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Abstract. We prove existence results for systems of boundary value
problems involving elliptic second order differential operators. The as-
sumptions involve lower and upper solutions, which may be either well-
ordered, or not at all. The results are stated in an abstract framework,
and can be translated also for systems of parabolic type.

1 Introduction

We consider a boundary value problem for a system of the type{
Lun = Fn(x, u1, . . . , uM) in Ω ,

Bun = 0 on ∂Ω ,
n = 1, . . . ,M .

Here, Ω is a regular bounded domain in RN , and the differential operator
L : W 2,r(Ω)→ Lr(Ω) is of elliptic type:

(Lw)(x) = −
N∑

l,m=1

alm(x)∂2
xlxm

w(x) +
N∑
i=1

ai(x)∂xiw(x) + a0(x)w(x) ,

with ai ∈ L∞(Ω), for i = 0, . . . , N and alm ∈ C(Ω), alm = aml , for l,m =
1, . . . , N , with the assumption that there exists ā > 0 such that

N∑
l,m=1

alm(x)ξlξm ≥ ā‖ξ‖2 , for every (x, ξ) ∈ Ω× RN .

We may assume without loss of generality that a0 ≥ 0. We take r > N , so
that W 2,r(Ω) is compactly imbedded into C1(Ω). The function F : Ω×RM →
RM is assumed to be Lr-Carathéodory. Concerning the boundary operator
B : C1(Ω) → C(∂Ω), assume that ∂Ω is the disjoint union of two closed sets
Γ1 and Γ2 (the cases Γ1 = ∅ or Γ2 = ∅ are admitted), and take

Bw :=


w on Γ1 ,

N∑
i=1

bi(x)∂xiw + b0(x)w on Γ2 .
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Here bi ∈ C1(∂Ω), for i = 0, . . . , N , and there exists b̄ > 0 such that

b0(x) ≥ 0 and
N∑
i=1

bi(x)νi(x) ≥ b̄ , for every x ∈ ∂Ω .

The vector ν(x) = (ν1(x), . . . νN(x)) is the unit outer normal to Ω at x ∈ ∂Ω.
The boundary condition on Γ1 is the (homogeneous) Dirichlet condition and
the one on Γ2 is the (non-homogeneous) regular oblique derivative condition.

We want to ensure the existence of a solution of problem (P ), i.e., a function
u ∈ W 2,r(Ω) satisfying the differential equation almost everywhere in Ω and
the boundary condition pointwise. A function with these properties is usually
called “strong solution” in the literature. This will be done by introducing the
concepts of lower and upper solutions in this setting.

For simplicity we do not consider nonlinearities depending on ∇u, but
our results can be adapted to such a situation, by adding a Nagumo type
assumption. Moreover, our choice of taking the same differential operator and
boundary conditions for all components has the same aim of simplifying the
exposition, and our arguments are also suited to a more general setting.

We will follow a semi-abstract approach like the one in [10], which has
the advantage of clarifying the main features needed in order to obtain the
existence result. In this way, slight modifications lead to similar results for
different problems. For example, differential operators of parabolic type may
also be considered, assuming different types of boundary conditions, like in [8,
10].

The theory of lower and upper solutions for scalar equations has a long
history (see [5] and the large bibliography therein). In particular, concerning
the problem of non-well-ordered lower and upper solutions, we refer to [3, 6,
12, 13, 14]. An abstract approach to the theory of lower and upper solutions
has also been proposed in [1, 2]. Fewer results are known for systems. We refer
to [15, Chapter 8] for systems of elliptic or parabolic equations, where some
type of monotonicity is assumed in order to get the existence results.

The paper is organized as follows.

In Section 2 we introduce the abstract setting, and we provide an existence
result in the case of well-ordered lower and upper solutions. This is the ana-
logue, in the setting of PDEs, of a result obtained in [4] for periodic systems
of ODEs.

In Section 3 we consider non-well-ordered lower and upper solutions and we
state our main theorem, whose proof is provided in Section 5. We emphasize
that we do not need any monotonicity assumptions on our nonlinearities.

In Section 4 we give some illustrative examples of applications, and com-
ment on some possible extensions of our result in different directions.
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Finally, in Section 6 we show how to adapt our main theorem to systems
involving differential operators of parabolic type.

2 Well-ordered lower and upper solutions

2.1 The abstract setting

Let Ω be a bounded domain in RN , and denote by W (Ω) a Banach space of
real-valued functions which is continuously and compactly imbedded in C1(Ω).
Assume that L : W (Ω) → Lr(Ω) is a linear operator, with r > 1, and B :
C1(Ω) → C(∂Ω) is a linear and continuous operator. We are concerned with
the boundary value problem

(P )

{
Lun = Fn(x, u1, . . . , uM) in Ω ,

Bun = 0 on ∂Ω ,
n = 1, . . . ,M .

The function F : Ω× RM → RM is Lr-Carathéodory, i.e.,

(i) F (·, u) is measurable in Ω, for every u ∈ RM ;

(ii) F (x, ·) is continuous in RM , for almost every x ∈ Ω ;

(iii) for every ρ > 0 there is a hρ ∈ Lr(Ω) such that, if |u| ≤ ρ, then

|F (x, u)| ≤ hρ(x) for a.e. x ∈ Ω .

We now introduce our abstract assumptions.

Assumption 1. If w ∈ W (Ω) is such that

min
Ω
w < 0 , and Bw ≥ 0 ,

then there is a point x0 ∈ Ω with the following properties:

a) w(x0) < 0 ,

b) there is no neighborhood U of x0 such that (Lw)(x) > 0,
for almost every x ∈ U ∩ Ω.

Remark 1. Concerning the elliptic operator, we take W (Ω) = W 2,r(Ω) with
r > N . Assumption 1 is a consequence of the Strong Maximum Principle (see,
e.g., [10, 11, 16]).

Let us introduce the subspaces

C1
B(Ω) = {w ∈ C1(Ω) : Bw = 0} , WB(Ω) = {w ∈ W (Ω) : Bw = 0} ,

endowed with the norms in C1(Ω) and W (Ω), respectively. These are Banach
spaces, since the operator B is assumed to be linear and continuous. We will
denote by LB : WB(Ω)→ Lr(Ω) the restriction of L to WB(Ω).
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Assumption 2. There is a σ < 0 such that LB − σI : WB(Ω) → Lr(Ω) is
invertible and the operator

(LB − σI)−1 : Lr(Ω)→ WB(Ω)

is continuous. Here, I denotes the identity operator.

Remark 2. For the elliptic operator, any constant σ < 0 can be taken.

We will write any u ∈ [WB(Ω)]M as u = (u1, . . . , uM). Let L : [WB(Ω)]M →
[Lr(Ω)]M be defined as

(Lu)(x) =
(
(LBu1)(x), . . . , (LBuM)(x)

)
,

and let us introduce the nonlinear operator N : [C1
B(Ω)]M → [Lr(Ω)]M , defined

by
(Nu)(x) = F (x, u(x)) .

It is readily seen that N is continuous and maps bounded sets into bounded
sets. Our problem (P ) can then be rewritten as

Lu = Nu .

A solution of problem (P ) will be a function u ∈ [WB(Ω)]M which satisfies this
equality in [Lr(Ω)]M , hence almost everywhere.

If σ is the number given by Assumption 2, problem (P ) is equivalent to the
fixed point problem

u = Su ,
where the operator

S : [C1
B(Ω)]M → [C1

B(Ω)]M

is defined by
Su = (L− σI)−1(Nu− σu) .

Since (L − σI)−1 : [Lr(Ω)]M → [W (Ω)]M is continuous and [W (Ω)]M is com-
pactly imbedded in [C1(Ω)]M , we have that S is completely continuous, so that
we can use Leray-Schauder degree theory.

2.2 An existence result

Let us introduce the concept of lower and upper solutions.

Definition 3. Given two functions α, β ∈ [W (Ω)]M , we say that (α, β) is a
well-ordered pair of lower/upper solutions of (P ) if α ≤ β and there exists a
negligible set N ⊆ Ω such that

Lαj(x) ≤ Fj(x, u1, . . . , uj−1, αj(x), uj+1, . . . , uM) ,
Lβj(x) ≥ Fj(x, u1, . . . , uj−1, βj(x), uj+1, . . . , uM) ,
Bαj ≤ 0 ≤ Bβj ,

for every j ∈ {1, . . . ,M} and (x, u) ∈ (Ω \ N )×
∏M

m=1[αm(x), βm(x)] .
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Here is our result, in the well-ordered case; it generalizes [4, Theorem 4.1].

Theorem 4. Let Assumptions 1 and 2 hold true. If there exists a well-ordered
pair of lower/upper solutions (α, β), then problem (P ) has a solution u such
that α ≤ u ≤ β.

Proof Let us define the functions

γj(x, s) =


αj(x) if s ≤ αj(x) ,

s if αj(x) < s < βj(x) ,

βj(x) if u ≥ βj(x) ,

and the function

Γ(x, u) =
(
γ1(x, u1), . . . , γM(x, uM)

)
.

Consider the auxiliary problem

(P̄ )

{
Luj − σuj = Fj(x,Γ(x, u))− σγj(x, uj) in Ω ,

Buj = 0 on ∂Ω ,
j = 1, . . . ,M .

The remaining part of the proof is divided in two steps.

Step 1: Problem (P̄ ) admits a solution.

Let us introduce the operator N̄ : [C1
B(Ω)]M → [Lr(Ω)]M defined by

(N̄u)(x) = F (x,Γ(x, u(x)))− σΓ(x, u(x)) .

One can see that N̄ is continuous and has a bounded image. Problem (P̄ ) is
equivalent to the fixed point problem

u = Su ,

where the operator S : [C1
B(Ω)]M → [C1

B(Ω)]M is defined by

Su = (L− σI)−1N̄u .

We have that S is completely continuous, and its image is bounded. By
Schauder Theorem, it has a fixed point, hence problem (P̄ ) has a solution.

Step 2: Every solution u of (P̄ ) is such that α ≤ u ≤ β.

Let us prove that α ≤ u. Set v = u− α, and assume by contradiction that
min vj < 0, for some j ∈ {1, . . . ,M}. Since Bvj = Buj − Bαj = −Bαj ≥ 0,
by Assumption 1 there is a point x0 ∈ Ω such that vj(x0) < 0, and there is no
neighborhood U of x0 such that Lvj > 0, almost everywhere on U ∩Ω. On the
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other hand, as vj(x0) < 0, there is a neighborhood V of x0 such that vj < 0
on V ∩ Ω, i.e., uj < αj on V ∩ Ω. Hence,

Lvj = Luj − Lαj
= Fj(x,Γ(x, u))− σ(γj(x, uj)− uj)− Lαj
= Fj(x,

(
γ1(x, u1), . . . , αj(x), . . . , γM(x, uM)

)
− σ(αj − uj)− Lαj

≥ σvj > 0 ,

almost everywhere on V ∩Ω, a contradiction. In a similar way it can be shown
that u ≤ β.

Hence, every solution u of (P̄ ) solves (P ), and the proof is completed.

2.3 Computation of the degree

In the following, for any two continuous real-valued functions v, w, we write

v < w ⇔ v(x) < w(x) , for every x ∈ Ω .

Let us consider the sets

C1
B−(Ω) = {w ∈ C1(Ω) : Bw ≤ 0} , C1

B+(Ω) = {w ∈ C1(Ω) : Bw ≥ 0} ,

endowed with the norm in C1(Ω).

We now introduce a further assumption.

Assumption 3. A relation v � w is defined in C1(Ω), with the following
properties:

v < w ⇒ v � w ⇒ v ≤ w ,
[ v ≤ w and w � z ] ⇒ v � z ,
[ v � w and w ≤ z ] ⇒ v � z ,
v � w ⇒ v + z � w + z ,
[ c > 0 and v � w ] ⇒ cv � cw ,

for every v, w, z ∈ C1(Ω)) and every real constant c. Sometimes, we will write
w � v instead of v � w. Moreover, we assume that the set

{w ∈ C1
B−(Ω) : w � 0}

is open in C1
B−(Ω) or, equivalently, that the set {w ∈ C1

B+(Ω) : w � 0} is open
in C1

B+(Ω).

Notice indeed that w � 0 if and only if −w � 0. As a consequence of
Assumption 3, one has that the sets

{w ∈ C1
B(Ω) : w � 0} and {w ∈ C1

B(Ω) : w � 0}
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are open in C1
B(Ω). Notice also that the closures of these sets are contained in

{w ∈ C1
B(Ω) : w ≤ 0} and {w ∈ C1

B(Ω) : w ≥ 0} ,

respectively.

Remark 5. For the system with the elliptic operator, we will write v � w if
the following two conditions hold:

a) for every x ∈ Ω, v(x) < w(x) ,

b) for every x ∈ ∂Ω, either v(x) < w(x), or

v(x) = w(x) and ∂νv(x) > ∂νw(x) .

Here, ν denotes the outer unit normal to ∂Ω at the point x.

If the two functions v, w have values in Rd, for any dimension d, then we
write {

v ≤ w ⇔ vm ≤ wm ,
v � w ⇔ vm � wm ,

for every m ∈ {1, . . . , d} .

Definition 6. A well-ordered pair of lower/upper solutions (α, β) is said to be
strict if α� β, and any solution u of (P ) satisfying α ≤ u ≤ β is such that

α� u� β .

If (α, β) is strict, then the set

U(α,β) = {u ∈ [C1
B(Ω)]M : α� u� β}

is open in [C1
B(Ω)]M , by Assumption 3. Moreover, if u is a fixed point of S

in U (α,β), then α ≤ u ≤ β and, by the strictness hypothesis, u ∈ U(α,β). So,
there are no fixed points of S on the boundary of U(α,β), and we can define the
Leray-Schauder degree

deg
(
I − S , U(α,β)

)
.

Theorem 7. Let Assumptions 1, 2 and 3 hold true. If there exists a strict
well-ordered pair of lower/upper solutions (α, β), then

deg
(
I − S , U(α,β)

)
= 1 .

Proof Going back to the proof of Theorem 4, any fixed point u of S is such
that α ≤ u ≤ β, and it is a fixed point of S. Hence, all fixed points of S belong
to U(α,β), and since S and S coincide on U(α,β), we have

deg
(
I − S , U(α,β)

)
= deg

(
I − S , U(α,β)

)
.

By Schauder Theorem and the excision property of the degree, taking R > 0
large enough, we have

deg
(
I − S , U(α,β)

)
= deg

(
I − S , B(0, R)

)
= 1 ,

thus ending the proof.
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3 Non-well-ordered lower and upper solutions

We will say that the couple (J ,K) is a partition of the set of indices {1, . . . ,M}
if and only if J ∩ K = ∅ and J ∪ K = {1, . . . ,M}. Correspondingly we
can decompose a vector u = (u1, . . . , uM) ∈ RM as u = (uJ , uK) where
uJ = (uj)j∈J ∈ R#J and uK = (uk)k∈K ∈ R#K. Here #J and #K de-
note respectively the cardinality of the sets J and K. Also every function
F : A → RM can be written as F(x) =

(
FJ (x),FK(x)

)
where FJ : A → R#J

and FK : A → R#K.

Definition 8. Given two functions α, β ∈ [W (Ω)]M , we say that (α, β) is
a pair of lower/upper solutions of (P ) related to the partition (J ,K) of
{1, . . . ,M} if the following four conditions hold:

1. αJ ≤ βJ ;

2. αk 6≤ βk , for every k ∈ K;

3. there is a negligible set N ⊆ Ω such that{
Lαn(x) ≤ Fn(x, u1, . . . , un−1, αn(x), un+1, . . . , uM) ,
Lβn(x) ≥ Fn(x, u1, . . . , un−1, βn(x), un+1, . . . , uM) ,

for any n ∈ {1, . . . ,M} and every (x, u) ∈ E, where

E :=
{

(x, u) ∈ (Ω \ N )× RM : u = (uJ , uK) , uJ ∈
∏
j∈J

[αj(x), βj(x)]
}
.

4. Bαn ≤ 0 ≤ Bβn, for every n ∈ {1, . . . ,M}.

Definition 9. The pair (α, β) of lower/upper solutions of (P ) is said to be
strict with respect to the J -th component if αJ � βJ and, for every solution
u of (P ) we have

αJ ≤ uJ ≤ βJ ⇒ αJ � uJ � βJ ;

it is said to be strict with respect to the k-th component, with k ∈ K, if for
every solution u of (P ) we have

uk ≥ αk ⇒ uk � αk ,

uk ≤ βk ⇒ uk � βk .

We need to introduce some further assumptions.

Assumption 4. There is a number λ1 ≥ 0 and a function ϕ1 ∈ WB(Ω), with
ϕ1 � 0, such that

ker(LB − λ1I) = {cϕ1 : c ∈ R} .
We will assume that max

Ω
ϕ1 = 1.
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Remark 10. The existence of a “first” eigenvalue λ1 with the required prop-
erties is standard in the elliptic case, where the spectrum is made of isolated
eigenvalues λ1 < λ2 ≤ λ3 ≤ . . . , all contained in [0 +∞[ , cf. [11, 16].

Lemma 11. Let Assumptions 3 and 4 hold. Given a bounded set A in W (Ω),
there is a constant CA ≥ 0 such that, if w ∈ A satisfies Bw ≤ 0, then w ≤
CAϕ1, and if w ∈ A satisfies Bw ≥ 0, then w ≥ −CAϕ1.

Proof See [10, Lemma 4.1].

Definition 12. A pair of functions (ψ,Ψ) ∈ Lr(Ω) × Lr(Ω) is said to be
admissible if it satisfies ψ ≤ λ1 ≤ Ψ almost everywhere in Ω and, for every
q ∈ Lr(Ω), with ψ ≤ q ≤ Ψ almost everywhere in Ω, if w is a solution of

(P lin)

{
Lw = q(z)w in Ω ,

Bw = 0 on ∂Ω ,

then, either w = 0, or w � 0, or w � 0.

Remark 13. For a self-adjoint elliptic problem, the above property of the
couple ψ,Ψ is satisfied, e.g., if Ψ ≤ λ2 (the second eigenvalue), with strict
inequality on a subset of positive measure (cf. [13]).

Lemma 14. Let Assumptions 2, 3 and 4 hold. Given an admissible pair of
functions (ψ,Ψ), there are two positive constants cψ,Ψ and Cψ,Ψ such that, for
every q ∈ Lr(Ω), with ψ ≤ q ≤ Ψ almost everywhere in Ω, if u is a solution of
(P lin), then

cψ,Ψ‖u‖L∞ϕ1 ≤ |u| ≤ Cψ,Ψ‖u‖L∞ϕ1 .

Proof See [10, Lemma 4.3].

Assumption 5. There is a function ϕ0 ∈ W (Ω) such that

µ := min
Ω
ϕ0 > 0 , Lϕ0 ≥ 0 and Bϕ0 ≥ 0 .

We will assume that max
Ω

ϕ0 = 1.

Remark 15. In the applications to the elliptic case the function ϕ0 can be
taken constantly equal to 1.

Here is the main result of this paper.

Theorem 16. Let Assumptions 1–5 hold true. Let (α, β) be a pair of lower/up-
per solutions of (P ) related to the partition (J ,K) of {1, . . . ,M} which is
strict with respect to the k-th component, for every k ∈ K, except at most one.
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Assume that there exist two Lr-Carathéodory functions f, g : Ω × RM → RM

with the following property: for every k ∈ K,

Fk(x, u) = gk(x, u)uk + fk(x, u) ,

and there is an admissible pair (ψk,Ψk), and a function hk ∈ Lr(Ω) such that

ψk(x) ≤ gk(x, u) ≤ Ψk(x) and |fk(x, u)| ≤ hk(x) ,

for almost every x ∈ Ω and every u ∈ RM . Then, problem (P ) has a solution u
such that

(WJ ) αJ ≤ uJ ≤ βJ ;

(NWK) αk 6� uk and uk 6� βk , for every k ∈ K .

4 Examples and remarks

As an illustrative example, consider the Neumann problem
−∆u1 = |u1|γ sinu1 + w1(x, u1, u2) in Ω ,
−∆u2 = ± arctanu2 + w2(x, u1, u2) in Ω ,
∂νu1 = ∂νu2 = 0 on ∂Ω .

Here γ is any positive exponent, and w1, w2 : Ω×R2 → R are continuous and
bounded functions, with

‖w2‖∞ := sup
{
|w2(x, u1, u2)| : x ∈ Ω, u1, u2 ∈ R

}
<
π

2
.

Applying Theorem 16, we obtain the existence of infinitely many solutions
u = (u1, u2). Indeed, it is sufficient to choose the constant pairs of lower/upper
solutions (α, β), with

α =
(π

2
+ 2mπ,±n

)
, β =

(3π

2
+ 2mπ,∓n

)
,

for sufficiently large positive integers m,n. Notice that these will be well-
ordered if the minus sign appears in the second differential equation, otherwise
non-well-ordered in the second component.

As a second example, we consider the mixed Dirichlet–Neumann problem
−∆u1 = −u3

1 + f1(u2) + w1(x, u1, u2, u3) in Ω ,
−∆u2 = − arctanu2 + w2(x, u1, u2, u3) in Ω ,
−∆u3 = arctanu3 + w3(x, u1, u2, u3) in Ω ,
u1 = 0 , ∂νu2 = ∂νu3 = 0 on ∂Ω .
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Here f1 : R→ R is any continuous function, and w1, w2, w3 : Ω× R3 → R are
continuous and bounded, with

‖w2‖∞ <
π

2
, ‖w3‖∞ <

π

2
.

Applying Theorem 16, we obtain the existence of at least one solution, taking
the constant pairs of lower/upper solutions (α, β), with

α =
(
−m,−n, n

)
, β =

(
m,n,−n

)
,

for a sufficiently large positive integer n and m = m(n). Indeed, it is sufficient
to fix n > tan(max{‖w2‖∞, ‖w3‖∞}) and

m >
(

max
{
|f1(s)| : s ∈ [−n, n]

}
+ ‖w1‖∞

)1/3

.

Remark 17. All the results of this paper hold if the nonlinearities depend
also on the gradient ∇u, provided that a Nagumo-type condition is assumed.
See [10] for the details.

Remark 18. Asymmetric nonlinearities can also be considered, as in [13, 6,
10]. We do not enter into details, for briefness.

Remark 19. Concerning a system with a p-Laplacian differential operator,
some difficulties may arise. If we consider, e.g., the associated Dirichlet prob-
lem, then the inverse function (L − σI)−1 transforms any h ∈ L∞(Ω) into
(L − σI)−1h ∈ W 1,p

0 (Ω) ∩ C1,ν(Ω), for some ν > 0, and this function might
not have regular second order derivatives. In [6], this problem is overcome by
defining lower and upper solutions in a weak form, and carrying out the same
construction as for the linear case. A similar procedure can also be practiced
in our situation, leading to an existence result analogous to Theorem 16.

Remark 20. The periodic problem for a system of ordinary differential equa-
tions has been treated in [9]. Infinite-dimensional systems were also considered
there. It is an open problem whether it could be possible to extend the results
of the present paper to an infinite-dimensional setting.

5 Proof of Theorem 16

Notice that the case K = ∅ reduces to Theorem 4. We thus assume K 6= ∅
and, without loss of generality, we take either J = ∅, or J = {1, . . . , J} and
K = {J + 1, . . . ,M} for a certain J ∈ {1, . . . , N}. We moreover suppose that
the component on which the lower/upper solution is possibly not strict is the
last one, i.e., k = M . Indeed, mixing the coordinates we can always reduce to
such a situation. We continue the proof in the case J 6= ∅. (The case J = ∅
can be treated essentially in the same way.)
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We need to suitably modify problem (P ). For j = 1, . . . , J we define

Gj(x, u) = Fj(x, γ1(x, u1), . . . , γJ(x, uJ), uJ+1, . . . , uM) + uj − σγj(x, uj) ,

where the functions γj are the ones introduced in the proof of Theorem 4.

Using Lemma 11 and the fact that αk and βk are bounded, we can find a
constant c > 0 such that, for k ∈ K,

−cϕ1 − c ≤ αk ≤ cϕ1 , −cϕ1 ≤ βk ≤ cϕ1 + c .

For any k ∈ K and Λ > 0 large enough, to be fixed, we define

g̃k(x, u) =


λ1 if uk ≤ −(Λϕ1(x) + 2c

µ
ϕ0(x)) ,

· · ·
gk(x, u) if |uk| ≤ Λϕ1(x) + c

µ
ϕ0(x) ,

· · ·
λ1 if uk ≥ Λϕ1(x) + 2c

µ
ϕ0(x) ,

f̃k(x, u) =



3cλ1+1
µ

if uk ≤ −(Λϕ1(x) + 2c
µ
ϕ0(x)) ,

· · ·
fk(x, u) if |uk| ≤ Λϕ1(x) + c

µ
ϕ0(x) ,

· · ·
−3cλ1+1

µ
if uk ≥ Λϕ1(x) + 2c

µ
ϕ0(x) ,

(here, the dots mean “linear interpolation”), and

Gk(x, u) = g̃k(x, u)uk + f̃k(x, u) .

We consider the problem

(P̃Λ)

{
Lun = Gn(x, u1, . . . , uM) in Ω ,

Bun = 0 on ∂Ω ,
n = 1, . . . ,M .

Proposition 21. If u is a solution of (P̃Λ), for any constant Λ > 0, then
αJ ≤ uJ ≤ βJ .

Proof It is easily adapted from Step 2 of the proof of Theorem 4.

We define α̃K and β̃K by setting α̃k = −(Λϕ1 + 3c
µ
ϕ0) and β̃k = Λϕ1 + 3c

µ
ϕ0,

for every k ∈ K. Notice that, taking Λ > c,

α̃K � αK � β̃K , α̃K � βK � β̃K .

Finally, we choose α̃ = (αJ , α̃K) and β̃ = (βJ , β̃K).
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Let us prove that (α̃, β̃) is pair of lower/upper solutions of (P̃Λ). We have
not modified the components of α̃J and β̃J , so we just need to check what
happens for α̃K and β̃K. For every k ∈ K we have

Lα̃k(x) ≤ −Λλ1ϕ1(x) = λ1α̃k(x)+
3cλ1

µ
ϕ0(x) < g̃k(x, α̃(x))α̃k(x)+f̃k(x, α̃(x)) ,

and Bα̃k = −3c
µ
Bϕ0 ≤ 0. Similar computations can be done for β̃k. So, (α̃, β̃)

is pair of lower/upper solutions for (P̃Λ).

Let us prove that (α̃, β̃) is strict with respect to the k-th component, for
every k ∈ K. Let u be a solution such that uk ≥ α̃k. We want to show that
uk > α̃k. By contradiction, let vk = uk − α̃k be such that min vk = 0. Let
zk = vk − c

µ
ϕ0, so that min zk < 0 and

Bzk = Buk − Bα̃k −
c

µ
Bϕ0 =

2c

µ
Bϕ0 ≥ 0 .

By Assumption 1 there is a x0 ∈ Ω such that zk(x0) < 0 and there is no
neighborhood U of x0 on which (Lzk)(x) > 0, for almost every x ∈ U ∩Ω. By
continuity, there is a neighborhood V of x0 on which zk < 0. So, on V , we
have that uk < α̃k + c

µ
ϕ0, and so

Lzk = Luk − Lα̃k −
c

µ
Lϕ0

=
(
λ1uk +

3cλ1 + 1

µ

)
+ Λλ1ϕ1 +

2c

µ
Lϕ0

≥
(
λ1α̃k +

3cλ1 + 1

µ

)
+ Λλ1ϕ1

= −3cλ1

µ
ϕ0 +

3cλ1 + 1

µ
> 0 ,

a contradiction. Similar estimates can be written for β̃k, so we conclude that
the pair of lower/upper solutions is strict with respect to the k-th component.

Let X be the subset of [W (Ω)]M made of those solutions u of (P̃Λ), for any
Λ > c, satisfying αK 6� uK and uK 6� βK.

Claim. There exists a constant C1 > 0 (independent of Λ) such that, for any
u ∈ X , one has |uk| ≤ C1ϕ1, for every k ∈ K.

Proof of the Claim. We first prove that there is a constant K > 0 (independent
of Λ) such that, for any u ∈ X , one has ‖uk‖∞ ≤ K, for every k ∈ K. By
contradiction, let (un)n be a sequence in X , such that ‖unk‖∞ → ∞, for some
k ∈ K. Let us now fix such k ∈ K.

13



We know that un is a solution of (P̃Λn), for some Λn > c. Let us denote
by g̃nk and f̃nk the corresponding modified functions. Then wnk = unk/‖unk‖∞
satisfies

Lwnk (x) = g̃nk (x, un(x))wnk (x) +
1

‖unk‖∞
f̃nk (x, un(x)) , Bwnk = 0 .

Let us consider the set of functions

Dk = {p ∈ Lr(Ω) : ψk(x) ≤ p(x) ≤ Ψk(x) , for a.e. x ∈ Ω} ,

which is bounded, closed and convex, hence weakly compact. Since the se-
quence (g̃nk (·, un(·)))n belongs to Dk, up to a subsequence it weakly converges
in Lr(Ω) to some q(·) ∈ Dk, while

1

‖unk‖∞
f̃nk (x, un(x))→ 0 in Lr(Ω) .

Let Ñn
k : C1

B(Ω)→ Lr(Ω) be defined as

(Ñn
kw)(x) = g̃nk (x, un(x))w(x) +

1

‖unk‖∞
f̃nk (x, un(x)) .

Let σ ∈ R be the number given by Assumption 2, and let S̃nk : C1
B(Ω)→ C1

B(Ω)
be defined as

S̃nk v = (L− σI)−1(Ñn
k v − σv) .

Notice that
wnk = S̃nkwnk .

Since (Ñn
kw

n
k − σwnk )n is bounded in Lr(Ω) and (L − σI)−1 : Lr(Ω) → C1

B(Ω)
is compact, there is a w ∈ C1

B(Ω) such that, up to a subsequence,

S̃nkwnk = (L− σI)−1(Ñn
kw

n
k − σwnk )→ w in C1

B(Ω) .

Hence, wnk → w in C1
B(Ω). Since Ñn

kw
n
k −σwnk weakly converges to q(·)w−σw,

we conclude that
w = (L− σI)−1(q(·)w − σw) ,

so that w ∈ WB(Ω) and
Lw = q(·)w ,

i.e., w satisfies (P lin). Then, either w = 0, or w � 0, or w � 0. Since
‖wnk‖∞ = 1, for every n, we know that w 6= 0. Assume for instance w � 0
(the case w � 0 is similar). By Lemma 11, there is a constant ĉk > 0 such
that αk ≤ ĉkϕ1. By Lemma 14, w ≥ cψk,Ψk

ϕ1 � (cψk,Ψk
/2)ϕ1, since ϕ1 � 0,

by Assumption 2. So,

w � cψk,Ψk

2
ϕ1 ≥

cψk,Ψk

2ĉk
αk := bkαk .

By Assumption 3, for n large enough, wnk � bkαk, and increasing n still more,
unk = ‖unk‖∞wnk � ‖unk‖∞bkαk ≥ αk, a contradiction.
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We have thus seen that XK, the projection of the set X on the K-th com-
ponent, is uniformly bounded. Now recall that problem (P̃Λ) is equivalent to
a fixed point problem

u = (L− σI)−1(Ñu− σu) .

By Assumption 2, we deduce that XK is indeed bounded in [W (Ω)]]K. Then,
by Lemma 11, we find a constant C1 > 0 such that |uk| ≤ C1ϕ1, for every
k ∈ K. The proof of the Claim is thus completed.

From now on, we fix Λ ≥ C1. We are going to compute the Leray-Schauder
degree of I −F on a family of open sets, where

F : [C1
B(Ω)]M → [C1

B(Ω)]M , F(u) = (L− σI)−1(Ñu− σu) .

Let us define the functions

α̌j = αj − ϕ0 , and β̌j = βj + ϕ0 ,

for every j ∈ J .

We need to introduce a multi-index ~η = (ηJ+1, . . . , ηM) ∈ {1, 2, 3}M−J , in
order to define the open sets

Ω~η := {u ∈ [C1
B(Ω)]M : α̌J � uJ � β̌J and (Oηkk ) holds for every k ∈ K

}
,

where

(O1
k) α̃k � uk � β̃k ,

(O2
k) α̃k � uk � βk ,

(O3
k) αk � uk � β̃k .

We now end the proof of Thoerem 16 assuming first that the lower/upper
solutions are strict with respect to all the components k ∈ K.

Proposition 22. For every multi-index ~η, the degree d(I − F ,Ω~η) is well-
defined, and

d(I −F ,Ω~η) = 1 .

Proof Assume by contradiction that there is u ∈ ∂Ω~η such that (I −F)u = 0,

i.e., u is a solution of (P̃Λ). All the several different situations which may arise
lead back to the following four cases.

Case A. For some index j ∈ J , α̌j ≤ uj ≤ β̌j, and either α̌j 6� uj, or
uj 6� β̌j. We have seen in the proof of Theorem 4 that αj ≤ uj ≤ βj. Since
ϕ0 > 0, by Assumption 5, we then have α̌j < uj < β̌j, hence α̌j � uj � β̌j, a
contradiction.
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Case B. For some index k ∈ K, α̃k ≤ uk ≤ β̃k, and either α̃k 6� uk, or uk 6� β̃k.
This is impossible, since (α̃, β̃) is strict with respect to the k-th component,
for every k ∈ K.

Case C. For some index k ∈ K, α̃k � uk ≤ βk, and uk 6� βk. Such a situation
cannot arise, by assumption.

Case D. For some index k ∈ K, αk ≤ uk � β̃k, and αk 6� uk. Such a situation
cannot arise, by assumption.

Since the sets Ω~η provide us a well-ordered pair of strict lower/upper solutions

of problem (P̃Λ), the conclusion is a consequence of Theorem 7.

We now start an iterative process, defining a series of open sets and com-
puting the corresponding degrees. This process will eventually lead us to the
conclusion.

For every ` ∈ {1, 2, 3} and any ~η = (ηJ+2, . . . , ηM) ∈ {1, 2, 3}M−(J+1), we
now define the open sets

Ω0
(`,~η) = Ω(`,ηJ+2,...,ηM ) .

Notice that Ω0
(2,~η) and Ω0

(3,~η) are disjoint subsets of Ω0
(1,~η). We also define the

open set

Ω0
(4,~η) = Ω0

(1,~η) \ Ω0
(2,~η) ∪ Ω0

(3,~η) .

Proposition 23. For every multi-index ~η, the degree d(I − F ,Ω0
(4,~η)) is well-

defined, and

d(I −F ,Ω0
(4,~η)) = −1 .

Proof Using the fact that the sets Ω0
(`,~η) are open, for ` = 1, 2, 3, we can see

that

∂Ω0
(4,~η) ⊆ ∂Ω0

(1,~η) ∪ ∂Ω0
(2,~η) ∪ ∂Ω0

(3,~η) .

Since we already know that there are no solutions of (P̃Λ) on ∂Ω0
(`,~η), for ` =

1, 2, 3, we consequently have that there are no solutions of (P̃Λ) on ∂Ω0
(4,~η),

hence the degree is well-defined. By the additivity property of the degree and
Proposition 22,

d(I −F ,Ω0
(4,~η)) = d(I −F ,Ω0

(1,~η))− d(I −F ,Ω0
(2,~η))− d(I −F ,Ω0

(3,~η)) = −1 ,

so that the proof is completed.

Now, for every ` ∈ {1, 2, 3} and any ~η = (ηJ+3, . . . , ηM) ∈ {1, 2, 3}M−(J+2),
we define the open sets

Ω1
(`,~η) = Ω(4,`,ηJ+3,...,ηM ) .
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Notice that Ω1
(2,~η) and Ω1

(3,~η) are disjoint subsets of Ω1
(1,~η). We also define the

open set
Ω1

(4,~η) = Ω1
(1,~η) \ Ω1

(2,~η) ∪ Ω1
(3,~η) .

Proceeding by induction, for K ∈ {0, 1, . . . ,M− (J+1)}, any ` ∈ {1, 2, 3} and
any ~η = (ηJ+K+2, . . . , ηM) ∈ {1, 2, 3}M−(J+K+1) we can define the open sets

ΩK
(`,~η) = Ω(4, . . . , 4︸ ︷︷ ︸

K times

,`,ηJ+K+2,...,ηM ) .

Notice that ΩK
(2,~η) and ΩK

(3,~η) are disjoint subsets of ΩK
(1,~η). We also define the

open set
ΩK

(4,~η) = ΩK
(1,~η) \ ΩK

(2,~η) ∪ ΩK
(3,~η) .

Proposition 24. For every K ∈ {0, 1, . . . ,M−(J+2)} and every multi-index
~η, the degree d(I −F ,ΩK

(4,~η)) is well-defined, and

d(I −F ,ΩK
(4,~η)) = (−1)K+1 .

Proof We proceed by induction. The validity of the statement for K = 0 fol-
lows by Proposition 23. Assume that it holds for some K ∈ {0, 1, . . . ,M−(J+
3)}. The same argument in the proof of Proposition 23 shows us that the degree
is well-defined. Then, for every ~η = (ηJ+K+3, . . . , ηM) ∈ {1, 2, 3}M−(J+K+2),

d(I −F ,ΩK+1
(4,~η)) = d(I −F ,ΩK+1

(1,~η))− d(I −F ,ΩK+1
(2,~η))− d(I −F ,ΩK+1

(3,~η))

= d(I −F ,Ω( 4 , . . . , 4︸ ︷︷ ︸
K+1 times

,1, ηJ+K+3,...,ηM ))−

− d(I −F ,Ω( 4 , . . . , 4︸ ︷︷ ︸
K+1 times

,2, ηJ+K+3,...,ηM ))− d(I −F ,Ω( 4 , . . . , 4︸ ︷︷ ︸
K+1 times

,3, ηJ+K+3,...,ηM ))

= d(I −F ,Ω(4, . . . , 4︸ ︷︷ ︸
K times

,4,1,ηJ+K+3,...,ηM ))−

− d(I −F ,Ω(4, . . . , 4︸ ︷︷ ︸
K times

,4,2,ηJ+K+3,...,ηM ))− d(I −F ,Ω(4, . . . , 4︸ ︷︷ ︸
K times

,4,3,ηJ+K+3,...,ηM ))

= d(I −F ,ΩK
(4,1,~η))− d(I −F ,ΩK

(4,2,~η))− d(I −F ,ΩK
(4,3,~η))

= (−1)K+1 − (−1)K+1 − (−1)K+1 = (−1)K+2 ,

yielding the conclusion.

By the previous proposition, in the special case K = M − (J + 2) we have
that for every ` ∈ {1, 2, 3},

d` := d(I −F ,Ω( 4 , . . . . . . , 4︸ ︷︷ ︸
M−J−2 times

, 4, `)) = (−1)M−(J+1) .

We now consider the set

Ω(4,...,4,4) = Ω(4,...,4,1) \ Ω(4,...,4,2) ∪ Ω(4,...,4,3) .
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By the same argument as above,

d(I −F ,Ω(4,...,4)) = d1 − d2 − d3 = (−1)M−J .

As a consequence, there exists a solution u of problem (P̃Λ) in the set Ω(4,...,4).
Recalling the above a priori bounds, we see that the solution u is indeed a
solution of problem (P ) and satisfies (WJ ) and (NWK). The proof is thus
completed, in the case when the lower/upper solutions are strict with respect
to all the components k ∈ K.

If the lower/upper solutions are not strict with respect to the M -th com-
ponent, the previous propositions all continue to hold provided that ηM = 1,
but we cannot ensure that the degree is well-defined if ηM = 2 or ηM = 3. We
thus have that

d(I −F ,Ω(4,...,4,1)) = (−1)M−(J+1) ,

and there are two possibilities: either, there is a solution of problem (P̃Λ) on
∂Ω(4,...,4,2)∪∂Ω(4,...,4,3), or the degrees d(I−F ,Ω(4,...,4,2)) and d(I−F ,Ω(4,...,4,3))
are well-defined, and we conclude as above.

6 The parabolic case

In this section we briefly describe how our results can be adapted to the study
of systems of parabolic type. For the details, we refer to [10, Section 7].

Let Ω be a bounded domain in RN with a C2-boundary ∂Ω. Given T > 0,
set Q = Ω× ]0, T [ . Taking r > N + 2, we define the operator L : W 2,1

r (Q) →
Lr(Q) as follows:

Lw = ∂tw −
N∑

l,m=1

alm(x, t)∂2
xlxm

w +
N∑
i=1

ai(x, t)∂xiw + a0(x, t)w .

Here alm ∈ C(Q), alm = aml , alm(x, 0) = alm(x, T ) in Ω, for l,m = 1, . . . , N ,
there exists ā > 0 such that

N∑
l,m=1

alm(x, t)ξiξj ≥ ā‖ξ‖2 , for every (x, t, ξ) ∈ Q× RN ,

and ai ∈ L∞(Q), for i = 0, . . . , N .

Assume that ∂Ω is the disjoint union of two closed sets Γ1 and Γ2 (the
cases Γ1 = ∅ or Γ2 = ∅ are admitted). Let τs be the operator defined by

(τsw)(x, t) = w(x, t+ s) ,
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and consider the boundary operator B : C1,0(Q)→ C(∂Q) defined as

Bw :=



w on Γ1 × [0, T ] ,
N∑
i=1

bi(x, t)∂xiw + b0(x, t)w on Γ2 × [0, T ] ,

w − τTw in Ω× {0} ,

τ(−T )w − w in Ω× {T} .

Here bi ∈ C1(∂Ω× [0, T ]), bi(x, 0) = bi(x, T ) in ∂Ω, for i = 0, . . . , N , and there
exists b̄ > 0 such that

b0(x, t) ≥ 0 and
N∑
i=1

bi(x, t)νi(x) ≥ b̄ , for every (x, t) ∈ ∂Ω× ]0, T [ .

We thus have Dirichlet-periodic conditions on Γ1, and Robin-periodic on Γ2.

We can deal with the problem{
Lun = Fn(x, t, u1, . . . , uM) in Q ,

Bun = 0 on ∂Q ,
n = 1, . . . ,M .

Also in this setting our choice of taking the same differential operator and
boundary conditions for all components has only the aim of simplifying the
exposition. A solution of problem (P ) is a function u ∈ W 2,1

r (Q) which satisfies
the differential equation almost everywhere in Q and the boundary conditions
pointwise. A function with these properties is usually called “strong solution”
in the literature. All the existence results of this paper can be adapted to this
situation. See [10] for the verification of the corresponding Assumptions 1–5.

As a final example, we can consider the system of the mixed Dirichlet-
periodic and Neumann-periodic problem

∂tu1 −∆u1 = −u3
1 + w1(x, t, u1, u2) in Q ,

∂tu2 −∆u2 = arctanu2 + w2(x, t, u1, u2) in Q ,
u1 = 0 , ∂νu2 = 0 on ∂Ω× [0, T ] ,
u1(x, 0) = u1(x, T ) , u2(x, 0) = u2(x, T ) on Ω .

If w1, w2 : Q × R2 → R are continuous and bounded, with ‖w2‖∞ < π/2,
we obtain the existence of at least one solution, taking the constant pairs
of lower/upper solutions (α, β), with α = (−m,n) and β = (m,−n), for
sufficiently large positive integers m and n.
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