1−

F (y) .

Notice that F (1) could be +∞.

Proposition 8. In the above setting, assume the existence of a bounded lower
solution α and a bounded upper solution β for (20), with bounded derivatives,
such that α(t) < β(t) for every t ∈ R, and set a = inf α, b = sup β. Assume
moreover that there is a c ≥ 0 such that

|h(t, x, z)| ≤ c , for every (t, x, z) ∈ R× [a, b]× R , (23)

with

c <
F (1)− F (max{φ(‖α′‖∞)), φ(‖β′‖∞)})

b− a
. (24)

Then, equation (22) has a bounded solution x(t) satisfying

α(t) ≤ x(t) ≤ β(t) , for every t ∈ R , (25)

and
sup{|x′(t)| : t ∈ R} < +∞ . (26)

If, moreover, g is T -periodic in its first variable t, and α, β are also T -periodic,
then there exists a T -periodic solution x(t) of (22) satisfying (25).
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Proof. Notice that yα(t) = φ(α′(t)) and yβ(t) = φ(β′(t)). By (24), we can fix
δ ∈ ]0, 1[ such that

F (1− δ) > F (max{φ(‖α′‖∞)), φ(‖β′‖∞)}) + c(b− a) . (27)

Since f is strictly increasing and f(0) = 0, the function F is strictly increasing
on [0, 1[ , and from the above inequality we deduce, in particular, that

max{φ(‖α′‖∞)), φ(‖β′‖∞)} < 1− δ . (28)

We define the functions fδ : R→ R and gδ : R3 → R as

fδ(y) =


f(−1 + δ) if y < −1 + δ ,

f(y) if |y| ≤ 1− δ ,
f(1− δ) if y > 1− δ ,

and

gδ(t, x, y) =


g(t, x,−1 + δ) if y < −1 + δ ,

g(t, x, y) if |y| ≤ 1− δ ,
g(t, x, 1− δ) if y > 1− δ ,

and we consider the system

x′ = fδ(y) , y′ = gδ(t, x, y) . (29)

By (28), α and β are a lower and an upper solution for system (29), as well.

Recalling (27), we can choose ĉ > 0 such that

c < ĉ <
F (1− δ)− F (max{φ(‖α′‖∞)), φ(‖β′‖∞)})

b− a
. (30)

We consider the Cauchy problemw′ = −
ĉ

fδ(w)

w(a) = 1− δ .
(31)

As long as w(x) > 0, with x ∈ [a, b], the function w(x) is strictly decreasing,
and the differential equation in (31) is equivalent to

d

dx
F (w(x)) = −ĉ ,

so that, integrating over [a, x], we get

F (w(x)) = F (1− δ)− ĉ(x− a) > F (1− δ)− ĉ(b− a) .

In view of (30) and the fact that F is strictly increasing on [0, 1[ , we conclude
that

max{φ(‖α′‖∞), φ(‖β′‖∞)} < w(x) ≤ 1− δ , for every x ∈ [a, b] .

Hence, the function γ+(x) = w(x) satisfies the first part of (13) for system (29).
On the other hand, using (23), from the differential equation in (31) we have

fδ(γ+(x))γ′+(x) = −ĉ < gδ(t, x, γ+(x)) ,

so that also the second part of (13) is satisfied.
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Similarly we can construct γ−(x) satisfying (12) for system (29). Theorem 5
thus applies, providing a solution (x(t), y(t)) of system (29) for which (14)
holds. Since −1 + δ ≤ γ−(x) < γ+(x) ≤ 1− δ for every x ∈ [a, b], we see that
x(t) is a solution of (22) satisfying (25) and

sup{|φ(x′(t))| : t ∈ R} ≤ 1− δ .

Since the last inequality implies (26), the proof is completed.

Remark 9. The assumption (23) holds whenever h(t, x, z) = h(t, x) is con-
tinuous on R × [a, b] and T -periodic in its first variable. On the other hand,
assumption (24) is surely satisfied if F (1) = +∞. Notice also that, if α and β
are constant functions, i.e.,

h(t, α, 0) < 0 < h(t, β, 0) , for every t ∈ R ,

then condition (24) becomes

c <
1

b− a

∫ 1

0

f(s) ds .

A typical example where Proposition 8 applies is provided by the choice
φ(υ) = υ/

√
1 + υ2, leading to the equation(

x′√
1 + (x′)2

)′
= h(t, x, x′) , (32)

in which the so-called “mean curvature” differential operator is involved. No-
tice that, in this case, f(y) = y/

√
1− y2 and F (y) = 1 −

√
1− y2, so that

F (1) = 1 and condition (24) becomes

c <
1

b− a
min

{
1√

1 + ‖α′‖2∞
,

1√
1 + ‖β′‖2∞

}
.

We recall that, in the case h(t, x, z) = h(t, x), the existence of a bounded
variation T -periodic solution of equation (32) was obtained in [21] without
requiring condition (24). Moreover, in [21, Corollary 5.2], where h(t, x) was
supposed to be continuously differentiable and such that

∂h

∂x
(t, x) ≥ m > 0 , for every (t, x) ∈ R× [a, b] ,

that solution was proved to be regular, i.e., a classical solution.

3.3 The relativistic operator

Let us first consider the equation

x′′ =
(
1− (x′)2

)σ
p(t, x, x′) , (33)

where σ > 1 and p : R× R×]− 1, 1[→ R is continuous.
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Proposition 10. Assume the existence of a bounded lower solution α and a
bounded upper solution β for the system

x′ = y , y′ =
(
1− y2

)σ
p(t, x, y) ,

with ‖α′‖∞ < 1, ‖β′‖∞ < 1, such that α(t) < β(t) for every t ∈ R, and set
a = inf α, b = sup β. Assume moreover that there is a c ≥ 0 such that

|p(t, x, y)| ≤ c , for every (t, x, y) ∈ R× [a, b]× ]− 1, 1[ . (34)

Then, equation (33) has a bounded solution satisfying

α(t) ≤ x(t) ≤ β(t) , for every t ∈ R , (35)

and ‖x′‖∞ < 1. If, moreover, p is T -periodic in its first variable t, and α, β
are also T -periodic, then there exists a T -periodic solution x(t) of (33) satis-
fying (35).

Proof. We take f(y) = y, define gδ : R3 → R as

gδ(t, x, y) =


(1− (1− δ)2)σp(t, x, 1− δ) if y > 1− δ ,
(1− y2)σp(t, x, y) if |y| ≤ 1− δ ,
(1− (−1 + δ)2)σp(t, x,−1 + δ) if y < −1 + δ ,

for some δ ∈ ]0, 1[ to be fixed, and consider the system

x′ = y , y′ = gδ(t, x, y) . (36)

If δ > 0 satisfies 1 − δ > max{‖α′‖∞, ‖β′‖∞}, the functions α and β are a
lower and an upper solution for system (36), too.

We consider the Cauchy problemw′ = −ĉ
(
1− w2

)σ
w

w(a) = 1− δ ,
(37)

for a given ĉ > c. In this case, w = 1 is an equilibrium of the differential
equation in (37). Hence, the solution w(x) = w(x; a, 1− δ) of (37) satisfies

lim
δ→0+

w(x) = 1 , uniformly in x ∈ [a, b] .

Then, there exists a sufficiently small δ > 0 such that

max{‖α′‖∞, ‖β′‖∞} < w(x) ≤ 1− δ , for every x ∈ [a, b] .

Hence, the function γ+(x) = w(x) satisfies the first part of (13) for system (36).
On the other hand, using (34), from the differential equation in (37) we have

f(γ+(x))γ′+(x) = −ĉ(1− γ2+(x))σ < gδ(t, x, γ+(x)) ,

so that also the second part of (13) is satisfied.
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Similarly we can construct γ−(x) satisfying (12) for system (36). Theorem 5
thus applies, providing a solution (x(t), y(t)) of system (36) for which (14)
holds. Since −1 + δ ≤ γ−(x) < γ+(x) ≤ 1− δ for every x ∈ [a, b], the proof is
completed.

In the particular case σ = 3/2, we have the equation(
x′√

1− (x′)2

)′
= p(t, x, x′) ,

and we recover the result in [4, Theorem 3] for the T -periodic problem, since (34)
holds when p(t, x, y) = p(t, x) is continuous on R× [a, b] and T -periodic in its
first variable.

4 Proof of Theorem 5

The proof will be divided into four steps. In the first one, we assume that
α, β are strict lower/upper solutions, and that f(t, x, y), g(t, x, y) are locally
Lipschitz continuous in (x, y), i.e., for every (t0, x0, y0) ∈ R3, there are δ0 > 0
and L0 ≥ 0 such that, if

‖(t, x, y)− (t0, x0, y0)‖ < δ , ‖(t, ξ, η)− (t0, x0, y0)‖ < δ ,

then
|f(t, x, y)− f(t, ξ, η)| ≤ L0

(
|x− ξ|+ |y − η|

)
,

and
|g(t, x, y)− g(t, ξ, η)| ≤ L0

(
|x− ξ|+ |y − η|

)
.

Under these additional assumptions, we prove the existence of a solution
satisfying (14). In the second step, we only require f and g to be continuous,
while maintaining the assumption that α and β are strict. In the third step, we
conclude the proof of the existence of a solution satisfying (14), in the general
case. Finally we prove the second statement of the theorem, concerning the
existence of a periodic solution, still satisfying (14).

Without loss of generality, we assume that α and β satisfy the inequali-
ties (6) and (10) with the same positive constants m and δ. Let us introduce
the open set

V = {(t, x, y) ∈ R3 : t ∈ R , α(t) < x < β(t) , γ−(x) < y < γ+(x)} .

We will indeed prove a more general result, assuming that the functions α, β
and γ± are such that the inequalities in (4), (6), (8), (10) in the definitions
of lower/upper solution hold only for (t, x, y) ∈ V . For simplicity, we will
continue to speak about lower/upper solutions even in this more general case.
This observation will also lead us to a generalization of Theorem 5 stated in
Section 5.
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Step 1. Locally Lipschitz continuous and strict

We assume that α, β are strict lower/upper solutions, and that the restrictions
of f(t, x, y) and g(t, x, y) to V are locally Lipschitz continuous in (x, y).

We modify f and g outside the set V . For any µ < ν, let

τ(x;µ, ν) =


µ if x ≤ µ ,

x if µ ≤ x ≤ ν ,

ν if x ≥ ν .

Define

f̃(t, x, y) = f
(
t, τ(x;α(t), β(t)), τ

(
y; γ−(τ(x;α(t), β(t))), γ+(τ(x;α(t), β(t)))

))
,

and

g̃(t, x, y) = g
(
t, τ(x;α(t), β(t)), τ

(
y; γ−(τ(x;α(t), β(t))), γ+(τ(x;α(t), β(t)))

))
.

Clearly, on V the functions f̃ , g̃ coincide with f, g, respectively. From now on
we concentrate our study on the system

x′ = f̃(t, x, y) , y′ = g̃(t, x, y) . (38)

Notice that α and β are a lower and an upper solution of this system, as well.

The solutions to initial value problems are unique and globally defined,
since for every compact interval J = [t1, t2] there is a constant cJ > 0 such
that

|f̃(t, x, y)|+ |g̃(t, x, y)| ≤ cJ , for every t ∈ J .
Claim. The set E of egress points of V can be written as

E = E1 ∪ E2 ∪ E3 ∪ E4 ,

with

E1 = {(t, α(t), y) : γ−(α(t)) < y < yα(t)} ,
E2 = {(t, β(t), y) : yβ(t) < y < γ+(β(t))} ,
E3 = {(t, x, γ−(x)) : α(t) ≤ x < β(t)} ,
E4 = {(t, x, γ+(x)) : α(t) < x ≤ β(t)} ,

and all points of E are strict egress points.

We recall that a boundary point (t0, x0, y0) of the open set V is said to
be an egress point if there is an ε > 0 such that the solution (x(t), y(t)) with
initial value (x(t0), y(t0)) = (x0, y0) is such that (t, x(t), y(t)) ∈ V for every
t ∈ ]t0−ε, t0[ . It is said to be a strict egress point if, moreover, (t, x(t), y(t)) /∈ V
for every t ∈ ]t0, t0 + ε[ . In Figure 2 we provide a pictorial view of a section of
the set V at a fixed time t ; the coloured region represents the corresponding
section of E, the set of egress points of V .
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Figure 2: A section of the set V at time t with its egress points

We now show how to prove the existence of a solution satisfying (14) as-
suming that the Claim holds true. Once this is done, the proof of the Claim
will be provided.

For every integer n ≥ 0, let us define the set

Zn = {(−n, x, γn(x)) : α(−n) ≤ x ≤ β(−n)} ,

where γn : [α(−n), β(−n)]→ R is given by

γn(x) =
β(−n)− x

β(−n)− α(−n)
γ−(x) +

x− α(−n)

β(−n)− α(−n)
γ+(x) .

Notice that Zn ⊆ V ∪ E, and

Zn ∩ E =
{(
− n, α(−n), γ−(α(−n))

)
,
(
− n, β(−n), γ+(β(−n))

)}
,

so that Zn ∩ E is a retract of E but it is not a retract of Zn. Therefore, by
Ważewski Theorem (see [13, Chapter 10] or [31, page 596]), there is a x̄n ∈
]α(−n), β(−n)[ such that the solution (xn(t), yn(t)) satisfying xn(−n) = x̄n,
yn(−n) = γn(x̄n) is such that

(t, xn(t), yn(t)) ∈ V , for every t ≥ −n .

Set x̂n = xn(0), ŷn = yn(0), and consider the sequence (x̂n, ŷn)n. By compact-
ness, there is a subsequence (x̂nk

, ŷnk
)k which converges to some (x̂, ŷ), with

(0, x̂, ŷ) ∈ V . Let (x(t), y(t)) be the solution satisfying x(0) = x̂, y(0) = ŷ. We
will show that this solution satisfies (14), i.e.,

(t, x(t), y(t)) ∈ V , for every t ∈ R .

By contradiction, assume there exists a t̄ ∈ R such that (t̄, x(t̄ ), y(t̄ )) /∈ V .
Then, by continuous dependence on initial data, there is a positive integer k
such that t̄ > −nk and (t̄, xnk

(t̄ ), ynk
(t̄ )) /∈ V , in contradiction with the above.
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We now prove the Claim.

If (x(t), y(t)) is a solution such that (t̄, x(t̄ ), y(t̄ )) ∈ E1, for some t̄ ∈ R,
then x(t̄ ) = α(t̄ ) and γ−(x(t̄ )) < y(t̄ ) < yα(t̄ ), hence by (4),

x′(t̄ ) = f̃(t̄, α(t̄ ), y(t̄ )) = f(t̄, α(t̄ ), y(t̄ )) < α′(t̄ ) .

Then, there is ε > 0 such that

x(t)

{
> α(t) if t ∈ ]t̄− ε, t̄ [ ,
< α(t) if t ∈ ]t̄, t̄+ ε[ ,

and, by continuity and the first part of (12),

γ−(x(t)) < y(t) < yα(t) < γ+(x(t)) , for every t ∈ ]t̄− ε, t̄ [ .

This proves that the points of E1 are strict egress points of V . Analogously
one proves that the points of E2 are strict egress points.

If (x(t), y(t)) is a solution such that (t̄, x(t̄ ), y(t̄ )) ∈ E3, for some t̄ ∈ R, then
α(t̄ ) ≤ x(t̄ ) < β(t̄ ) and y(t̄ ) = γ−(x(t̄ )), hence, setting F (t) = y(t)−γ−(x(t)),
by (12),

F ′(t̄ ) = g(t̄, x(t̄ ), γ−(x(t̄ )))− f(t̄, x(t̄ ), γ−(x(t̄ )))γ′−(x(t̄ )) < 0 .

Then, if x(t̄ ) > α(t̄ ), there is ε > 0 such that

α(t) < x(t) < β(t) , for every t ∈ ]t̄− ε, t̄+ ε[ ,

and y(·)− γ−(x(·)) is strictly decreasing on ]t̄− ε, t̄+ ε[, hence

y(t)

{
> γ−(x(t)) if t ∈ ]t̄− ε, t̄ [ ,
< γ−(x(t)) if t ∈ ]t̄, t̄+ ε[ ,

proving that (t̄, x(t̄ ), y(t̄ )) is a strict egress point. On the other hand, if x(t̄ ) =
α(t̄ ), we need to consider the normal cone at v̄ = (t̄, α(t̄ ), γ−(α(t̄ ))), i.e.,

N (v̄) =
{
c
(
λ(α′(t̄ ),−1, 0) + (1− λ)(0, γ′−(α(t̄ )),−1)

)
: c ≥ 0, λ ∈ [0, 1]

}
.

We then easily verify, using (4) and (12), that〈
λ(α′(t̄ ),−1, 0) + (1− λ)(0, γ′−(α(t̄ )),−1) , (1, f(v̄), g(v̄))

〉
> 0 ,

for every λ ∈ [0, 1], proving that v̄ is a strict egress point.

This shows that the points of E3 are strict egress points of V . Analogously
one proves that the points of E4 are strict egress points.
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We now need to show that there are no other egress points of V . To this
aim, we write ∂V \ (E1 ∪ E2 ∪ E3 ∪ E4) = F1 ∪ F2, with

F1 = {(t, α(t), y) : yα(t) ≤ y ≤ γ+(α(t))} ,
F2 = {(t, β(t), y) : γ−(β(t)) ≤ y ≤ yβ(t)} .

Let us prove that F1 ∩ E = Ø. Let (x(t), y(t)) be a solution such that x(t̄ ) =
α(t̄ ) and yα(t̄ ) ≤ y(t̄ ) ≤ γ+(α(t̄ )), for some t̄ ∈ R. If y(t̄ ) > yα(t̄ ), then,
by (4),

x′(t̄ ) = f̃(t̄, α(t̄ ), y(t̄ )) > α′(t̄ ) .

Then, there is ε > 0 such that

x(t) < α(t) , for every t ∈ ]t̄− ε, t̄ [ .

This proves that (t̄, x(t̄ ), y(t̄ )) is not an egress point of V .

Assume now x(t̄ ) = α(t̄ ) and y(t̄ ) = yα(t̄ ). Then, defining

ξ(t) = x(t)− α(t) , η(t) = y(t)− yα(t) ,

by (7) we have that

ξ(t̄ ) = 0 and ξ′(t̄ ) = f(t̄, α(t̄ ), yα(t̄ ))− α′(t̄ ) = 0 ,

while, since α is a strict lower solution,

η(t̄ ) = 0 and η′(t̄ ) = g(t̄, α(t̄ ), yα(t̄ ))− y′α(t̄ ) < 0 .

Let m, δ be the positive constants introduced in (iii). Then, there is a τ̄ < t̄
such that

m|ξ(t)| < η(t) ≤ δ , for every t ∈ ]τ̄ , t̄ [ ,

i.e., y(t) − yα(t) ≤ δ and y(t) > yα(t) + m|x(t) − α(t)|, for every t ∈ ]τ̄ , t̄ [ .
By (6), we obtain

x′(t) = f̃(t, x(t), y(t)) > α′(t) , for every t ∈ ]τ̄ , t̄ [ ,

and since x′(t̄ ) = α′(t̄ ), it follows that x(t) < α(t) for every t ∈ ]τ̄ , t̄ [ . Hence,
(t̄, x(t̄ ), y(t̄ )) can not be an egress point of V .

We have thus proved that F1 ∩ E = Ø. In an analogous way one shows
that F2 ∩ E = Ø. The Claim is thus proved.

Step 2. Only continuous and strict

Having proved the first statement of the theorem in the case when α, β are
strict lower/upper solutions and the restrictions of f(t, x, y) and g(t, x, y) to
V are locally Lipschitz continuous in (x, y), we now consider the case when
f and g are only continuous, maintaining for the moment the assumption of
α, β being strict. In this case, we will construct two sequences of continuous
functions fn : R3 → R, gn : R3 → R, whose restrictions to V are locally
Lipschitz continuous in (x, y), converging uniformly on compact sets towards
f and g, respectively, and for which the assumptions of Theorem 5 still hold.
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Concerning the function g, this approximation can be made by a stan-
dard regularization procedure, since we only have to guarantee that the strict
inequalities in (5) and (9) still hold.

The approximation of the function f is more delicate, since we have to
preserve the conditions (i) and (iii) in Definitions 1 and 4, and these conditions
involve more subtle inequalities, because of (7) and (11). Let us now describe
how such an approximation can be constructed.

Since the section of V at a fixed time t ∈ R is compact, by assumptions (i)
and (iii) it is possible to find a continuously differentiable function ε : R→ ]0, 1]
such that, for every (t, x, y) ∈ V , we have that f(t, x, y) < α′(t) if either

yα(t)− δ ≤ y < yα(t)−m|x− α(t)| ,

or

|x− α(t)| ≤ ε(t) and y < yα(t)− δ ,

while f(t, x, y) > α′(t) if either

yα(t) +m|x− α(t)| < y ≤ yα(t) + δ ,

or

|x− α(t)| ≤ ε(t) and y > yα(t) + δ ,

and similarly for β, with the same ε(t).

For any fixed t ∈ R, we now construct a triangularization of the plane xy,
depending on t. Consider, for every positive integer n, the lines

y = ±mx+
k

n
ε(t) , with k ∈ Z ,

together with the four lines, varying with t,

y = ±m(x− α(t)) + yα(t) , y = ±m(x− β(t)) + yβ(t) .

For any fixed t ∈ R, all these lines form a grid in R2, with an infinite number
of quadrilaterals. We can visualize this grid in Figure 3.

We now join the opposite vertices of each quadrilateral, so to obtain in-
finitely many triangles. On each of these triangles we make a convex interpola-
tion of the function f . We thus obtain, for every positive integer n, a function
fn : R3 → R, whose restriction to the set V is locally Lipschitz continuous
in (x, y). It can be seen that this function is continuous. Moreover, there
is a δ′ ∈ ]0, δ[ such that, if n is sufficiently large, fn satisfies the inequalities
in (4), (6), (8), (10), with δ replaced by δ′, for every (t, x, y) ∈ V . Since f is
uniformly continuous on any compact set, we conclude that the sequence (fn)n
converges to f uniformly on compact sets.
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Figure 3: The grid made of quadrilaterals near the point (α(t), yα(t))

Hence, if n is sufficiently large, α and β are still strict lower/upper solutions
for the modified system

x′ = fn(t, x, y) , y′ = gn(t, x, y) , (39)

meaning that the inequalities in the definitions of lower/upper solution hold
for (t, x, y) ∈ V . By Step 1, we know that there is a solution of (39), which
we denote by (xn(t), yn(t)), and that

(t, xn(t), yn(t)) ∈ V , for every t ∈ R . (40)

Set zn(t) = (xn(t), yn(t)) and, for every positive integer m, denote by zn,m
the restriction of zn to the interval [−m,m]. Then, (zn,m)n is a sequence
taking values in a compact set Km of R2. Moreover, since the functions zn,m are
solutions of (39) and the functions f̃ , g̃ are bounded on V ∩([−m,m]×R2), their
derivatives z′n,m are equi-uniformly bounded, so that (zn,m)n is equi-uniformly
continuous.

We now proceed recursively. If m = 1, the Ascoli–Arzelà Theorem provides
us a strictly increasing sequence of indices (nk,1)k such that the subsequence
(znk,1,1)k uniformly converges on [−1, 1] to some continuous function z∗,1 :
[−1, 1] → R2. To simplify the notation, we denote by (z1n)n the subsequence
(znk,1

)k of (zn)n having the same indices nk,1 as (znk,1,1)k.

By the same argument, if m = 2, we find a strictly increasing sequence
of indices (nk,2)k such that the subsequence (z1nk,2,2

)k uniformly converges on

[−2, 2] to some continuous function z∗,2 : [−2, 2]→ R2. Clearly, z∗,2(t) = z∗,1(t)
for every t ∈ [−1, 1]. We denote by (z2n)n the subsequence (z1nk,2

)k of (zn)n
having the same indices nk,2 as (z1nk,2,2

)k.

We can thus define, for every m, the subsequence (zmn )n of (zn)n which
uniformly converges on [−m,m] to some continuous function z∗,m : [−m,m]→
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R2. Then, the diagonal sequence (znn)n converges uniformly on compact sets
to some continuous function z∗(t) = (x∗(t), y∗(t)), which coincides with each
z∗,m(t) when t ∈ [−m,m].

Writing the integral representation of the solutions of (39) and passing to
the limit, we easily conclude that (x∗(t), y∗(t)) is the solution we are looking
for.

Step 3. Conclusion of the proof for the bounded solution

Finally, having proved the first statement of the theorem in the case when
α and β are strict lower/upper solutions, we now consider the general case.
Define the functions

gn(t, x, y) = g(t, x, y) +
1

n

(
x− α(t) + β(t)

2

)
.

Since α(t) < β(t) for every t ∈ R, it is easy to verify that, for n large enough,
α and β are strict lower/upper solutions for system (39). Hence, by Step 2,
we know that there is a solution of

x′ = f(t, x, y) , y′ = gn(t, x, y) ,

which we denote by (xn(t), yn(t)), satisfying (40) for every t ∈ R. We now
conclude by the Ascoli–Arzelà Theorem, as above.

Step 4. The periodic case

We now assume that f, g are T -periodic in their first variable t, and α, β are
also T -periodic. As in Step 1, we first assume that α, β are strict lower/upper
solutions, and that the restrictions of f(t, x, y) and g(t, x, y) to V are locally
Lipschitz continuous in (x, y). We modify f and g as above, and consider
system (38). Notice that f̃ and g̃ are T -periodic in their first variable. Having
proved the existence of a bounded solution, by Massera Theorem, cf. [23,
page 26], system (38) has a T -periodic solution (x(t), y(t)).

Let us prove that

α(t) < x(t) < β(t) , for every t ∈ R . (41)

Assume by contradiction that there is a t̄ ∈ R such that x(t̄ ) ≤ α(t̄ ). We have
two cases.

Case 1. y(t̄ ) ≤ yα(t̄ ). Let us show that the set

A1 = {(t, x, y) : t ∈ R, x ≤ α(t), y ≤ yα(t)}

is positively invariant. Indeed, if x(t) = α(t) and y(t) < yα(t), for some t ∈ R,
then, by (4),

x′(t) = f̃(t, α(t), y(t)) = f
(
t, α(t),max{y(t), γ−(α(t))}

)
< α′(t) .

21



On the other hand, if x(t) ≤ α(t) and y(t) = yα(t), for some t ∈ R, then, by
the assumption that α is a strict lower solution,

y′(t) = g̃(t, x(t), yα(t)) = g(t, α(t), yα(t)) < y′α(t) .

We thus have that A1 is strongly positively invariant, so that

x(t) < α(t) and y(t) < yα(t) , for every t > t̄ .

Then, since max{y(t), γ−(α(t))} < yα(t) for every t > t̄, it follows again
from (4) that

x′(t) = f̃(t, x(t), y(t)) = f
(
t, α(t),max{y(t), γ−(α(t))}

)
< α′(t) ,

for every t > t̄, and we get a contradiction, since both x and α are T -periodic.

Case 2. y(t̄ ) > yα(t̄ ). We can exclude the possibility that x(t) ≤ α(t) and
y(t) > yα(t) for every t > t̄, since this would imply that min{y(t), γ+(α(t))} >
yα(t), and hence, by (4),

x′(t) = f̃(t, x(t), y(t)) = f
(
t, α(t),min{y(t), γ+(α(t))}

)
> α′(t) ,

for every t > t̄, yielding a contradiction. Then, since A1 is strongly positively
invariant, there is a t̂ ∈ ]t̄, t̄ + T [ such that x(t̂) > α(t̂) and y(t̂) > yα(t̂). By
the T -periodicity of x(t), there must be a ť ∈ ]t̂, t̄ + T ] such that x(ť) = α(ť)
and x(t) > α(t) for every t ∈ ]t̂, ť[ . Since A1 is strongly positively invariant,
y(ť) ≤ yα(ť) is excluded, so that y(ť) > yα(ť) and, by (4),

x′(ť) = f̃(ť, α(ť), y(ť)) = f
(
ť, α(ť),min{y(ť), γ+(α(ť))}

)
> α′(ť) ,

a contradiction.

We have thus proved that x(t) > α(t), for every t ∈ R. The proof that
x(t) < β(t) is analogous, by the use of (8). So, (41) holds.

Let us now prove that

γ−(x(t)) < y(t) < γ+(x(t)) , for every t ∈ R . (42)

Assume by contradiction that there is a t̄ ∈ R such that y(t̄ ) ≤ γ−(x(t̄ )).
Since (41) holds and E3 is made of strict egress points, it has to be that
y(t) < γ−(x(t)) for every t > t̄. Therefore,

x′(t) = f(t, x(t), γ−(x(t))) , y′(t) = g(t, x(t), γ−(x(t))) ,

hence, by (12),

d

dt
γ−(x(t)) = f(t, x(t), γ−(x(t)))γ′−(x(t)) > g(t, x(t), γ−(x(t))) = y′(t) ,

for every t > t̄. Since both functions γ−(x(t)) and y(t) are T -periodic, this
leads to a contradiction.

22



We have thus proved that y(t) > γ−(x(t)), for every t ∈ R. Similarly one
proves that y(t) < γ+(x(t)), for every t ∈ R. So, (42) holds, and the proof of
the existence of a T -periodic solution of (3) is completed in this case.

Concerning the general case when f , g are only continuous, and α, β are
not necessarily strict, one proceeds by approximation, exactly as in Steps 2
and 3. The proof is thus completed.

5 Towards a general definition of lower/upper

solutions for planar systems

In this section we briefly explain how, in view of the ideas in the above proof,
Theorem 5 can be generalized. We consider system (3) where, as usual, f, g :
R3 → R are continuous functions. Let us introduce the concept of vector
lower/upper solution.

Definition 11. Let ~α : R→ R2 be a continuously differentiable function, with
~α(t) = (α1(t), α2(t)). We say that ~α is a vector lower solution of (3) if

α′1(t) = f(t, α1(t), α2(t)) , α′2(t) ≥ g(t, α1(t), α2(t)) ,

for every t ∈ R, and there are two continuously differentiable functions A± :
R→ R, with

A−(t) < α2(t) < A+(t) , for every t ∈ R ,

and two continuous functions δ : R → ]0, 1[ , m : R → ]0,+∞[ , with the
following properties. For every t ∈ R,{

A−(t) < y < α2(t) ⇒ f(t, α1(t), y) < α′1(t) ,

α2(t) < y < A+(t) ⇒ f(t, α1(t), y) > α′1(t) ;{
α2(t)− δ(t) < y < α2(t)−m(t)|x− α1(t)| ⇒ f(t, x, y) < α′1(t) ,

α2(t) +m(t)|x− α1(t)| < y < α2(t) + δ(t) ⇒ f(t, x, y) > α′1(t) .

Definition 12. Let ~β : R→ R2 be a continuously differentiable function, with
~β(t) = (β1(t), β2(t)). We say that ~β is a vector lower solution of (3) if

β′1(t) = f(t, β1(t), β2(t)) , β′2(t) ≤ g(t, β1(t), β2(t)) ,

for every t ∈ R, and there are two continuously differentiable functions B± :
R→ R, with

B−(t) < β2(t) < B+(t) , for every t ∈ R ,
and two continuous functions δ : R → ]0, 1[ , m : R → ]0,+∞[ , with the
following properties. For every t ∈ R,{

B−(t) < y < β2(t) ⇒ f(t, β1(t), y) < β′1(t) ,

β2(t) < y < B+(t) ⇒ f(t, β1(t), y) > β′1(t) ;
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{
β2(t)− δ(t) < y < β2(t)−m(t)|x− β1(t)| ⇒ f(t, x, y) < β′1(t) ,

β2(t) +m(t)|x− β1(t)| < y < β2(t) + δ(t) ⇒ f(t, x, y) > β′1(t) .

We are now in the position to state our general result.

Theorem 13. Let ~α, ~β be two bounded vector lower and upper solutions, with
α1(t) < β1(t) for every t ∈ R, and consider the set

D = {(t, x) : t ∈ R , α1(t) ≤ x ≤ β1(t)} .

Let γ± : D → R be two continuously differentiable bounded functions such that
for every t ∈ R,

A−(t) < γ−(t, α1(t)) < α2(t) < γ+(t, α1(t)) < A+(t) ,

B−(t) < γ−(t, β1(t)) < β2(t) < γ+(t, β1(t)) < B+(t) ,

and for every (t, x) ∈ D,

∂γ−
∂t

(t, x) +
∂γ−
∂x

(t, x)f(t, x, γ−(t, x)) > g(t, x, γ−(t, x)) ,

∂γ+
∂t

(t, x) +
∂γ+
∂x

(t, x)f(t, x, γ+(t, x)) < g(t, x, γ+(t, x)) .

Then, there exists a solution (x(t), y(t)) of (3) satisfying

α1(t) ≤ x(t) ≤ β1(t) and γ−(t, x(t)) ≤ y(t) ≤ γ+(t, x(t)) , (43)

for every t ∈ R. If, moreover, f , g, and γ± are T -periodic in their first
variable t, and α, β are also T -periodic, then there exists a T -periodic solution
(x(t), y(t)) of (3) satisfying (43).

The assumptions in the above theorem remind those in [17, 28], where a
scalar second order differential equation was treated. We omit the proof of
Theorem 13, for briefness, since it is a straightforward modification of the
proof of Theorem 5.

6 Almost periodic solutions

Ortega and Tarallo [24] showed that, for an almost periodic differential equa-
tion, the existence of well-ordered almost periodic lower and upper solutions
for the scalar equation (1) is not sufficient in general to guarantee the exis-
tence of an almost periodic solution. More precisely, they proved that, for any
ω ∈ R \ Q, there are a constant c > 0, a continuous function G : R2 → R,
which is 2π-periodic in both variables, and constants α < β and δ such that

G(t, ωt, α) ≤ −δ < 0 < δ ≤ G(t, ωt, β) , for every t ∈ R ,

for which equation (1) with g(t, x, y) = G(t, ωt, x)− cy has no almost periodic
solutions. This example, contradicting the result claimed in [29], shows how
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delicate the existence of almost periodic solutions can be. Nevertheless, Cor-
duneanu [6] proved that if g(t, x, y) is continuously differentiable and satisfies
some strict monotonicity assumption with respect to x, then any bounded so-
lution of (1) is almost periodic. We report the precise statement and proof of
his theorem in the Appendix.

Applying Corduneanu’s theorem, we easily get some corollaries of our re-
sults. Let us state a first one, where the Nagumo condition appears.

Corollary 14. Let g : R3 → R be continuous, and continuously differentiable
with respect to (x, y). Assume the existence of an almost periodic lower solution
α and an almost periodic upper solution β, with α(t) < β(t) for every t ∈ R,
and let a = inf α, b = sup β. Moreover, let ϕ : [0,+∞[→ R be a positive
continuous function such that

|g(t, x, y)| ≤ ϕ(|y|) , for every (t, x, y) ∈ R× [a, b]× R ,

and ∫ +∞

0

s

ϕ(s)
ds = +∞ .

If g is almost periodic in t uniformly with respect to (x, y) ∈ [a, b] × R, and
there exists a constant m for which

∂g

∂x
(t, x, y) ≥ m > 0 , for every (t, x, y) ∈ R× [a, b]× R , (44)

then equation (1) has an almost periodic solution satisfying

α(t) ≤ x(t) ≤ β(t) , for every t ∈ R . (45)

Proof. Just apply Corollary 7 and Corduneanu’s Theorem.

Concerning the mean curvature equation(
x′√

1 + (x′)2

)′
= h(t, x, x′) , (46)

we have the following.

Corollary 15. Let h : R3 → R be continuous, and continuously differentiable
with respect to (x, y). Assume the existence of an almost periodic lower solution
α and an almost periodic upper solution β, with α(t) < β(t) for every t ∈ R,
and let a = inf α, b = sup β. Assume moreover that there is a c ≥ 0 such that

|h(t, x, y)| ≤ c , for every (t, x, y) ∈ R× [a, b]× R ,

with

c <
1

b− a
min

{
1√

1 + ‖α′‖2∞
,

1√
1 + ‖β′‖2∞

}
.
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If h is almost periodic in t uniformly with respect to (x, y) ∈ [a, b] × R, and
there exists a constant m for which

∂h

∂x
(t, x, y) ≥ m > 0 , for every (t, x, y) ∈ R× [a, b]× R , (47)

then equation (46) has an almost periodic solution x(t) satisfying (45).

Proof. We can write equation (46) in the equivalent form

x′′ =
(
1 + (x′)2

)3/2
h(t, x, x′) .

One quickly verifies that α and β are lower and upper solutions of (3) with

f(y) = y and g(t, x, y) = (1 + y2
)3/2

h(t, x, y), and that (44) holds. The result
then follows from Proposition 8 and Corduneanu’s Theorem.

Concerning the relativistic equation(
x′√

1− (x′)2

)′
= h(t, x, x′) , (48)

we have the following.

Corollary 16. Let h : R × R× ] − 1, 1[→ R be continuous, and continuously
differentiable with respect to (x, y). Assume the existence of an almost periodic
lower solution α and an almost periodic upper solution β, with α(t) < β(t) for
every t ∈ R, and let a = inf α, b = sup β. Assume moreover that there is a
c ≥ 0 such that

|h(t, x, y)| ≤ c , for every (t, x, y) ∈ R× [a, b]× R .

If h satisfies (47) and is almost periodic in t uniformly with respect to (x, y) ∈
[a, b]× ]− 1, 1[ , then equation (48) has an almost periodic solution x(t) satis-
fying (45).

Proof. We can write equation (48) in the equivalent form

x′′ =
(
1− (x′)2

)3/2
h(t, x, x′) .

This time we need to truncate and extend the function g(t, x, y) = (1 −
y2
)3/2

h(t, x, y), as in the proof of Proposition 10, but with some more care,
so to preserve the continuous differentiability of the new function gδ(t, x, y) in
(x, y) and condition (44). To this aim, let Uδ : R→ R be a smooth increasing
function such that

Uδ(s) =


−1 + δ/2 if s ≤ −1 ,

s if |s| ≤ 1− δ ,
1− δ/2 if s ≥ 1 ,

and set gδ(t, x, y) = g(t, x,Uδ(y)). Once this is done, it is easy to see that (44)
holds with m replaced by (1 − (1 − δ2/4))3/2m. The result then follows from
Corduneanu’s Theorem, in view of Proposition 10.
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As an example, consider the “relativistic pendulum” equation(
x′√

1− (x′)2

)′
+ A sinx = e(t) , (49)

where e : R → R is continuous and almost periodic. If |e(t)| ≤ A, for every
t ∈ R, then there is an almost periodic solution such that

π

2
≤ x(t) ≤ 3π

2
, for every t ∈ R .

7 Appendix: Corduneanu’s Theorem

We will consider a scalar second order differential equation

x′′ = g(t, x, x′) , (50)

where g : R×D → R is continuous, with D an open convex subset of R2.

Let us start with the definition of almost periodic function.

Definition 17. A function F : R → R is said to be almost periodic if, for
every ε > 0, there is a `(ε) > 0 with the following property: for every τ ∈ R
there is a ξ ∈ [τ, τ + `(ε)] such that

sup{|F(t+ ξ)−F(t)| : t ∈ R} < ε . (51)

Whenever we have a function F : R × Λ → R, we say that F(t, λ) is almost
periodic in t uniformly with respect to λ ∈ Λ if the above holds with (51)
replaced by

sup{|F(t+ ξ, λ)−F(t, λ)| : t ∈ R, λ ∈ Λ} < ε .

Let us now recall the statement of Corduneanu’s Theorem, in a slightly
improved version.

Theorem [Corduneanu, 1955]. Assume that g(t, x, y) is continuous, con-
tinuously differentiable with respect to (x, y), and that there exists a constant
m for which

∂g

∂x
(t, x, y) ≥ m > 0 , for every (t, x, y) ∈ R×D . (52)

If g is almost periodic in t, uniformly with respect to (x, y) in some set Λ ⊆
D, then any bounded solution x(t) of (50) with (x(t), x′(t)) ∈ Λ is almost
periodic.

For the proof we will need the following estimate.
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Lemma 18. Let a, b, c : R→ R be continuous functions, such that

a(t) ≥ m > 0 , for every t ∈ R .

Then, any solution u(t) of the two-point boundary value problem{
u′′ = a(t)u+ b(t)u′ + c(t)

u(t1) = A , u(t2) = B

satisfies

max{|u(t)| : t ∈ [t1, t2]} ≤
1

m
max{|c(t)| : t ∈ [t1, t2]}+ max{|A|, |B|} .

Proof. Let t0 ∈ [t1, t2] be such that u(t0) = max{u(t) : t ∈ [t1, t2]}. If t0 ∈
]t1, t2[ , then u′(t0) = 0 and u′′(t0) ≤ 0, so that a(t0)u(t0) + c(t0) ≤ 0, whence

u(t0) ≤
1

a(t0)
|c(t0)| ≤

1

m
max{|c(t)| : t ∈ [t1, t2]} .

On the other hand, if t0 ∈ {t1, t2}, then u(t0) ≤ max{|A|, |B|}. A similar
argument for the minimum yields the conclusion.

Proof of the Theorem. By the almost periodicity of g, given ε > 0 there is
`(ε) > 0 such that in every interval with length `(ε) there is a ξ for which

|g(t+ ξ, x, y)− g(t, x, y)| ≤ mε

3
, for every (t, x, y) ∈ R× Λ . (53)

We want to prove that, for such a ξ 6= 0,

sup{|x(t+ ξ)− x(t)| : t ∈ R} < ε . (54)

Clearly, it cannot be that lim inft→+∞(x(t+ξ)−x(t)) > 0, since this would
lead to a contradiction with the boundedness of x. Similarly, it cannot be that
lim supt→+∞(x(t+ ξ)− x(t)) < 0. Then, since

lim inf
t→+∞

(x(t+ ξ)− x(t)) ≤ 0 ≤ lim sup
t→+∞

(x(t+ ξ)− x(t)) ,

there is a strictly increasing sequence (τn)n with τn → +∞ such that

lim
n

(
x(τn + ξ)− x(τn)

)
= 0 . (55)

Similarly, there is a strictly decreasing sequence (σn)n with σn → −∞ such
that

lim
n

(
x(σn + ξ)− x(σn)

)
= 0 . (56)

Since x(t+ ξ)− x(t) is bounded, there is a t0 ∈ R such that

sup{|x(t+ ξ)− x(t)| : t ∈ R} < |x(t0 + ξ)− x(t0)|+
ε

3
. (57)
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By (55) and (56), we can fix a positive integer p for which σp < t0 < τp and∣∣x(σp + ξ)− x(σp)
∣∣ < ε

3
,

∣∣x(τp + ξ)− x(τp)
∣∣ < ε

3
. (58)

We then have

x′′(t+ ξ)− x′′(t) = g(t+ ξ, x(t+ ξ), x′(t+ ξ))− g(t, x(t), x′(t))

= g(t+ ξ, x(t+ ξ), x′(t+ ξ))− g(t+ ξ, x(t), x′(t)) +

+g(t+ ξ, x(t), x′(t))− g(t, x(t), x′(t))

=

(∫ 1

0

∂g

∂x
(γ(s, t)) ds

)(
x(t+ ξ)− x(t)

)
+

+

(∫ 1

0

∂g

∂y
(γ(s, t)) ds

)(
x′(t+ ξ)− x′(t)

)
+

+g(t+ ξ, x(t), x′(t))− g(t, x(t), x′(t)) ,

where

γ(s, t) = (t+ ξ, x(t) + s(x(t+ ξ)− x(t)), x′(t) + s(x′(t+ ξ)− x′(t))) .

Using Lemma 18, with

a(t) =

∫ 1

0

∂g

∂x
(γ(s, t)) ds , b(t) =

∫ 1

0

∂g

∂y
(γ(s, t)) ds ,

c(t) = g(t+ ξ, x(t), x′(t))− g(t, x(t), x′(t)) ,

by (52), (53) and (58) we obtain

sup{|x(t+ ξ)− x(t)| : t ∈ [σp, τp]} ≤
1

m

mε

3
+
ε

3
=

2

3
ε .

Since t0 ∈ [σp, τp], using (57), we conclude that (54) holds, proving that x(t)
is almost periodic.
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[6] C. Corduneanu, Soluţii aproape periodice ale ecuaţiilor diferenţiale ne-
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