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Abstract. For a continuous function f , the set Vf made of those points where the lower
left derivative is strictly less than the upper right derivative is totally disconnected. Besides
continuity, alternative assumptions are proposed so to preserve this property. On the other
hand, for any given totally disconnected closed set A we construct a function f whose set
Vf coincides with the entire domain, and f is continuous on A.

1 Introduction and main result

Dini derivatives take their names after Ulisse Dini, who introduced them in 1878, cf. [5]; let us
recall their standard notation

D+f(x) = lim inf
h→0+

f(x+ h)− f(x)

h
, D+f(x) = lim sup

h→0+

f(x+ h)− f(x)

h
,

D−f(x) = lim inf
h→0−

f(x+ h)− f(x)

h
, D−f(x) = lim sup

h→0−

f(x+ h)− f(x)

h
.

Here, and in the rest of the paper, we assume that f : I → R is defined on some open interval
I ⊆ R. A fundamental step in the study of Dini derivatives was achieved in the first quarter of the
twentieth century by Denjoy [4] for continuous functions, Young [15] for measurable functions,
and Saks [14] for arbitrary ones. The Denjoy–Young–Saks theorem states that at each point x,
except for a set of measure zero, one of the following four alternatives holds:

1. f has a finite derivative at x ;

2. D−f(x) = D+f(x) ∈ R , D−f(x) = +∞ , D+f(x) = −∞ ;

3. D−f(x) = D+f(x) ∈ R, D+f(x) = +∞ , D−f(x) = −∞ ;

4. D−f(x) = D+f(x) = +∞ , D−f(x) = D+f(x) = −∞ .

Denjoy also explicitly constructed some continuous functions realizing each of the previous four
conditions on a perfect set of positive Lebesgue measure. We refer to [2] for a more complete
historical account and to [10] for an extensive study on the possible pathological behaviours of
continuous functions.

In this paper, for any function f : I → R, we are interested in studying the set

Vf := {x ∈ I : D−f(x) < D+f(x)} .

It should be noticed that, in the above mentioned example by Denjoy, the set Vf is totally
disconnected, i.e., it does not contain any nontrivial interval. The main question is: how large
can this set be?
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We were mainly motivated in studying this problem when dealing with some ordinary differ-
ential equations [7]. One of the main tools in solving a given boundary value problem is provided
by the lower and upper solutions method. See the book [3] for a comprehensive exposition of
the theory for scalar second order equations. In particular, in [3, Definition I-2.1], the notion of
lower solution involves explicitly the set Vf without properly analyzing its properties.

It is well known that there exist non-continuous functions f : R → R for which Vf = R (see
for instance [9], where the function f : R → R has a dense graph in R2). On the contrary, we
will prove that there are no continuous functions with such a property. To be more precise, let
us introduce the following class of functions.

Definition 1. We say that a function f : I → R is upper well behaved if for every compact
interval J contained in I there is a xJ ∈ J such that f(xJ) = max f(J).

Clearly, every continuous function (as well as upper semicontinuous) is upper well behaved.
On the other hand, one can easily find examples of upper well behaved functions which are
nowhere continuous (e.g., the well known Dirichlet function).

Here is our first result.

Theorem 2. If f : I → R is upper well behaved, then the set Vf is totally disconnected.

We will also show that the set Vf can be preassigned, at least in the class of totally discon-
nected closed sets; taking, e.g., I = R, for any given totally disconnected closed set V ⊆ R there
exists a continuous function f : R→ R such that Vf = V. This will be a consequence of Lemma 5
below.

Let us emphasize that, as proved in [16], there are functions f (e.g., the Weierstrass function)
such that the set Vf is of second Baire category (cf. [13]) and has full measure on any interval
I = ]a, b[ . See also [1, 6, 8, 11] for more recent similar investigations on Takagi’s function.

Let us now investigate the possibility for a function f : R→ R to be such that Vf = R and,
at the same time, to be continuous at some points of its domain. We will prove the following.

Theorem 3. For any totally disconnected closed set A ⊆ R, there exists a function f : R→ R,
whose set of continuity points coincides with A, such that Vf = R, and more precisely

D−f(x) = −∞ and D+f(x) = +∞ , for every x ∈ R .

Recall that a Smith–Volterra–Cantor set is a totally disconnected closed set C, contained in
[0, 1], having any assigned Lebesgue measure µ(C) ∈ [0, 1[ . Iterating its construction on any
interval [n, n + 1], with n ∈ Z, we could have a totally disconnected closed set A with “almost
full” measure.

In the next section we provide the proofs of Theorem 2 and Theorem 3. They are based on
the knowledge that every monotone function is differentiable almost everywhere, and on some
simple properties of continued fractions.
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2 Proofs

We denote by µ be the Lebesgue measure on R.

Proof of Theorem 2. By contradiction, let [a, b] ⊆ Vf , with a < b. Let (xn)n be a sequence in
[a, b] such that f(xn)→ inf f([a, b]). Passing if necessary to a subsequence, we can assume that
xn → x̌, for some x̌ ∈ [a, b]. We have two cases.

Case 1: x̌ ∈ [a, b[ . We will prove that f is increasing in ]x̌, b], hence almost everywhere differen-
tiable there, a contradiction.

By contradiction, let α, β in ]x̌, b] be such that α < β and f(α) > f(β). Being x̌ < α
and f(α) > inf f([a, b]), there exists n such that xn < α and f(xn) < f(α). Since f is upper
well behaved, there is a x̂ ∈ [xn, β] such that f(x̂) = max f([xn, β]). Being f(x̂) ≥ f(α) >
max{f(xn), f(β)}, it has to be x̂ ∈ ]xn, β[ , whence D−f(x̂) ≥ 0 ≥ D+f(x̂), a contradiction,
since x̂ ∈ Vf .

Case 2: x̌ = b. One proves in an analogous way that f is decreasing in [a, b[ , hence almost
everywhere differentiable there, a contradiction.

The proof is thus completed.

Remark 4. If we define a function f : I → R to be lower well behaved when (−f) is upper well
behaved, then it can be proved that the set

Λf := {x ∈ I : D−f(x) > D+f(x)}

is totally disconnected.

Let us now go for the proof of Theorem 3. In the following, we allow an interval to be reduced
to a single point. It will be useful to consider the function F : R→ [0, 1] defined as

F (x) =

{
2
√
x(1− x) , if x ∈ [0, 1] ,

0 , otherwise .

We first need to prove the following two lemmas.

Lemma 5. Let A be a totally disconnected closed set. Then, there exists a nonnegative contin-
uous function σA : R→ R such that:

• σA is differentiable on R \A ;

• for all x ∈ A one has D−σA(x) = −∞ and D+σA(x) = +∞ ;

• σA(x) = 0 if and only if x ∈ A.

Proof. We first prove the result in the case when A is bounded. Without loss of generality we
can assume that A ⊆ ]0, 1[ . Since A is closed, its complement in ]0, 1[ can be written as an at
most countable union of pairwise disjoint open intervals Un = ]an, bn[ , with n ≥ 1. We will treat
in detail only the case when there are infinitely many of them (in the other case A has only
finitely many points, and the proof is much easier). We can then write

A = ]0, 1[ \
⋃
n≥1

Un .
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We define R1 = [0, 1] and, for every n ≥ 2,

Rn = [0, 1] \
n−1⋃
j=1

Uj .

The following properties hold true:

• Un ⊆ Rn , for every n ≥ 1 ;

• R1 ⊇ R2 ⊇ · · · ⊇ Rn ⊇ · · · ;

•
⋂
n≥1

Rn = A ∪ {0, 1} .

Moreover, for n ≥ 2 the set Rn is the union of n pairwise disjoint closed intervals

Rn = Sn,1 ∪ Sn,2 ∪ · · · ∪ Sn,n .

We set S1,1 = R1 = [0, 1]. For every n ≥ 1 there exists an integer H(n) ∈ {1, . . . , n} such that
Un ⊆ Sn,H(n). For simplicity, let us introduce the notation

ρn = µ
(
Sn,H(n)

)
.

Note that, since A is totally disconnected, we have

lim
n
ρn = 0 . (1)

We define the function σ̃A : R→ R as

σ̃A(x) =

∞∑
n=1

√
ρn F

(
x− an
bn − an

)
.

Notice that, for each x ∈ R, the above sum has at most one non-zero addend. It is clear that
σ̃A(x) ≥ 0 for all x ∈ R, and that

A = {x ∈ ]0, 1[ : σ̃A(x) = 0} .

If x ∈ ]0, 1[ \A, then x ∈ Un for some n, hence σ̃A is differentiable there. However, σ̃A(x) = 0 for
every x ∈ R\ ]0, 1[ . We thus need to modify σ̃A outside some interval [δ, 1 − δ], with δ ∈ ]0, 1[ ,
containing A in its interior. It is indeed possible to find a function σA : R→ R, which coincides
with σ̃A on [δ, 1− δ], and is continuously differentiable on ]−∞, δ] ∪ [1− δ,+∞[ , being strictly
positive there, and

σA(x) = 1 for every x ∈ ]−∞, 0] ∪ [1,+∞[ .

This function σA : R→ R is differentiable on R \A and it is such that

A = {x ∈ R : σA(x) = 0} .

We would like to prove that, for any x ∈ A, the function σA is continuous at x, with D−σA(x) =
−∞ and D+σA(x) = +∞.

Suppose then x ∈ A, and so σA(x) = 0 . For every n ≥ 1 we can find an index N(x, n) ∈
{1, . . . , n} such that x ∈ Sn,N(x,n). Let us first focus our attention on a right neighborhood of x.
We consider two cases.
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Case 1: inf{y ∈ A : y > x} > x. Then x = an, for a certain index n. In particular, Un ∪
{x} = [an, bn[ is a right neighborhood of x, and it is easily seen that limy→x+ σA(y) = 0 and
D+σA(x) = +∞.

Case 2: inf{y ∈ A : y > x} = x. In this case, Sn,N(x,n) contains a right neighborhood of x, for
every n ≥ 1, and

Sn,N(x,n) ∩ {y ∈ ]x, 1[ : y /∈ A} =
⋃
j∈Jn

Uj ,

where Jn is an infinite set of integers, such that

lim
n

(min Jn) = +∞ . (2)

We first prove that σA is continuous from the right at x. Fix ε > 0. By (1) and (2), there
exists n̄ ≥ 1 such that

n ≥ n̄ ⇒ ρj < ε2 for every j ∈ Jn . (3)

For any y ∈ Sn̄,N(x,n̄)∩ ]x, 1[ we have that, either y ∈ A, hence σA(y) = 0, or y ∈ Uj for a certain
j ∈ Jn̄ ; in this case, by (3),

σA(y) =
√
ρj F

(
y − aj
bj − aj

)
≤ √ρj < ε .

We have thus proved that 0 ≤ σA(y) < ε for every y in a right neighborhood of x, and so
limy→x+ σA(y) = 0.

We now prove that D+σA(x) = +∞. We claim that there exists a strictly increasing sequence
(nk)k of positive integers such that

Snk,H(nk) = Snk,N(x,nk) . (4)

Indeed, set n1 = 1. Then, for some m ≥ 2 we know that it will be

S2,N(x,2) = S3,N(x,3) = · · · = Sm,N(x,m) 6= Sm+1,N(x,m+1)

if and only if the sets U1 , U2 , . . . , Um−1 have an empty intersection with S2,N(x,2), while
Um ⊆ S2,N(x,2). We see that in this case Sm,H(m) = Sm,N(x,m); such an m is denoted by n2.
Then, one proceeds inductively: assume that nk has been defined, for a certain k ≥ 2; for some
m ≥ nk + 1 it will be

Snk+1,N(x,nk+1) = Snk+2,N(x,nk+2) = · · · = Sm,N(x,m) 6= Sm+1,N(x,m+1)

if and only if the sets Unk
, Unk+1 , . . . , Um−1 have an empty intersection with Snk+1,N(x,nk+1),

while Um ⊆ Snk+1,N(x,nk+1). We see that Sm,H(m) = Sm,N(x,m); such an m is denoted by nk+1.

We have thus defined the sequence (nk)k for which (4) holds. Denote by x̂nk
the midpoints

of the intervals Unk
. Since, by (4),

x ∈ Snk,N(x,nk) = Snk,H(nk) and x̂nk
∈ Unk

⊆ Snk,H(nk) ,

it has to be [x, x̂nk
] ⊆ Snk,H(nk), hence x̂nk

− x ≤ ρnk
. Then, by (1),

D+σA(x) ≥ lim
k

σA(x̂nk
)− σA(x)

x̂nk
− x

≥ lim
k

√
ρnk

ρnk

= lim
k

1
√
ρnk

= +∞ .

A similar argument shows that limy→x− σA(y) = 0 and D−σA(x) = −∞, so that the proof is
completed, in the case when A is bounded.
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Let us now consider the case when A is unbounded both from below and from above. We
can define a bilateral sequence (xn)n∈Z of points, not belonging to A, such that xn+1 − xn ≥ 1
for every n ∈ Z. Define An = A ∩ [xn, xn+1], for every n ∈ Z. Notice that An is closed, totally
disconnected and bounded, for every n ∈ Z. Applying the above procedure with An instead of A,
we obtain the corresponding functions σAn

, which we denote by σn. Notice that, by construction,
for every n we have that

σn(xn) = 1 , σn(xn+1) = 1 , and σ′n(xn) = σ′n(xn+1) = 0 .

We define the function σA : R→ R as

σA(x) = σn(x) , for every n ∈ Z and x ∈ [xn, xn+1] ,

It is readily verified that σA well-defined, continuous on all R, and differentiable on R \A.

The cases when A is unbounded only from below or only from above can be obtained adapting
the procedure adopted in the previous two cases.

Lemma 6. Let ψ : R→ R be a non-negative continuous function, and define f(x) = ψ(x) ·R(x),
where

R(x) =

 1 , if x = 0 or x ∈ R \Q ,

2− 1

p
, if x ∈ Q \ {0} and |x| = p

q
with gcd (p, q) = 1 .

Then, the set of continuity points of f coincides with the set of zeros of ψ; moreover,

• if ψ(x) 6= 0, then D−f(x) = −∞ and D+f(x) = +∞ ;

• if ψ(x) = 0, then D−f(x) = 2D−ψ(x) and D+f(x) = 2D+ψ(x).

Proof. The result is proved by means of the theory of continued fractions, for which we refer
to [12]. We fix x ∈ R and consider two cases.

Case 1: ψ(x) 6= 0. It is easy to prove that f is not continuous at these points.

If x ∈ ]0,+∞[ \Q , let (cn(x))n∈N be the sequence of convergents of the continued fraction
representing x. Define

x+
n =

a2n

b2n
= c2n(x) , x−n =

a2n+1

b2n+1
= c2n+1(x) .

The sequence (x+
n )n converges to the right while (x−n )n converges to the left to x. Since the

fractions cn(x) are in lowest terms, we have

f(x+
n )− f(x)

x+
n − x

=

(
2− 1

a2n

)
ψ(c2n(x))− ψ(x)

c2n(x)− x
→ +∞ ,

because the numerator tends to ψ(x) > 0 as n→ +∞. Analogously,

f(x−n )− f(x)

x−n − x
=

(
2− 1

a2n+1

)
ψ(c2n+1(x))− ψ(x)

c2n+1(x)− x
→ −∞ ,

Hence, D+f(x) = +∞ and D−f(x) = −∞.
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If x ∈ ]0,+∞[∩Q , let x = p
q with gcd(p, q) = 1 , and define, for every n ∈ N,

y+
n =

p

q
+

1

(2q)n
=

2npqn−1 + 1

2nqn
, y−n =

p

q
− 1

(2q)n
=

2npqn−1 − 1

2nqn
.

For every n ≥ 2, the fractions are reduced to lowest terms, while their numerators tend to infinity
as n→ +∞. So,

f(y+
n )− f(x)

y+
n − x

=

(
2− 1

2npqn−1 + 1

)
ψ (y+

n )−
(

2− 1

p

)
ψ (x)

(2q)−n
→ +∞ ,

because the numerator tends to 1
pψ(x) > 0 as n→ +∞. Analogously,

f(y−n )− f(x)

y−n − x
= −

(
2− 1

2npqn−1 − 1

)
ψ (y−n )−

(
2− 1

p

)
ψ (x)

(2q)−n
→ −∞ .

Hence, D+f(x) = +∞ and D−f(x) = −∞. We have thus proved the conclusion, in this case,
for every x > 0.

A similar argument leads to the conclusion when x < 0. Finally, if x = 0, we define, for every
n ≥ 1,

z+
n =

n+ 1

n2
, z−n = −n+ 1

n2
,

so that

f(z±n )− f(0)

z±n − 0
=

(
2− 1

n+ 1

)
ψ (z±n )− ψ (0)

z±n
→ ±∞ ,

since ψ(0) > 0, hence proving again that D+f(0) = +∞ and D−f(0) = −∞.

Case 2: ψ(x) = 0. The continuity of f at x is trivial, since

ψ(y) ≤ f(y) ≤ 2ψ(y) , for every y ∈ R . (5)

The function

rx(y) =
ψ(y)− ψ(x)

y − x
=

ψ(y)

y − x
is continuous in its domain R \ {x}, and

rx(y)(y − x) ≥ 0 , for every y ∈ R \ {x} . (6)

Moreover,
D+ψ(x) = lim sup

y→x+

rx(y) , D−ψ(x) = lim inf
y→x−

rx(y) .

Correspondingly, we can find two sequences of irrational numbers (ξ−n )n in ]−∞, x[ and (ξ+
n )n

in ]x,+∞[ such that limn ξ
±
n = x and

lim
n
rx(ξ+

n ) = D+ψ(x) , lim
n
rx(ξ−n ) = D−ψ(x) .
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We now assume x > 0. Recalling the notation (cn(ζ))n for the sequence of the convergents of
the continued fraction representing ζ /∈ Q, we can find two sequences of positive rational numbers
(ζ±n )n such that

ζ−n = c2κ(n)+1(ξ−n ) =
γ−n
δ−n

and ζ+
n = c2κ(n)(ξ

+
n ) =

γ+
n

δ+
n
,

where the choice κ(n) > n is such that |ξ±n − ζ±n | < n−1, |rx(ξ±n )− rx(ζ±n )| < n−1, and γ±n > n.
In particular, we can ensure that limn ζ

±
n = x and

lim
n
rx(ζ+

n ) = D+ψ(x) , lim
n
rx(ζ−n ) = D−ψ(x) .

Finally,
f(ζ+

n )− f(x)

ζ+
n − x

=
f(ζ+

n )

ζ+
n − x

=

(
2− 1

γ+
n

)
ψ(ζ+

n )

ζ+
n − x

→ 2D+ψ(x) ,

f(ζ−n )− f(x)

ζ−n − x
=

f(ζ−n )

ζ−n − x
=

(
2− 1

γ−n

)
ψ(ζ−n )

ζ−n − x
→ 2D−ψ(x) .

Hence, D+f(x) = 2D+ψ(x) and D−f(x) = 2D−ψ(x), taking into account (5) and (6).

The cases when x < 0 or x = 0 can be carried out similarly. The proof is thus completed.

The proof of Theorem 3 is now an immediate consequence of Lemma 6, taking as ψ the
function σA provided by Lemma 5.
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