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Abstract

The aim of this paper is to extend the theory of lower and upper
solutions to the periodic problem associated with planar systems of dif-
ferential equations. We generalize previously given definitions and we are
able to treat both the well-ordered case and the non-well-ordered case.
The proofs involve topological degree arguments, together with a detailed
analysis of the solutions in the phase plane.

1 Introduction
The method of lower and upper solutions for scalar second order differential
equations of the type

x′′ = g(t, x, x′)

can be dated back to the pioneering papers by Picard [14], Scorza Dragoni [15]
and Nagumo [12], dealing with separated boundary conditions. Its full extension
to the periodic problem is due to Knobloch [9]. Further extensions to partial
differential equations of elliptic or parabolic type have also been proposed, and
there is nowadays a huge literature on this subject. For a rather complete
historical and bibliographical account, we refer to the book [5].

Recently Toader [8], jointly with the first author, extended the main idea in
the definition of lower and upper solutions to planar systems of ordinary differ-
ential equations, with the aim of finding bounded solutions through the method
of Ważewski [16]. As a by-product, the theorem of Massera [11] provided also
the existence of periodic solutions. It is the aim of this paper to further develop
this theory, concentrating on the periodic problem, by the use of topological
degree methods.

We consider the periodic problem

(P )

{
x′ = f(t, x, y) , y′ = g(t, x, y) ,

x(0) = x(T ) , y(0) = y(T ) ,

where f : R3 → R and g : R3 → R are continuous functions, T -periodic in their
first variable. Our purpose is to give a general definition of a lower and an upper
solution with the aim of obtaining the existence of a solution to problem (P ).
In order to do this, let us first recall the definition of lower solution given in [8].

In [8], a continuously differentiable function α : R→ R is said to be a lower
solution for problem (P ) if it is T -periodic and the following properties hold:
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(i) there exists a unique function yα : R→ R such that{
y < yα(t) ⇒ f(t, α(t), y) < α′(t) ,

y > yα(t) ⇒ f(t, α(t), y) > α′(t) ;

(ii) yα is continuously differentiable, and

y′α(t) ≥ g(t, α(t), yα(t)) , for every t ∈ R ;

(iii) there are two positive constants δ,m such that, when |y − yα(t)| ≤ δ,{
y < yα(t)−m|x− α(t)| ⇒ f(t, x, y) < α′(t) ,

y > yα(t) +m|x− α(t)| ⇒ f(t, x, y) > α′(t) .

An analogous definition was provided for an upper solution β : R → R, and
an existence result was proved for problem (P ) assuming α ≤ β, the so called
well-ordered case.

We will generalize the above definition in two directions. First of all, con-
dition (iii) will be removed. Moreover, the function α will not need to be
differentiable on all its domain, and the function yα will be allowed to have
some discontinuity points. The precise definition will be given in Section 2.
Moreover, after having proved the existence of a solution of problem (P ) in
the well-ordered case, we will also deal with the non-well-ordered case α 6≤ β.
Assuming some growth conditions on f and g in order to avoid resonance, we
will then be able to prove an existence result also in this case.

A natural application of our results is provided by the periodic problem
associated with the scalar equation

(φ(x′))′ = h(t, x, x′) , (1)

which can be written in the form of problem (P ), with f(t, x, y) = φ−1(y) and
g(t, x, y) = h(t, x, φ−1(y)). Here, φ : I → J is an increasing homeomorphism
between two intervals I and J containing 0, and φ(0) = 0. Typical examples
in the applications involve the choice φ(υ) = |υ|p−2υ, leading to the so-called
“scalar p-Laplacian” operator (cf. [3]), or φ(υ) = υ/

√
1 + υ2, providing a “mean

curvature” operator (cf. [13]), or φ(υ) = υ/
√

1− υ2, providing a “relativistic”
operator (cf. [2]). (See [8] for a detailed discussion in this direction.) A lower
solution for the periodic problem associated with (1) is usually defined as a
continuously differentiable function α : [0, T ]→ R such that α′(t) ∈ I for every
t, with α(0) = α(T ), α′(0) ≥ α′(T ) and

(φ(α′))′(t) ≥ h(t, α(t), α′(t)) , for every t ∈ [0, T ] .

Our definition to be given in Section 2 extends also this one, with the natural
choice yα(t) = φ(α′(t)). Similarly for what concerns an upper solution.

Notice however that for our problem (P ) we do not need any monotonicity
assumption on f(t, x, y). Indeed, even in the simpler case f(t, x, y) = f(y), the
inequalities in (i) resemble some sign condition, which may be satisfied also if
f is not an increasing function.
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The paper is organized as follows. In Section 2 we introduce our main
definitions and provide some remarks and preliminaries needed in the sequel.

In Section 3 we prove an existence result in the well-ordered case α ≤ β,
assuming (like in [8]) the existence of some bounding curves, in order to control
the solutions in the phase plane. The construction of these curves can be easily
carried out in concrete examples, assuming a Nagumo-type condition (see [8] or
Lemma 15 below).

In Section 4 we deal with the non-well-ordered case. Here we need to ask an
extra technical condition on the lower and upper solutions; it remains an open
question if it could possibly be avoided. Moreover, we assume the existence of a
whole family of bounding curves. This assumption is again verified under some
type of Nagumo conditions.

In Section 5 we present some variants of our main theorems and discuss on
the possibility of further extending the theory to higher dimensional systems.

2 Main definitions and preliminaries
For any function ν : R→ R we use the notation

ν(τ−) = lim
t→τ−

ν(t) , ν(τ+) = lim
t→τ+

ν(t) .

Definition 1. A continuous function α : R→ R is said to be a lower solution for
problem (P ) if it is T -periodic and there exist a T -periodic function yα : R→ R
and a finite number of points 0 = τ0 < τ1 < · · · < τn = T such that the following
properties hold:

1. the restriction of α [resp. yα] to each open interval ]τk−1, τk[ , with k ∈
{1, . . . , n}, is continuously differentiable [resp. differentiable];

2. α′(τ±k ) and yα(τ±k ) exist in R for every k ∈ {1, . . . , n}, with

α′(τ−k ) ≤ α′(τ+
k ) and yα(τ−k ) ≤ yα(τ+

k ) ; (2)

3. for every t ∈ ∪nk=1 ]τk−1, τk[ ,{
y < yα(t) ⇒ f(t, α(t), y) < α′(t) ,

y > yα(t) ⇒ f(t, α(t), y) > α′(t) ,
(3)

and
y′α(t) ≥ g(t, α(t), yα(t)) . (4)

Definition 2. A continuous function β : R→ R is said to be an upper solution
for problem (P ) if it is T -periodic and there exist a T -periodic function yβ :
R→ R and a finite number of points 0 = τ0 < τ1 < · · · < τn = T such that the
following properties hold:

1. the restriction of β [resp. yβ] to each open interval ]τk−1, τk[ , with k ∈
{1, . . . , n}, is continuously differentiable [resp. differentiable];
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2. β′(τ±k ) and yβ(τ±k ) exist in R for every k ∈ {1, . . . , n}, with

β′(τ−k ) ≥ β′(τ+
k ) and yβ(τ−k ) ≥ yβ(τ+

k ) ; (5)

3. for every t ∈ ∪nk=1 ]τk−1, τk[ ,{
y < yβ(t) ⇒ f(t, β(t), y) < β′(t) ,

y > yβ(t) ⇒ f(t, β(t), y) > β′(t) ,
(6)

and
y′β(t) ≤ g(t, β(t), yβ(t)) . (7)

In what follows, when dealing with a couple (α, β) of a lower and an upper so-
lution, we will assume, without loss of generality, that the points {τ0, τ1, . . . , τn}
provided in the previous definitions are the same, both for α and β. Moreover,
since we are dealing with T -periodic functions, it is worth defining the sets

J :=
{
t = τk + ιT | k ∈ {1, . . . , n} , ι ∈ Z

}
, I := R \ J .

Therefore, (2), (5) hold with τk replaced by any τ ∈ J , and (3), (4), (6), (7)
hold for every t ∈ I.

Remark 3. When dealing with the periodic problem associated with the scalar
equation (1), the usual definitions of lower/upper solutions are contained in the
above ones, taking f(t, x, y) = φ−1(y), g(t, x, y) = h(t, x, φ−1(y)), and defin-
ing yα(t) = φ(α′(t)), yβ(t) = φ(β′(t)). Indeed, the conditions α(0) = α(T ),
β(0) = β(T ) permit to continuously extend the functions α, β : [0, T ]→ R to the
whole real line R, and the conditions α′(0) ≥ α′(T ), β′(0) ≤ β′(T ) are included
in (2), (5). The possibility of having some discontinuity points τk can be useful
in the applications, e.g., when taking as a lower solution the maximum of two
or more smooth lower solutions, and as an upper solution the minimum of two
or more smooth upper solutions.

From (3) we have that

α′(t) = f(t, α(t), yα(t)) , for every t ∈ I , (8)

and yα(t) is the only value for which this identity holds. Similarly, from (6) we
have

β′(t) = f(t, β(t), yβ(t)) , for every t ∈ I , (9)

and yβ(t) is uniquely defined on I by this identity.

It is well known in the case of scalar second order equations that if a function
is at the same time a lower and an upper solution, then it is a solution. Let us
write the analogous statement in our situation.

Proposition 4. Let x : R → R be at the same time a lower and an upper
solution for problem (P ). Then, there exists a function y : R → R such that
(x, y) is a solution of problem (P ).
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Proof. Denote by yα and yβ the functions provided by Definitions 1 and 2 taking
x = α and x = β, respectively. From (8) and (9) we deduce that

x′(t) = f(t, x(t), yα(t)) and yα(t) = yβ(t) , for every t ∈ I .

Then, from (2) and (5) we first see that x′(τ−k ) = x′(τ+
k ), thus implying that x :

R→ R is continuously differentiable; moreover, on one hand we have yα(τ−k ) ≤
yα(τ+

k ), and on the other hand

yα(τ−k ) = yβ(τ−k ) ≥ yβ(τ+
k ) = yα(τ+

k ) ,

showing that yα(τ±k ) = yβ(τ±k ) for every k. We can thus define

y(t) =

{
yα(t) , if t ∈ I ,
yα(t±) , if t ∈ J ,

a continuous function.

Since x : R → R is continuously differentiable, y : R → R and f : R3 → R
are continuous, from (8) we deduce that x′(t) = f(t, x(t), y(t)) for every t ∈ R.
Moreover, by (4) and (7) we get y′(t) = g(t, x(t), y(t)) for every t ∈ I; since
y : R → R and g : R3 → R are continuous, we first see that y : R → R is
continuously differentiable, and then also that y′(t) = g(t, x(t), y(t)) for every
t ∈ R, thus completing the proof.

We will need the following estimates involving our lower and upper solutions,
where we adopt the usual definition of the Dini derivatives:

D±F (t0) = lim inf
t→t±0

F (t)− F (t0)

t− t0
, D±F (t0) = lim sup

t→t±0

F (t)− F (t0)

t− t0
.

Proposition 5. If α is a lower solution for problem (P ), then

D±yα(τ) ≥ g(τ, α(τ), yα(τ±)) , for every τ ∈ J .

If β is an upper solution for problem (P ), then

D±yβ(τ) ≤ g(τ, β(τ), yβ(τ±)) , for every τ ∈ J .

Proof. Let us fix k and consider the restrictions of the functions yα and yβ to
the interval [τk, τk+1], redefining the two functions at the extremes in such a
way to make them continuous. Then, since both yα and yβ are differentiable in
the interval ]τk, τk+1[ , by [6, Corollary 3.7] we have

D−yα(τk+1) ≥ lim inf
t→τ−

k+1

D+yα(t) = lim inf
t→τ−

k+1

y′α(t)

≥ lim inf
t→τ−

k+1

g(t, α(t), yα(t)) = g(τk+1, α(τk+1), yα(τ−k+1)) ,

and

D+yβ(τk) ≤ lim sup
t→τ+

k

D−yβ(t) = lim sup
t→τ+

k

y′β(t)

≤ lim sup
t→τ+

k

g(t, β(t), yβ(t)) = g(τk, β(τk), yβ(τ+
k )) .
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Similarly, we have

D+yα(τk) ≥ lim inf
t→τ+

k

D−yα(t) = lim inf
t→τ+

k

y′α(t)

≥ lim inf
t→τ+

k

g(t, α(t), yα(t)) = g(τk, α(τk), yα(τ+
k )) ,

and

D−yβ(τk+1) ≤ lim sup
t→τ−

k+1

D+yβ(t) = lim sup
t→τ−

k+1

y′β(t)

≤ lim sup
t→τ−

k+1

g(t, β(t), yβ(t)) = g(τk+1, β(τk+1), yβ(τ−k+1)) ,

thus ending the proof.

3 Well-ordered lower and upper solutions
We will say that (α, β) is a well-ordered couple of lower/upper solutions of prob-
lem (P ) if α and β are respectively a lower and an upper solution of problem (P ),
and α(t) ≤ β(t) for every t ∈ R. The following result generalizes that part of [8,
Theorem 2.5] concerning the existence of periodic solutions.

Theorem 6. Assume the existence of a well-ordered couple (α, β) of lower/up-
per solutions of problem (P ). Set A = minα and B = maxβ, with A < B. Let
there exist two continuously differentiable functions γ± : [A,B] → R such that,
for every t ∈ R and x ∈ [α(t), β(t)],

γ−(x) < min{yα(t−), yβ(t+)} ≤ max{yα(t+), yβ(t−)} < γ+(x) ,

and
g(t, x, γ−(x)) < f(t, x, γ−(x))γ′−(x) , (10)
g(t, x, γ+(x)) > f(t, x, γ+(x))γ′+(x) . (11)

Then there exists at least one solution of problem (P ) such that

α(t) ≤ x(t) ≤ β(t) and γ−(x(t)) < y(t) < γ+(x(t)) ,

for every t ∈ R.

Some remarks are in order.

1) We will discuss in Section 5 on the possibility of reversing the inequalities
in (10) and (11).

2) We will provide in Lemma 15 some Nagumo-type conditions which guarantee
the existence of the curves γ±.

3) The assumption A < B is inessential, since if A = B we have that α = β,
hence by Proposition 4 we immediately get a solution.
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3.1 Proof of Theorem 6
3.1.1 An auxiliary problem

Let Φ : R3 → R2 be defined as

Φ(t, x, y) =
(
f(t, x, y), g(t, x, y)

)
.

Fix D > 0 such that

−D < γ−(x) < γ+(x) < D , for every x ∈ [A,B] .

Define

‖α′‖∞ = max
t∈[0,T ]

|α′(t±)| , ‖β′‖∞ = max
t∈[0,T ]

|β′(t±)| , (12)

µ1 = max
t∈[0,T ]

|f(t, α(t), γ±(α(t)))| , µ2 = max
t∈[0,T ]

|f(t, β(t), γ±(β(t)))| ,

choose
MX > max{µ1, µ2, ‖α′‖∞, ‖β′‖∞} , (13)

and
MY > ‖γ′±‖∞MX . (14)

We interpolate the vector field Φ(t, x, y) on {A ≤ x ≤ B , γ−(x) ≤ y ≤ γ+(x)}
with a constant vector field on {A ≤ x ≤ B , |y| ≥ D}. Precisely, we define
Φ̂ : R× [A,B]× R→ R2 as

Φ̂(t, x, y) =



(MX ,MY ) , if y ≥ D ,

Φ(t, x, γ+(x)) +
y − γ+(x)

D − γ+(x)

(
(MX ,MY )− Φ(t, x, γ+(x))

)
,

if γ+(x) ≤ y ≤ D ,

Φ(t, x, y) , if γ−(x) ≤ y ≤ γ+(x) ,

Φ(t, x, γ−(x))− y − γ−(x)

D + γ−(x)

(
(−MX ,−MY )− Φ(t, x, γ−(x))

)
,

if −D ≤ y ≤ γ−(x) ,

(−MX ,−MY ) , if y ≤ −D .

We will write Φ̂(t, x, y) =
(
f̂(t, x, y), ĝ(t, x, y)

)
.

By the use of the auxiliary functions

ζ(s;µ, ν) =


µ , if s < µ ,

s , if µ ≤ s ≤ ν ,
ν , if s > ν ,

and

e(s;µ, ν) = s− ζ(s;µ, ν) =


s− µ , if s < µ ,

0 , if µ ≤ s ≤ ν ,
s− ν , if s > ν ,
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we define, for every (t, x, y) ∈ R3,

f̃(t, x, y) =f̂
(
t, ζ
(
x;α(t), β(t)

)
, ζ
(
y;−D,D

))
+ e
(
y;−D,D

)
,

g̃(t, x, y) =ĝ
(
t , ζ

(
x;α(t), β(t)

)
, ζ
(
y;−D,D

))
+ e
(
x;α(t), β(t)

)
,

so to introduce the modified problem

(P̃ )

{
x′ = f̃(t, x, y) , y′ = g̃(t, x, y) ,

x(0) = x(T ) , y(0) = y(T ) .

We will write Φ̃(t, x, y) =
(
f̃(t, x, y), g̃(t, x, y)

)
. In the space

C0
T =

{
v ∈ C0([0, T ],R2) : v(0) = v(T )

}
we introduce the open set

V = {u ∈ C0
T | (t, u(t)) ∈ V for every t ∈ [0, T ]} , (15)

where, see Figure 1,

V = {(t, x, y) ∈ R3 | α(t) < x < β(t) , γ−(x) < y < γ+(x)} .

Our aim is to prove that there exists a solution u = (x, y) of problem (P̃ )
belonging to V. Since f̃ = f and g̃ = g on the set V , then u will solve also (P ).

3.1.2 No solutions of (P̃ ) outside V

We show that all the solutions u = (x, y) of system (P̃ ) are such that (t, u(t)) ∈
V , for every t ∈ R.

Let us start proving a preliminary lemma.

Lemma 7. For every t ∈ I, the following inequalities hold:{
f̃(t, x, y) < α′(t) , if x ≤ α(t) and y < yα(t) ,

f̃(t, x, y) > α′(t) , if x ≤ α(t) and y > yα(t) ;
(16)

{
f̃(t, x, y) < β′(t) , if x ≥ β(t) and y < yβ(t) ,

f̃(t, x, y) > β′(t) , if x ≥ β(t) and y > yβ(t) ;
(17){

g̃(t, x, yα(t)) < y′α(t) , if x < α(t) ,

g̃(t, x, yβ(t)) > y′β(t) , if x > β(t) .
(18)

Moreover, for every τ ∈ J ,{
g̃(τ, x, yα(τ±)) < D±yα(τ) , if x < α(τ) ,

g̃(τ, x, yβ(τ±)) > D±yβ(τ) , if x > β(τ) .
(19)

Proof. Let us prove the first inequality in (16). Suppose t ∈ I, x ≤ α(t) and
y < yα(t). We have that

f̃(t, x, y) = f̂
(
t, ζ
(
x;α(t), β(t)

)
, ζ
(
y;−D,D

))
+ e(y;−D,D)

= f̂
(
t, α(t) , ζ

(
y;−D,D

))
+ e(y;−D,D) .

We need to consider three different cases.
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Case 1. If γ−(α(t)) ≤ y < yα(t), then

f̃(t, x, y) = f̂(t, α(t), y) = f(t, α(t), y) < α′(t) .

Case 2. If −D ≤ y < γ−(α(t)), then

f̃(t, x, y) = f̂(t, α(t), y)

= f(t, α(t), γ−(α(t)))− y − γ−(α(t))

D + γ−(α(t))

[
−MX − f(t, α(t), γ−(α(t)))

]
≤ f(t, α(t), γ−(α(t))) < α′(t) .

Case 3. If y < −D then, by (13),

f̃(t, x, y) = f̂(t, α(t),−D) + y +D = −MX + y +D < −MX < α′(t) .

Hence, the first inequality in (16) is proved. The second one can be proved
analogously, as well as the inequalities in (17).

We now prove the first inequality of (18). Let x < α(t). Since −D <
γ−(α(t)) ≤ yα(t) ≤ γ+(α(t)) < D, we have

g̃(t, x, yα(t)) = ĝ
(
t , ζ

(
x;α(t), β(t)

)
, ζ
(
yα(t);−D,D

))
+ e
(
x;α(t), β(t)

)
= ĝ(t, α(t), yα(t)) + x− α(t)

< ĝ(t, α(t), yα(t))

= g(t, α(t), yα(t)) ≤ y′α(t) .

The second inequality in (18) follows analogously, and a similar computation
proves the ones in (19).

Let us define the sets

ANW = {(t, x, y) ∈ R3 | x < α(t) , y > yα(t+)} ,
ASW = {(t, x, y) ∈ R3 | x < α(t) , y < yα(t−)} ,
ANE = {(t, x, y) ∈ R3 | x > β(t) , y > yβ(t−)} ,
ASE = {(t, x, y) ∈ R3 | x > β(t) , y < yβ(t+)}

(see Figure 1).

Lemma 8. For every solution u = (x, y) of

x′ = f̃(t, x, y) , y′ = g̃(t, x, y) , (20)

the following assertions hold true:

(t0, u(t0)) ∈ ANW ⇒ (t, u(t)) ∈ ANW for every t < t0 ,

(t0, u(t0)) ∈ ASE ⇒ (t, u(t)) ∈ ASE for every t < t0 ,

(t0, u(t0)) ∈ ANE ⇒ (t, u(t)) ∈ ANE for every t > t0 ,

(t0, u(t0)) ∈ ASW ⇒ (t, u(t)) ∈ ASW for every t > t0 .
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Figure 1: A sketch of the section at a fixed time t of the regions where to study
the dynamics of u′ = Φ̃(t, u). Notice that the vertical lines x = α, x = β and
the horizontal lines y = yα, y = yβ move in time, while the curves γ± are fixed.

Proof. We will prove only the validity of the first assertion, since the others
follow similarly. We argue by contradiction and assume the existence of t1 < t0
and of a solution u = (x, y) of (20) such that (t, u(t)) = (t, x(t), y(t)) ∈ ANW for
every t ∈ ]t1, t0] and (t1, u(t1)) = (t1, x(t1), y(t1)) ∈ ∂ANW , where (see Figure 2)

∂ANW ={(t, x, y) ∈ R3 | x = α(t) , y ≥ yα(t+)}
∪ {(t, x, y) ∈ R3 | x ≤ α(t) , yα(t−) ≤ y(t) ≤ yα(t+)} . (21)

Without loss of generality we can assume the existence of δ > 0 such that
]t1, t1 + δ] ⊆ I. We define G(t) = x(t)− α(t), for every t ∈ [t1, t1 + δ]. We have
G(t1 + δ) < 0 and, from (16),

G′(t) = x′(t)− α′(t) = f̃(t, x(t), y(t))− α′(t) > 0 ,

for every t ∈ ]t1, t1 + δ]. Hence, G(t1) < 0. We conclude that x(t) < α(t) for
every t ∈ [t1, t0]. So, being x(t1) < α(t1), recalling (21), we necessarily have
yα(t−1 ) ≤ y(t1) ≤ yα(t+1 ).

If y(t1) = yα(t+1 ), then the function H(t) = y(t) − yα(t+) is continuous in
the interval [t1, t0] with H(t1) = 0 and H(t) > 0 for all t ∈ ]t1, t0]. Recalling
that x(t) < α(t) for all t ∈ [t1, t0], by (18) or (19) we have

D+H(t1) = y′(t1)−D+yα(t1) = g̃(t1, x(t1), yα(t+1 ))−D+yα(t1) < 0 ,

leading again to a contradiction.

The case yα(t−1 ) ≤ y(t1) < yα(t+1 ) could arise only if t1 ∈ J . However, such
a situation is not possible, indeed we would have the existence of δ > 0 such
that H(t) < 0 for every t ∈ (t1, t1 + δ) which gives a contradiction, since we
have assumed (t, u(t)) ∈ ANW for every t ∈ ]t1, t0[ .
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Figure 2: A sketch of the boundary of the set ANW . It consists of a wall
x = α(t), a floor y = yα(t+) and a possible step yα(t−) ≤ y < yα(t+). For
simplicity, the function yα is drawn as being piecewise constant.

We have thus proved that the sets ANW , ASE are invariant in the past, while
the sets ANE , ASW are invariant in the future. We also define the sets

AW = {(t, x, y) ∈ R3 | x < α(t) , yα(t−) ≤ y ≤ yα(t+)} ,
AE = {(t, x, y) ∈ R3 | x > β(t) , yβ(t+) ≤ y ≤ yβ(t−)} ,

(see Figure 1).

Lemma 9. If u = (x, y) is a solution of (20) such that (t0, u(t0)) ∈ AW , then
there exists δ > 0 such that

t ∈ ]t0 − δ, t0[ ⇒ (t, u(t)) ∈ ANW ,

t ∈ ]t0, t0 + δ[ ⇒ (t, u(t)) ∈ ASW .

Similarly, if u = (x, y) is a solution of (20) such that (t0, u(t0)) ∈ AE , then
there exists δ > 0 such that

t ∈ ]t0 − δ, t0[ ⇒ (t, u(t)) ∈ ASE ,
t ∈ ]t0, t0 + δ[ ⇒ (t, u(t)) ∈ ANE .

Proof. We give the proof of the first part of the statement, the second one being
similar. Let u = (x, y) be a solution of (20) such that (t0, u(t0)) ∈ AW . If
y(t0) = yα(t+0 ) then, defining as above the function H(t) = y(t)− yα(t+),

D+H(t0) = y′(t0)−D+yα(t0) = g̃(t0, x(t0), yα(t+0 ))−D+yα(t0) < 0 ,

using (18) or (19). So, there exists δ > 0 such that y(t) < yα(t+) = yα(t−) and
x(t) < α(t) for every t ∈ ]t0, t0 + δ[ .

11



On the other hand, if yα(t−0 ) ≤ y(t0) < yα(t+0 ), then t0 ∈ J and the strict
inequalities y(t0) < yα(t+0 ) and x(t0) < α(t0) provide the same conclusion as
before by a continuity argument.

We now give the proof for t < t0. If y(t0) = yα(t−0 ) then

D−H(t0) = y′(t0)−D−yα(t0) = g̃(t0, x(t0), yα(t−0 ))−D−yα(t0) < 0 ,

and we get the existence of δ > 0 such that y(t) > yα(t−) = yα(t+) and x(t) <
α(t), for every t ∈ ]t0 − δ, t0[ . On the other hand, if yα(t−0 ) < y(t0) ≤ yα(t+0 ),
we reach the same conclusion, by continuity.

Lemma 10. If u = (x, y) is a solution of (P̃ ), then

α(t) ≤ x(t) ≤ β(t) , for every t ∈ R . (22)

Proof. Suppose that there exists a solution u = (x, y) of (P̃ ) such that x(t0) <
α(t0) for a certain t0 ∈ [0, T ]. If (t0, u(t0)) ∈ ANW , then, from Lemma 8, we
have that (t, u(t)) ∈ ANW for every t ∈ R. Moreover, from (16) we get

t ∈ I ⇒ (x− α)′(t) = f̃(t, x(t), y(t))− α′(t) > 0 ,

a contradiction, since x− α is a periodic function.

The same reasoning can be adopted if (t0, u(t0)) ∈ ASW . Finally, if (t0, u(t0))
belongs to AW , Lemma 9 brings us to the previous contradicting situations.

A similar argument can be adopted in order to show that there are no solu-
tions u = (x, y) of (P̃ ) such that max[0,T ](x− β) > 0.

Lemma 11. If u = (x, y) is a solution of (P̃ ), then

γ−(x(t)) < y(t) < γ+(x(t)) , for every t ∈ R . (23)

Proof. We already know from Lemma 10 that any solution of (P̃ ) is such that
α(t) ≤ x(t) ≤ β(t) for every t ∈ [0, T ]. We claim that |y(t)| < D, for every t ∈
[0, T ]. Indeed, if the function y has minimum at t = tm such that y(tm) < −D,
then we would have

y′(tm) = g̃(tm, x(tm), y(tm)) = −MY < 0 ,

a contradiction. Similarly, max[0,T ] y < D must hold.

We now define the periodic function F−(t) = y(t) − γ−(x(t)). Let sm ∈
[0, T ] such that F−(sm) = min[0,T ] F−. If F−(sm) ≤ 0, we get the following
contradiction:

F ′−(sm) = y′(sm)− γ′−(x(sm))x′(sm)

= g̃(sm, x(sm), y(sm))− γ′−(x(sm))f̃(t, x(sm), y(sm))

= ĝ(sm, x(sm), y(sm))− γ′−(x(sm))f̂(t, x(sm), y(sm))

= 〈Φ̂(sm, x(sm), y(sm)), (−γ′−(x(sm)), 1)〉

=

(
1− γ−(x(sm))− y(sm)

D + γ−(x(sm))

)〈
Φ(sm, x(sm), γ−(x(sm))) , (−γ′−(x(sm)), 1)

〉
− γ−(x(sm))− y(sm)

D + γ−(x(sm))

〈
(MX ,MY ), (−γ′−(x(sm)), 1)

〉
< 0 ,

12



where we have used both (10) and (14). So, min[0,T ] F− > 0. Similarly we can
prove that max[0,T ] F+ < 0, where F+(t) = y(t)− γ+(x(t)), thus concluding the
proof.

3.1.3 A topological degree argument

We define the operators

L : C1
T → C0

T , L
(
x
y

)
=

(
x′

y′

)
,

where C1
T =

{
v ∈ C1([0, T ],R2) : v(0) = v(T )

}
and

Ñ : C0
T → C0

T , Ñ
(
x
y

)
(t) =

(
f̃(t, x(t), y(t))
g̃(t, x(t), y(t))

)
. (24)

So, a solution u(t) =

(
x(t)
y(t)

)
of problem (P̃ ) corresponds to a solution of

Lu− Ñu = 0 . (25)

In the previous section we have found the a priori bound V for all the possible
solutions of problem (P̃ ). In order to apply the degree theory we need to consider
an open ball BR containing V. By the above arguments, we can deduce that if
u solves (25), then u /∈ ∂BR , so that the coincidence degree dL(L − Ñ ,BR) is
well defined. We refer to [10] for more details on this topic.

Since (22) and (23) hold, we can rewrite system (20) as

x′ = y + p(t, x, y) , y′ = x+ q(t, x, y) ,

where

p(t, x, y) = f̂
(
t, ζ
(
x;α(t), β(t)

)
, ζ
(
y;−D,D

))
− ζ
(
y;−D,D

)
,

q(t, x, y) = ĝ
(
t , ζ

(
x;α(t), β(t)

)
, ζ
(
y;−D,D

))
− ζ
(
x;α(t), β(t)

)
,

are bounded functions. We now introduce the functions

Fλ(t, u) = Fλ(t, x, y) =
(
y + λp(t, x, y) , x+ λq(t, x, y)

)
,

and the problems

(Qλ)

{
u′ = Fλ(t, u) ,

u(0) = u(T ) .

We define the Nemytskii operator related to the family of problem (Qλ) as

(Mλu)(t) = Fλ(t, u(t)) ,

Since the function (p, q) : [0, T ]×R2 → R2 is bounded, by a classical argument
we can find a sufficiently large R > 0, such that, for every λ ∈ [0, 1], all the
periodic solutions of (Qλ) satisfy

‖u‖2∞ = sup
t∈[0,T ]

[x2(t) + y2(t)] < R2 .

13



Since for λ = 0 we have an autonomous linear problem ruled by the function
G(u) = G(x, y) =

(
y, x
)
, by [4, Lemma 1] we can conclude that

dL(L − Ñ ,BR) = dL(L −M1,BR) = dL(L −M0,BR) = deg(G, BR) = −1 ,

where deg(G, BR) denotes the Brouwer degree of the function G on the ball
BR = {(x, y) ∈ R2 | x2 + y2 < R2} and BR is the set of continuous functions
having image in BR. We have so found a solution of problem (P̃ ) belonging
to the set BR. However, such a solution belongs indeed to the a priori bound
V, and so it is also a solution of problem (P ), thus concluding the proof of
Theorem 6.

3.2 An important consequence of the proof
We first recall the definition (15) of the open set

V = {u ∈ C0
T | (t, u(t)) ∈ V for every t ∈ [0, T ]} , (26)

where

V = {(t, x, y) ∈ R3 | α(t) < x < β(t) , γ−(x) < y < γ+(x)} .

Let us introduce the Nemytskii operator related to problem (P ) as

N : C0
T → C0

T N
(
x
y

)
(t) =

(
f(t, x(t), y(t))
g(t, x(t), y(t))

)
.

Corollary 12. Under the assumptions of Theorem 6, if there are no solutions
of (P ) in ∂V, then

dL(L −N ,V) = −1 .

Proof. Since Φ = Φ̃ on V , and so N = Ñ on V, the additional assumption
permits us to evaluate the coincidence degree also on the set V. Recalling that
all the solutions of problem (P̃ ) satisfy the a priori bounds (22) and (23), by
the excision property we have

−1 = dL(L − Ñ ,BR) = dL(L − Ñ ,V) = dL(L −N ,V) ,

and the proof is completed.

Remark 13. The set V introduced in (26) depends on the well-ordered couple
(α, β) of lower/upper solutions of problem (P ) and the functions γ± given in
the assumptions of Theorem 6. In the following section, we will denote this set
by V(α, β, γ±) when we need to underline such a dependence.

4 Non-well-ordered lower and upper solutions
We still consider the periodic problem

(P )

{
x′ = f(t, x, y) , y′ = g(t, x, y) ,

x(0) = x(T ) , y(0) = y(T ) ,

where f : R3 → R and g : R3 → R are continuous functions, T -periodic in their
first variable.

14



We will say that (α, β) is a non-well-ordered couple of lower/upper solutions
of problem (P ) if α and β are respectively a lower and an upper solution of
problem (P ), such that there exists t̂0 ∈ [0, T ] satisfying

α(t̂0) > β(t̂0) . (27)

Let us set

a(t) := min{α(t), β(t)} , b(t) := max{α(t), β(t)} ,

A := min a , B := max b .

Notice that A < B, by (27).

Let us introduce our assumptions.

(H1) There is a continuous function χ : R → [0,+∞[ and a constant M > 0
such that

|f(t, x, y)| ≤ χ(y)(1 + |x|) , for every (t, x, y) ∈ R3 , (28)

|g(t, x, y)| ≤M(1 + |y|) , for every (t, x, y) ∈ R3 . (29)

(H2) There exist two continuous functions γ± : [A,B] × [1,+∞[→ R, contin-
uously differentiable with respect to the first variable, such that

lim
λ→+∞

γ±(x;λ) = ±∞ , uniformly with respect to x ∈ [A,B] ,

and

g
(
t, x, γ−(x;λ)

)
< f

(
t, x, γ−(x;λ)

)
γ′−(x;λ) , (30)

g
(
t, x, γ+(x;λ)

)
> f

(
t, x, γ+(x;λ)

)
γ′+(x;λ) , (31)

for every t ∈ R, x ∈ [a(t), b(t)] and λ ∈ [1,+∞[ . (Here we denote by γ′±
the derivative with respect to the first variable.)

Theorem 14. Assume the existence of a non-well-ordered couple (α, β) of
lower/upper solutions of problem (P ) with the additional property that there
exists a constant ĉ > 0 such that, for every k ∈ {1, . . . , n},{

y ≤ −ĉ ⇒ f(τk, α(τ−k ), y) < α′(τ−k ) ,

y ≥ ĉ ⇒ f(τk, α(τ+
k ), y) > α′(τ+

k ) ,
(32)

{
y ≤ −ĉ ⇒ f(τk, β(τ+

k ), y) < β′(τ+
k ) ,

y ≥ ĉ ⇒ f(τk, β(τ−k ), y) > β′(τ−k ) .
(33)

If (H1) and (H2) hold, there exists at least one solution of problem (P ) such
that, for some t1, t2 ∈ [0, T ], one has x(t1) ≤ α(t1) and x(t2) ≥ β(t2).

This theorem extends some classical results for scalar second order differen-
tial equations of the type (1). We will show below two examples of applications.
Conditions (H1) and (H2) will be necessary in order to avoid resonance phe-
nomena, and to obtain a priori bounds. Notice that (3) and (6) imply a weaker
form of (32) and (33), i.e., with only weak inequalities. It remains an open
problem if these additional assumptions can be omitted.
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We will discuss in Section 5 on the possibility of reversing the inequalities
in (30) and (31). Concerning the existence of the functions γ±, let us prove the
following lemma.

Lemma 15. Let the following assumptions hold:

(G1) there are a constant d > 0 and two continuous functions f+ : [d,+∞[→ R
and f− : ]−∞,−d]→ R such that{

y ≥ d ⇒ f(t, x, y) ≥ f+(y) > 0 ,

y ≤ −d ⇒ f(t, x, y) ≤ f−(y) < 0 ,

for every (t, x) ∈ [0, T ]× [A,B] ;

(G2) there is a positive continuous function ϕ : [0,+∞[→ R such that

|g(t, x, y)| ≤ ϕ(|y|) , for every (t, x, y) ∈ [0, T ]× [A,B]× R ;

(G3) the above functions are such that∫ +∞

d

f+(s)

ϕ(s)
ds = +∞ ,

∫ −d
−∞

f−(s)

ϕ(|s|)
ds = −∞ . (34)

Then, there exist four continuous functions γ±,1 , γ±,2 : [A,B] × [1,+∞[→ R,
continuously differentiable with respect to the first variable, such that

lim
λ→+∞

γ±,1(x;λ) = ±∞ and lim
λ→+∞

γ±,2(x;λ) = ±∞ ,

uniformly with respect to x ∈ [A,B] , (35)

and

g
(
t, x, γ+,1(x;λ)

)
> f

(
t, x, γ+,1(x;λ)

)
γ′+,1(x;λ) , (36)

g
(
t, x, γ+,2(x;λ)

)
< f

(
t, x, γ+,2(x;λ)

)
γ′+,2(x;λ) , (37)

g
(
t, x, γ−,1(x;λ)

)
< f

(
t, x, γ−,1(x;λ)

)
γ′−,1(x;λ) , (38)

g
(
t, x, γ−,2(x;λ)

)
> f

(
t, x, γ−,2(x;λ)

)
γ′−,2(x;λ) , (39)

for every t ∈ [0, T ], x ∈ [A,B] and λ ∈ [1,+∞[ .

Proof. For every y0 ≥ d, we introduce the continuous strictly increasing function
Fy0 : [d,+∞[→ R defined as

Fy0(ξ) =

∫ ξ

y0

f+(s)

ϕ(s)
ds .

We can easily verify that Fy0(y0) = 0 and, from (34),

lim
ξ→+∞

Fy0(ξ) = +∞ .

Construction of γ+,1. For every y0 ≥ d and for every x ∈ [A,B] there exists
a unique ξ ≥ y0 such that Fy0(ξ) = 2(B − x). Hence, we can define γ+,1(x;λ),
for λ ≥ 1, as the unique solution of equation

Fλ−1+d

(
γ+,1(x;λ)

)
= 2(B − x) . (40)
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In particular, since Fλ−1+d

(
γ+,1(B;λ)

)
= 0, we get

γ+,1(x;λ) ≥ γ+,1(B;λ) = λ− 1 + d ,

which provides the validity of (35) for the function γ+,1. Differentiating in (40)
we see that γ′+,1(x;λ) < 0 for every x ∈ [A,B], and

f(t, x, γ+,1(x;λ))γ′+,1(x;λ) ≤ f+(γ+,1(x;λ))γ′+,1(x;λ)

= −2ϕ(γ+,1(x;λ)) < −ϕ(γ+,1(x;λ))

< g(t, x, γ+,1(x;λ)) ,

thus proving (36).

Construction of γ+,2. Arguing similarly as above, for every y0 ≥ d and for
every x ∈ [A,B] there exists a unique ξ ≥ y0 such that Fy0(ξ) = 2(x − A).
Hence we can define γ+,2(x;λ) by

Fλ−1+d

(
γ+,2(x;λ)

)
= 2(x−A) . (41)

In particular, since Fλ−1+d

(
γ+,2(A;λ)

)
= 0, we get

γ+,2(x;λ) ≥ γ+,2(A;λ) = λ− 1 + d ,

so that (35) holds for the function γ+,2. Differentiating in (41),

f(t, x, γ+,2(x;λ))γ′+,2(x;λ) ≥ f+(γ+,2(x;λ))γ′+,2(x;λ)

= 2ϕ(γ+,2(x;λ)) > ϕ(γ+,2(x;λ))

> g(t, x, γ+,2(x;λ)) ,

thus proving (37).

The construction of the functions γ−,1 and γ−,2 satisfying (38) and (39) is
similar.

Let us illustrate how our result applies to two classical scalar second order
differential equations of the type (1), involving a scalar p-Laplacian and a mean
curvature operator, with φ(s) = |s|p−2s and φ(s) = s/

√
1 + s2, respectively.

Consider first the problem{
(|x′|p−2x′)′ = h(t, x, x′) ,

x(0) = x(T ) , x′(0) = x′(T ) ,
(42)

with p > 1, which is equivalent to problem (P ), taking f(t, x, y) = f(y) =
|y|q−2y, with (1/p) + (1/q) = 1, and g(t, x, y) = h(t, x, |y|q−2y).

Corollary 16. Assume the existence of a non-well-ordered couple (α, β) of
lower/upper solutions of problem (42), and of a constant M > 0 for which

|h(t, x, z)| ≤M(1 + |z|p−1) , for every (t, x, z) ∈ R3. (43)

Then, there exists at least one solution of problem (42) such that, for some
t1, t2 ∈ [0, T ], one has x(t1) ≤ α(t1) and x(t2) ≥ β(t2).

17



Proof. Notice that (43) implies (29). We can use Lemma 15 with ϕ(s) = M(1+
|y|) to construct the curves γ±. Then, Theorem 14 applies.

Consider now the problem
(

x′√
1 + (x′)2

)′
= h(t, x, x′) ,

x(0) = x(T ) , x′(0) = x′(T ) ,

(44)

which is equivalent to problem (P ), taking f(t, x, y) = φ−1(y) = y/
√

1− y2

and g(t, x, y) = h
(
t, x, y/

√
1− y2

)
. Notice that these functions are now only

defined on R× R× ]− 1, 1[ .

Corollary 17. Assume the existence of a non-well-ordered couple (α, β) of
lower/upper solutions of problem (44), and of a positive continuous function
ζ : [0,+∞[→ R such that

|h(t, x, z)| ≤ ζ(|z|) , for every (t, x, z) ∈ R3, (45)

and ∫ +∞

0

ds

(1 + s2)3/2 ζ(s)
>
T

2
. (46)

Then, there exists at least one solution of problem (44) such that, for some
t1, t2 ∈ [0, T ], one has x(t1) ≤ α(t1) and x(t2) ≥ β(t2).

Proof. Recalling that φ(s) = s/
√

1 + s2, by (46) there is a c ∈ ]0, 1[ such that∫ φ−1(c)

0

φ′(s)

ζ(s)
ds >

T

2
. (47)

We define the functions fc : R→ R and gc : R3 → R as

fc(y) =


φ−1(−c) + y + c , if y < −c ,
φ−1(y) , if |y| ≤ c ,
φ−1(c) + y − c , if y > c ,

and

gc(t, x, y) =


g(t, x,−c) , if y < −c ,
g(t, x, y) , if |y| ≤ c ,
g(t, x, c) , if y > c ,

and we consider the system

x′ = fc(y) , y′ = gc(t, x, y) . (48)

Using Lemma 15, we see that all the assumptions of Theorem 14 hold, so that
problem (48) has a T -periodic solution (x, y).
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We now show that |y(t)| ≤ c for every t, implying that (x, y) is indeed a
solution of problem (44). By contradiction, assume that max y > c, or min y <
−c. Let us treat the first case, the other one being similar. By the periodicity,
there exists a ξ ∈ [0, T ] such that x′(ξ) = 0 and, correspondingly, y(ξ) = 0. Let
ξ1 and ξ2 be such that |ξ2 − ξ1| ≤ T

2 , y(ξ1) = 0, y(ξ2) = c, and y(t) ∈ ]0, c[
for every t ∈ ]ξ1, ξ2[ . (When ξ1 > ξ2, we write ]ξ1, ξ2[ = ]ξ2, ξ1[ and [ξ1, ξ2] =
[ξ2, ξ1].) For every t ∈ [ξ1, ξ2], by (45) we have

|y′(t)| ≤ ζ(φ−1(y(t))) ,

so that, by (47),

|ξ2 − ξ1| ≥

∣∣∣∣∣
∫ ξ2

ξ1

y′(t)

ζ(φ−1(y(t)))
dt

∣∣∣∣∣ =

∫ φ−1(c)

0

φ′(s)

ζ(s)
ds >

T

2
,

a contradiction.

The above corollary generalizes [13, Proposition 3.7], where ζ(s) is a constant
function with positive value K < 2

T .

4.1 Proof of Theorem 14
4.1.1 An auxiliary problem

Let us set
dy := max{‖yα‖∞ , ‖yβ‖∞ , ‖α′‖∞ , ‖β′‖∞ , ĉ} , (49)

where, for all these functions, the norm ‖ · ‖∞ can be defined as in (12).

We recall here a classical result, which is a straightforward consequence of
the Gronwall Lemma, often mentioned as elastic property.

Lemma 18. For every constant K > 0 we can define a function EK : [0,+∞[→
[0,+∞[ with the following property: given a differentiable function z : R → R
satisfying

|z′(t)| ≤ K(1 + |z(t)|) , for every t ∈ R ,
if |z(t̄)| ≤ Z for a certain t̄ ∈ R, then |z(t)| ≤ EK(Z) for every t ∈ [t̄−T, t̄+T ].

For example, we can take EK(Z) = (Z +KT )eKT .

Using the notation introduced in the previous lemma, let us now set

D := EM (dy) ,

where M and dy have been introduced respectively in (29) and (49).

By assumption (H2), we can find a sufficiently large constant Λ > 1 such
that

|γ±(x;λ)| > D , for every x ∈ [A,B] and λ ≥ Λ . (50)

Let us introduce the sets

NΛ := {(t, x, y) ∈ R3 : a(t) ≤ x ≤ b(t) , y > γ+(x; Λ)} ,
CΛ := {(t, x, y) ∈ R3 : a(t) ≤ x ≤ b(t) , γ−(x; Λ) ≤ y ≤ γ+(x; Λ)} ,
SΛ := {(t, x, y) ∈ R3 : a(t) ≤ x ≤ b(t) , y < γ−(x; Λ)} ,

(see Figure 3).
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Figure 3: A sketch of the section at a fixed time t of the regions NΛ, CΛ, and
SΛ. Notice that the vertical lines x = α and x = β move in time, while the
curves γ±(·,Λ) are fixed.

Lemma 19. There are two constants `x and `y with the following property: if
u = (x, y) is a solution of

x′ = f(t, x, y) , y′ = g(t, x, y) (51)

such that (t0, u(t0)) ∈ CΛ for a certain t0 ∈ [0, T ], then

|x(t)| ≤ `x and |y(t)| ≤ `y , for every t ∈ [0, T ] .

Proof. Since the set CΛ is bounded, we can fix two constants X > 0 and Y > 0
such that

CΛ ⊆ [−X,X]× [−Y, Y ] .

Hence, applying Lemma 18 in the setting (z,K, Z, t̄) = (y,M, Y, t0), we see
that every solution u = (x, y) of (51) such that (t0, u(t0)) ∈ CΛ, for a certain
t0 ∈ [0, T ], satisfies

|y(t)| ≤ `y := EM (Y ) , for every t ∈ [0, T ] .

Now, recalling (28) and setting Mχ = max[−`y,`y ] χ, applying Lemma 18
in the setting (z,K, Z, t̄) = (x,Mχ, X, t0), we see that any such solution also
satisfies

|x(t)| ≤ `x := EMχ
(X) , for every t ∈ [0, T ] .

The lemma is thus proved.
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We will now modify the functions f, g by a procedure which resembles the
one in Section 3.1.1. From assumption (H2) we can find Λ1 > Λ such that

|γ±(x;λ)| > `y + 1 , for every x ∈ [A,B] and λ ≥ Λ1 . (52)

We introduce the constants

cγ := max{|γ′±(x;λ)| : x ∈ [A,B] , λ ∈ [1,Λ1] } , (53)
MX := max{|f(t, x, y)| : t ∈ [0, T ] , |x| ≤ `x , |y| ≤ `y + 1} , (54)

and choose
MY > cγMX . (55)

Setting Φ(t, x, y) =
(
f(t, x, y), g(t, x, y)

)
, we define Φ̂ : R×[−`x, `x]×R→ R2

as

Φ̂(t, x, y) =



(MX ,MY ) , if y ≥ `y + 1 ,

Φ(t, x, y) + (y − `y)
(

(MX ,MY )− Φ(t, x, y)
)
,

if `y ≤ y ≤ `y + 1 ,

Φ(t, x, y) , if − `y ≤ y ≤ `y ,

Φ(t, x, y)− (y + `y)
(

(−MX ,−MY )− Φ(t, x, y)
)
,

if − `y − 1 ≤ y ≤ −`y ,

(−MX ,−MY ) , if y ≤ −`y − 1 .

We will write Φ̂(t, x, y) =
(
f̂(t, x, y), ĝ(t, x, y)

)
. Finally, we define Φ̃ : R3 → R2

as

Φ̃(t, x, y) =



(y, 1) , if x ≥ `x + 1 ,

Φ̂(t, `x, y) + (x− `x)
(

(y, 1)− Φ̂(t, `x, y)
)
,

if `x ≤ x ≤ `x + 1 ,

Φ̂(t, x, y) , if − `x ≤ x ≤ `x ,

Φ̂(t,−`x, y)− (x+ `x)
(

(y,−1)− Φ̂(t,−`x, y)
)
,

if − `x − 1 ≤ y ≤ −`x ,

(y,−1) , if x ≤ −`x − 1 .

We will write Φ̃(t, x, y) =
(
f̃(t, x, y), g̃(t, x, y)

)
.

Remark 20. The functions f̃ , g̃ coincide with f, g on the rectangle [−`x, `x]×
[−`y, `y], and f̃(t, x, y) = y when |x| ≥ `x + 1. Moreover, the function g̃ is
bounded, so we can find a constant M̃ > 0 such that

|g̃(t, x, y)| ≤ M̃ , for every (t, x, y) ∈ R3 .
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We will consider the modified problem

(P̃ )

{
x′ = f̃(t, x, y) , y′ = g̃(t, x, y) ,

x(0) = x(T ) , y(0) = y(T ) .

We have the following a priori bound.

Lemma 21. If u = (x, y) is a solution of (P̃ ) such that (t0, u(t0)) ∈ CΛ for a
certain t0 ∈ [0, T ], then

|x(t)| ≤ `x and |y(t)| ≤ `y , for every t ∈ R .

Hence, u is also a solution of (P ).

Proof. As long as the solution u of (P̃ ) is such that u(t) ∈ [−`x, `x]× [−`y, `y],
it is a solution of (51). Hence Lemma 19 applies, guaranteeing that indeed
u(t) ∈ [−`x, `x]× [−`y, `y] for every t ∈ [0, T ].

Remark 22. Since we have assumed the validity of (3), (6), (32) and (33),
thanks to the choice (54) we have the following assertions.

If a solution (x, y) of (P̃ ) is such that y(t0) > dy and x(t0) = a(t0) [resp.
x(t0) = b(t0)], then we have x > a [resp. x > b], in a right neighborhood of t0.

If a solution (x, y) of (P̃ ) is such that y(t0) < −dy and x(t0) = a(t0) [resp.
x(t0) = b(t0)], then we have x < a [resp. x < b], in a right neighborhood of t0.

4.1.2 An a priori bound for the desired solutions

Our aim is to show the existence of a solution of (P̃ ) belonging to the set

S =
{
u = (x, y) ∈ C0

T : there exist t1, t2 ∈ [0, T ] such that

x(t1) ≤ α(t1) and x(t2) ≥ β(t2)
}
. (56)

In the following lemma we will prove that a solution belonging to S satisfies
the hypotheses of Lemma 21, permitting us to conclude that it is a solution of
the original problem (P ).

Lemma 23. If u = (x, y) ∈ S is a solution of (P̃ ), then there exists a t0 ∈ [0, T ]
such that (t0, u(t0)) ∈ CΛ, where Λ is given in (50).

Proof. Let us first prove the following preliminary assertion.

Claim. For any solution u of (P̃ ), it cannot be that (t, u(t)) ∈ NΛ for every
t ∈ [0, T ].

By contradiction, assume this is true. We distinguish two cases.

If y(t) ≥ `y + 1 for every t ∈ [0, T ], then, since NΛ ⊆ [−`x, `x]× R, we get

y′(t) = g̃(t, x(t), y(t)) = ĝ(t, x(t), y(t)) =MY > 0 ,

which is in contradiction with the periodicity of the function y.
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If y(t̄0) < `y + 1 for some t̄0 ∈ [0, T ], recalling (52) and the continuity of
the function γ+ with respect to λ, we can find λ0 ∈ [1,Λ1[ such that y(t̄0) =
γ+(x(t̄0);λ0). By (53) and (55), we have〈(

MX ,MY

)
,
(
− γ′+(x;λ), 1

)〉
≥ −cγMX +MY > 0 , (57)

for every x ∈ [A,B] and λ ∈ [1,Λ1]. Moreover, we can rewrite (31) as〈
Φ
(
t, x, γ+(x;λ)

)
,
(
− γ′+(x;λ), 1

)〉
> 0 . (58)

The function F+(t;λ0) = y(t)−γ+(x(t);λ0) is T -periodic in t, and F+(t̄0;λ0) =
0. From the above estimates (57) and (58), since a(t̄0) ≤ x(t̄0) ≤ b(t̄0),

F ′+(t̄0;λ0) = g̃
(
t̄0, x(t̄0), γ+(x(t̄0);λ0)

)
− f̃

(
t̄0, x(t̄0), γ+(x(t̄0);λ0)

)
γ′+
(
x(t̄0);λ0

)
=
〈

Φ̃
(
t̄0, x(t̄0), γ+(x(t̄0);λ0)

)
,
(
− γ′+(x(t̄0);λ0), 1

)〉
=
〈

Φ̂
(
t̄0, x(t̄0), γ+(x(t̄0);λ0)

)
,
(
− γ′+(x(t̄0);λ0), 1

)〉
> 0 . (59)

So, there exists ε ∈ ]0, T/2[ such that

F+(t̄0 + ε;λ0) > 0 > F+(t̄0 + T − ε;λ0) ,

providing the existence of a certain t̄1 ∈ [t̄0+ε , t̄0+T−ε] such that F+(t̄1;λ0) =
0 and F ′+(t̄1;λ0) ≤ 0. However, similarly as in (59), we get the contradiction
F ′+(t̄1;λ0) > 0.

The proof of the Claim is thus completed. Similarly one proves that it cannot
be that (t, u(t)) ∈ SΛ for every t ∈ [0, T ].

Now, let u = (x, y) be a solution of (P̃ ) belonging to S. Then, there exists
a t0 ∈ [0, T ] such that

A ≤ a(t0) ≤ x(t0) ≤ b(t0) ≤ B . (60)

We will prove that (t0, u(t0)) ∈ CΛ.

Assume by contradiction that (t0, u(t0)) ∈ NΛ. Recalling the Claim, let

t1 := inf{t ∈ [t0, t0 + T [ : (t, u(t)) /∈ NΛ} . (61)

Since (t1, u(t1)) ∈ ∂NΛ, we need to treat the following three cases (see Figure 3).

Case 1: y(t1) ≥ γ+(x(t1); Λ) and x(t1) = b(t1). Let

t2 := sup{t ∈ [t1, t0 + T ] ; x(s) ≥ b(s)∀s ∈ [t1, t]} . (62)

Since y(t1) > D > dy, from Remark 22 we have that t2 > t1. By Lemma 18,
since y(t1) > D = EM (dy), we get y(t2) > dy. Again from Remark 22 we have
x − b > 0 in a right neighborhood of t2, in contradiction with its definition
in (62).

Case 2: y(t1) = γ+(x(t1); Λ) and a(t1) ≤ x(t1) < b(t1). The function F+(·; Λ)
is well defined and non-negative in the nontrivial interval [t0, t1]. Reasoning
as in (59), we can show that F ′+(t1; Λ) > 0, contradicting the definition of t1
in (61).
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Case 3: y(t1) > γ+(x(t1); Λ) and x(t1) = a(t1) < b(t1). This situation is
forbidden, by Remark 22.

Hence, we can conclude that (t0, u(t0)) /∈ NΛ. Similarly one proves that
(t0, u(t0)) /∈ SΛ, and the proof is thus completed.

4.1.3 Creating well-ordered couples of lower/upper solutions of (P̃ )

Lemma 24. Both the constant α̂ ≡ −`x − 2 and α are lower solutions of
problem (P̃ ). At the same time, both the constant β̂ ≡ `x + 2 and β are upper
solutions of problem (P̃ ).

Proof. We first verify that the constant functions α̂ ≡ −`x − 2 and β̂ ≡ `x + 2
are respectively a lower solution and an upper solution of (P̃ ). Indeed, setting
yα̂ ≡ 0 and yβ̂ ≡ 0, since f̃(t,−`x − 2, y) = f̃(t, `x + 2, y) = y, then (3)
and (6) easily follow. Moreover, (4) and (7) are an immediate consequence of
g̃(t,−`x − 2, 0) = −1 < 0 and g̃(t, `x + 2, 0) = 1 > 0.

In order to check that the functions α and β are respectively a lower solution
and an upper solution also for problem (P̃ ), we need to verify the validity
of (3), (6), (32) and (33), where we replace the functions f with f̃ . This fact is
guaranteed by the choice (54). The validity of both (4) and (7) with g replaced
by g̃ is trivial since g = g̃ at the points we have to deal with.

Remark 25. The couples (α̂, β̂), (α̂, β), and (α, β̂) are well-ordered couples of
lower/upper solutions of problem (P̃ ).

Lemma 26. There exist two continuously differentiable functions Γ± : [α̂, β̂]→
R, such that

g̃
(
t, x,Γ−(x)

)
< f̃

(
t, x,Γ−(x)

)
Γ′−(x) ,

g̃
(
t, x,Γ+(x)

)
> f̃

(
t, x,Γ+(x)

)
Γ′+(x) ,

for every t ∈ R and x ∈ [α̂, β̂].

Proof. From Remark 20 we deduce the validity of the hypotheses of Lemma 15
adopting the following choices

[A,B] = [α̂, β̂] , f+(y) = −f−(y) ≡ d = max{MX , `y + 1} , ϕ ≡ M̃ .

We take Γ− = γ−,1(·;λ) and Γ+ = γ+,1(·;λ), for λ > 0 sufficiently large.

4.1.4 Degree theory and conclusion of the proof of Theorem 14

We define the sets

U1 =
{

(t, x, y) ∈ R3 : α̂ < x < β̂ , Γ−(x) < y < Γ+(x)} ,
U2 =

{
(t, x, y) ∈ R3 : α̂ < x < β(t) , Γ−(x) < y < Γ+(x)} ,

U3 =
{

(t, x, y) ∈ R3 : α(t) < x < β̂ , Γ−(x) < y < Γ+(x)} .
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Notice that U2 ∪ U3 ⊆ U1. Correspondingly, define the sets

U1 =
{
u = (x, y) ∈ C0

T : (t, u(t)) ∈ U1 for every t ∈ [0, T ]} ,
U2 =

{
u = (x, y) ∈ C0

T : (t, u(t)) ∈ U2 for every t ∈ [0, T ]} ,
U3 =

{
u = (x, y) ∈ C0

T : (t, u(t)) ∈ U3 for every t ∈ [0, T ]} ,
U4 = U1 \ (U2 ∪ U3) .

The last set can also be written as

U4 =
{
u = (x, y) ∈ C0

T : (t, u(t)) ∈ U1 for every t ∈ [0, T ] and

there exist t1, t2 ∈ [0, T ] such that x(t1) < α(t1) and x(t2) > β(t2)
}
.

So, U4 ⊆ S, the set S being defined in (56).

With the notation introduced in Remark 13, the sets Ui, with i ∈ {1, 2, 3},
can be written as

U1 = V(α̂, β̂,Γ±) , U2 = V(α̂, β,Γ±) , U3 = V(α, β̂,Γ±) .

Remark 27. The validity of Lemma 26 forbids the possibility of finding a so-
lution u = (x, y) of (P̃ ) belonging to U j, with j ∈ {1, 2, 3}, satisfying y(t0) =
Γ±(x(t0)) at a certain time t0 ∈ [0, T ]. Indeed, we would have (t, u(t)) /∈ Uj in
a right neighborhood of t0, since ± d

dt (y − Γ±(x))(t0) > 0.

We now prove that there are no solutions of (P̃ ) in ∂U1, i.e., if u ∈ U1

solves (P̃ ) then u ∈ U1. Assume that x(t) ≥ α̂ for every t ∈ [0, T ] and there
exists t0 such that x(t0) = α̂. Then α̂ ≤ x(t) < −`x − 1 in a neighborhood of
t0, where x′(t) = f̃(t, x(t), y(t)) = y(t), so that

x′′(t0) = y′(t0) = g̃(t0, α̂, y(t0)) = −1 < 0 ,

providing a contradiction. Similarly, the situation when x(t) ≤ β̂ for every
t ∈ [0, T ] and there exists t0 such that x(t0) = β̂ cannot arise. Remark 27
completes the argument.

Since there are no solutions of (P̃ ) in ∂U1, we can apply Corollary 12 and
get

dL(L − Ñ ,U1) = −1 , (63)

where Ñ is the Nemytskii operator associated to problem (P̃ ), defined as in (24).

Assume the existence of a solution belonging to ∂U2. Then, recalling the
above argument and Remark 27, we have

α̂ < x(t) ≤ β(t) , Γ−(x) < y(t) < Γ+(x) , for every t ∈ [0, T ] ,

and there exists a t0 ∈ [0, T ] such that x(t0) = β(t0). So, such a solution belongs
to S, with t2 = t0 and t1 = t̂0, where t̂0 was defined in (27).

Similarly, if we assume the existence of a solution belonging to ∂U3, then we
have necessarily

α(t) ≤ x(t) < β̂ , Γ−(x) < y(t) < Γ+(x) , for every t ∈ [0, T ] ,

and there exists a t0 ∈ [0, T ] such that x(t0) = α(t0). So, such a solution belongs
to S, with t1 = t0 and t2 = t̂0.
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If at least one of the previous two situations arises, then we have found
the solution we are looking for, and the proof of Theorem 14 is concluded.
Otherwise, we are in the hypotheses of Corollary 12, which provides

dL(L − Ñ ,U2) = −1 and dL(L − Ñ ,U3) = −1 . (64)

Then, from (63) and (64), by the excision property,

dL(L − Ñ ,U4) = dL(L − Ñ ,U1)−
(
dL(L − Ñ ,U2) + dL(L − Ñ ,U3)

)
= 1 ,

and we thus find a solution of (P̃ ) belonging to U4 ⊆ S. The proof of Theorem 14
is thus completed, recalling Lemmas 23 and 21, in this order.

5 Further generalizations and applications
The inequalities in (10) and (11) can be reversed, and we can restate Theorem 6
as follows.

Theorem 28. Assume the existence of a well-ordered couple (α, β) of lower/up-
per solutions of problem (P ). Set A = minα ,B = maxβ, with A < B. Let
there exist two continuously differentiable functions γ± : [A,B]→ R such that

γ−(x) < inf
[0,T ]
{yα(t−), yβ(t+)} ≤ sup

[0,T ]

{yα(t+), yβ(t−)} < γ+(x) ,

with the following property:

either g(t, x, γ−(x)) < f(t, x, γ−(x))γ′−(x) , ∀t ∈ R ,∀x ∈ [α(t), β(t)] , (65)
or g(t, x, γ−(x)) > f(t, x, γ−(x))γ′−(x) , ∀t ∈ R ,∀x ∈ [α(t), β(t)] ; (66)

and

either g(t, x, γ+(x)) > f(t, x, γ+(x))γ′+(x) , ∀t ∈ R ,∀x ∈ [α(t), β(t)] , (67)
or g(t, x, γ+(x)) < f(t, x, γ+(x))γ′+(x) , ∀t ∈ R ,∀x ∈ [α(t), β(t)] . (68)

Then there exists at least one solution of problem (P ) such that

α(t) ≤ x(t) ≤ β(t) and γ−(x(t)) < y(t) < γ+(x(t)) ,

for every t ∈ R.

In this statement we allow the additional situations (66) and (68). Similar
conditions were given, e.g., in [1]. The proof of Theorem 28 needs minor changes
with respect to the one of Theorem 6. For example, if we assume the validity
of (66) and (68) instead of (65) and (67), in the proof of Theorem 6 we simply
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need to modify the function Φ̂ as follows:

Φ̂(t, x, y) =



(MX ,−MY ) , if y ≥ D ,

Φ(t, x, γ+(x)) +
y − γ+(x)

D − γ+(x)

(
(MX ,−MY )− Φ(t, x, γ+(x))

)
,

if γ+(x) ≤ y ≤ D ,

Φ(t, x, y) , if γ−(x) ≤ y ≤ γ+(x) ,

Φ(t, x, γ−(x))− y − γ−(x)

D + γ−(x)

(
(−MX ,MY )− Φ(t, x, γ−(x))

)
,

if −D ≤ y ≤ γ−(x) ,

(−MX ,MY ) , if y ≤ −D .

In general, the definition of Φ̂ for y ≥ D is related to the choice (65) vs. (66),
while its definition for y ≤ −D is related to the choice (67) vs. (68). The proof
of Lemma 11 can be adapted to all the possible settings of Theorem 28.

Concerning Theorem 14, hypothesis (H2) can be similarly modified as fol-
lows.

(H2′) There exist two continuous functions γ± : [A,B]× [1,+∞[→ R, contin-
uously differentiable with respect to the first variable, such that

lim
λ→+∞

γ±(x;λ) = ±∞ , uniformly with respect to x ∈ [A,B] ,

with the following property

either g
(
t, x, γ−(x;λ)

)
<f
(
t, x, γ−(x;λ)

)
γ′−(x;λ) ,

∀t ∈ R , ∀x ∈ [A,B] , ∀λ ∈ [1,+∞[ ,

or g
(
t, x, γ−(x;λ)

)
>f
(
t, x, γ−(x;λ)

)
γ′−(x;λ) ,

∀t ∈ R , ∀x ∈ [A,B] , ∀λ ∈ [1,+∞[ ,

and

either g
(
t, x, γ+(x;λ)

)
>f
(
t, x, γ+(x;λ)

)
γ′+(x;λ) ,

∀t ∈ R , ∀x ∈ [A,B] , ∀λ ∈ [1,+∞[ ,

or g
(
t, x, γ+(x;λ)

)
>f
(
t, x, γ+(x;λ)

)
γ′+(x;λ) ,

∀t ∈ R , ∀x ∈ [A,B] , ∀λ ∈ [1,+∞[ .

Assuming (H2′) instead of (H2) in Theorem 14 we get the same conclusion.
However, some steps of the proof need some wise adjustments. In particular,
the small changes due in the definition of the function Φ̂, some lines above, in
the setting of Theorem 28, can be proposed again similarly for the function Φ̂
introduced in the proof of Theorem 14. Indeed, in the proof of Lemma 23, the
estimates in (59) must provide a different sign. Then, in the second part of the
same proof we need to go back in time: instead of (61), the following definition
is in order

t1 := sup{t ∈ ]t0 − T, t0[ : (t, u(t)) /∈ NΛ} .
A similar reasoning in the interval [t0 − T, t0] can be performed. We omit to
enter in major details for briefness.
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A further extension of our results could lead to systems in R2N of the
type (P ), with f, g : R×RN ×RN → R. The case f(t, x, y) = y and g(t, x, y) =
g(t, x) has been treated in [7], where also an infinite-dimensional system of the
type x′′ = g(t, x) has been proposed. However, in the non-well-ordered case, the
existence of strict lower and upper solutions was needed there. We believe that
a similar procedure could be undertaken also in the more general framework of
system (P ). The notion of strict lower and upper solutions would probably be
the one introduced in [8]; going back to the Introduction, one would need the
strict inequality in (ii) and condition (iii) would also be necessary.

We prefer not to enter further into this discussion here.

Acknowledgement. The authors of this paper have been partially supported
by the GNAMPA–INdAM research project “MeToDiVar: Metodi Topologici,
Dinamici e Variazionali per equazioni differenziali”.

References
[1] I. Barbălat, Applications du principe topologique de T. Ważewski aux équa-

tions différentielles du second ordre, Ann. Polon. Math. 5 (1958), 303–317.

[2] C. Bereanu and J. Mawhin, Existence and multiplicity results for some
nonlinear problems with singular φ-Laplacian, J. Differential Equations 243
(2007), 536–557.

[3] A. Cabada, An overview of the lower and upper solutions method with
nonlinear boundary value conditions, Bound. Value Probl. 2011, Art. ID
893753, 18 pp.

[4] A. Capietto, J. Mawhin and F. Zanolin, Continuation theorems for periodic
perturbations of autonomous systems, Trans. Amer. Math. Soc. 329 (1992),
41–72.

[5] C. De Coster and P. Habets, Two-Point Boundary Value Problems, Lower
and Upper Solutions, Elsevier, Amsterdam, 2006.

[6] A. Fonda and G. Klun, On the topological degree of planar maps avoiding
normal cones, Topol. Methods Nonlinear Anal. 53 (2019), 825–845.

[7] A. Fonda, G. Klun and A. Sfecci, Periodic solutions of second order differ-
ential equations in Hilbert spaces, preprint, 2020.

[8] A. Fonda and R. Toader, A dynamical approach to lower and upper solu-
tions for planar systems, Discrete Contin. Dynam. Systems, to appear.

[9] H.-W. Knobloch, Eine neue Methode zur Approximation periodischer Lö-
sungen nicht-linearer Differentialgleichungen zweiter Ordnung, Math. Z. 82
(1963), 177–197.

[10] J. Mawhin, Topological degree and boundary value problems for nonlinear
differential equations, in: Topological Methods for Ordinary Differential
Equations (Montecatini Terme, 1991), 74–142, Lecture Notes in Math.,
1537, Springer, Berlin, 1993.

28



[11] J.L. Massera, The existence of periodic solutions of systems of differential
equations, Duke Math. J. 17 (1950), 457–475.

[12] M. Nagumo, Über die Differentialgleichung y′′ = f(t, y, y′), Proc. Phys-
Math. Soc. Japan 19 (1937), 861–866.

[13] F. Obersnel and P. Omari, Revisiting the sub- and super-solutions method
for the classical radial solutions of the mean curvature equation, Open
Math. 18 (2020), 1185–1205.

[14] E. Picard, Sur l’application des méthodes d’approximations successives à
l’étude de certaines équations différentielles ordinaires, J. Math. Pures
Appl. 9 (1893), 217–271.

[15] G. Scorza Dragoni, Il problema dei valori ai limiti studiato in grande per le
equazioni differenziali del secondo ordine, Math. Ann. 105 (1931), 133–143.

[16] T. Ważewski, Sur un principe topologique de l’examen de l’allure asympto-
tique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon.
Math. 20 (1947), 279–313.

Authors’ addresses:

Alessandro Fonda and Andrea Sfecci
Dipartimento di Matematica e Geoscienze
Università di Trieste
P.le Europa 1, I-34127 Trieste, Italy
e-mail: a.fonda@units.it, asfecci@units.it

Giuliano Klun
Scuola Internazionale Superiore di Studi Avanzati
Via Bonomea 265, I-34136 Trieste, Italy
e-mail: giuliano.klun@sissa.it

Mathematics Subject Classification: 34C25

Keywords: lower and upper solutions; periodic systems; degree theory

29


