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Abstract

We prove the existence of periodic solutions of some infinite-dimensional systems by the
use of the lower/upper solutions method. Both the well-ordered and non-well-ordered cases
are treated, thus generalizing to systems some well established results for scalar equations.

1 Introduction

The use of lower and upper solutions in boundary value problems dates back to the pioneering
papers of Peano [19] in 1885 and Picard [20] in 1893. The first results for the periodic problem
were obtained by Knobloch [15] in 1963. There is nowadays a large literature on this subject,
dealing with different types of boundary conditions for ordinary and partial differential equa-
tions of elliptic or parabolic type (see, e.g., [5, 7] and the references therein).

In this paper we consider the periodic problem

(P )

{
ẍ = f(t, x) ,

x(0) = x(T ) , ẋ(0) = ẋ(T ) .

In the scalar case when f : [0, T ] × R → R is continuous, the C2-functions α, β : [0, T ] → R are
said to be lower/upper solutions of problem (P ), respectively, if

α̈(t) ≥ f(t, α(t)) , β̈(t) ≤ f(t, β(t)) .

for every t ∈ [0, T ], and

α(0) = α(T ) , β(0) = β(T ) , α̇(0) ≥ α̇(T ) , β̇(0) ≤ β̇(T ) .

We say that (α, β) is a well-ordered pair of lower/upper solutions if α ≤ β. It is well known
that, when such a pair exists, problem (P ) has a solution x such that α ≤ x ≤ β.

When the inequality α ≤ β does not hold, we say that the lower and upper solutions are
non-well-ordered. In this case, with the aim of obtaining existence results, some further condi-
tions have to be added in order to avoid resonance with the positive eigenvalues of the differ-
ential operator −ẍ with T -periodic conditions (recall that 0 is an eigenvalue, and all the other
eigenvalues are positive). See [1, 6, 11, 12, 13, 18] for results in this direction.

The aim of this paper is to extend those classical existence results for scalar equations to
systems, both in a finite-dimensional and in an infinite-dimensional setting.
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Bebernes and Schmitt [3] generalized the scalar well-ordered case to a system of type (P ),
with f : [0, T ]×RN → RN . Their result is reported in Section 2 below, in a slightly more general
version. We are not aware of any results for systems in the non-well-ordered case, not even in
the finite-dimensional case.

In Section 3 we provide an existence result for a system in RN when the components of the
lower/upper solutions can be both well-ordered and non-well-ordered. In order to avoid reso-
nance with the higher part of the spectrum, for simplicity we ask the function f to be globally
bounded in the non-well-ordered components, even if such an assumption could certainly be
weakened (see the remarks in Section 5).

The case of a system in an infinite-dimensional Banach spaceE has been analyzed by Schmitt
and Thompson [21] in 1975 for boundary value problems of Dirichlet type. However, when fac-
ing the periodic problem, they needed to assume E to be finite-dimensional, concluding their
paper by saying: “Whether the results of this section [. . . ] remain true in case E is infinite di-
mensional is not known at this time". We are not aware of any progress in this direction till now.
In this paper we will try to give a partial answer to this question.

In Section 4 we extend our existence result of Section 3 to an infinite-dimensional separable
Hilbert space. The lack of compactness is recovered by assuming the lower and upper solu-
tions to take their values in a Hilbert cube. Moreover, we ask the function f to be globally
bounded and completely continuous in the non-well-ordered components. These assumptions
are reminiscent of an infinite-dimensional version of the Poincaré–Miranda Theorem as given
in [16].

The study of periodic solutions for infinite-dimensional Hamiltonian systems has been al-
ready faced by several authors, see, e.g., [2, 4, 8, 10, 14]. Our approach does not need a Hamilto-
nian structure, and could be applied also to systems with nonlinearity depending on the deriva-
tive of x, provided some Nagumo-type condition is assumed. Such kind of systems were stud-
ied, e.g., in [21]. In Section 5 we will discuss on these and other possible extensions and gen-
eralizations of our results, possibly also to partial differential equations of elliptic or parabolic
type.

2 Well-ordered lower and upper solutions for systems

In this section and the next one we consider the problem

(P )

{
ẍ = f(t, x) ,

x(0) = x(T ) , ẋ(0) = ẋ(T ) ,

where f : [0, T ] × RN → RN is a continuous function. We are thus in a finite-dimensional
setting. Let us recall a standard procedure to reduce the search of solutions of (P ) to a fixed
point problem in Banach space. We define the set

C2
T = {x ∈ C2([0, T ],RN ) : x(0) = x(T ), ẋ(0) = ẋ(T )} ,

and the linear operator

L : C2
T → C([0, T ],RN ) , Lx = −ẍ+ x .

which is invertible and has a bounded inverse. We consider as well the Nemytskii operator

N : C([0, T ],RN )→ C([0, T ],RN ) , (Nx)(t) = x(t)− f(t, x(t)) .
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Problem (P ) is so equivalent to the fixed point problem in C([0, T ],RN )

x = L−1Nx .

Notice that L−1N : C([0, T ],RN )→ C([0, T ],RN ) is completely continuous.

Here, we recall and slightly generalize [3, Theorem 4.1].

Definition 1. Given two C2-functions α, β : [0, T ] → RN , we say that (α, β) is a well-ordered pair
of lower/upper solutions of problem (P ) if, for every j ∈ {1, . . . , N} and t ∈ [0, T ],

αj(t) ≤ βj(t) ,

αj(0) = αj(T ) , βj(0) = βj(T ) , α̇j(0) ≥ α̇j(T ) , β̇j(0) ≤ β̇j(T ) ,

and, for every x ∈
∏N
m=1[αm(t), βm(t)],

α̈j(t) ≥ fj(t, x1, . . . , xj−1, αj(t), xj+1, . . . , xN ) ,

β̈j(t) ≤ fj(t, x1, . . . , xj−1, βj(t), xj+1, . . . , xN ) .

Theorem 2 (Bebernes–Schmitt). If there exists a well-ordered pair of lower/upper solutions (α, β),
then problem (P ) has a solution x(t) such that

αj(t) ≤ xj(t) ≤ βj(t) , for every j ∈ {1, . . . , N} and t ∈ [0, T ] . (1)

Proof. Step 1. Define the functions γj : [0, T ]× R→ R as

γj(t, s) =

 αj(t) if s < αj(t) ,
s if αj(t) ≤ s ≤ βj(t) ,
βj(t) if s > βj(t) ,

and the functions Γ, f̄ : [0, T ]× RN → RN as

Γ(t, x) = (γ1(t, x1), . . . , γN (t, xN )) , f̄(t, x) = f(t,Γ(t, x)) .

Consider the auxiliary problem

(P ′)

{
ẍ = f̄(t, x) + x− Γ(t, x) ,

x(0) = x(T ) , ẋ(0) = ẋ(T ) .

and the corresponding Nemytskii operator

Ñ : C([0, T ],RN )→ C([0, T ],RN ) , (Ñx)(t) = Γ(t, x(t))− f̄(t, x(t)) .

Problem (P ′) can then be equivalently written as a fixed point problem in C([0, T ],RN ), namely

x = L−1Ñx .

By Schauder Theorem, since L−1Ñ : C([0, T ],RN )→ C([0, T ],RN ) is completely continuous and
has a bounded image, it has a fixed point, so that (P ′) has a solution x(t).

Step 2. Let us show that (1) holds for every solution of (P ′), thus proving the theorem.
By contradiction, assume that there is a j ∈ {1, . . . , N} and a tj ∈ [0, T ] for which xj(tj) /∈
[αj(tj), βj(tj)]. For instance, let xj(tj) < αj(tj) (the case xj(tj) > βj(tj) being similar). Set
vj(t) = αj(t) − xj(t), and let t̂j ∈ [0, T ] be such that vj(t̂j) = max{vj(t) : t ∈ [0, T ]}. We
distinguish two cases.
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Case 1: t̂j ∈ ]0, T [ . In this case, surely v̈j(t̂j) ≤ 0. On the other hand,

v̈j(t̂j) = α̈j(t̂j)− ẍj(t̂j)
= α̈j(t̂j)− f̄j(t̂j , x(t̂j))− xj(t̂j) + γj(t̂j , xj(t̂j))

> α̈j(t̂j)− fj(t̂j , γ1(t̂j , x1(t̂j)), . . . , αj(t̂j), . . . , γN (t̂j , xN (t̂j))) ≥ 0 ,

leading to a contradiction.

Case 2: t̂j = 0 or t̂j = T . Assume for instance that t̂j = 0 (the other situation being similar).
Then,

0 ≥ v̇j(0) = α̇j(0)− ẋj(0) ≥ α̇j(T )− ẋj(T ) = v̇j(T ) ,

so that, being vj(T ) = vj(0) the maximum value of vj(t) over [0, T ], it has to be that v̇j(T ) = 0,
hence also v̇j(0) = 0. Now, since vj(0) > 0, there is a small δ > 0 such that vj(s) > 0, for every
s ∈ [0, δ]. Then if t ∈ [0, δ], we have that xj(s) < αj(s), for every s ∈ [0, t], hence

v̇j(t) = v̇j(0) +

∫ t

0

v̈j(s) ds

=

∫ t

0

(
α̈j(s)− ẍj(s)

)
ds

=

∫ t

0

(
α̈j(s)− f̄j(s, x(s))− xj(s) + γj(s, xj(s))

)
ds

>

∫ t

0

(
α̈j(s)− fj(s, γ1(s, x1(x)), . . . , αj(s), . . . , γN (s, xN (x)))

)
ds ≥ 0 ,

a contradiction, since 0 is a maximum point for vj(t). The proof is thus completed.

We now provide some illustrative examples.

Example 3. Let, for every j ∈ {1, . . . , N},

fj(t, x) = ajx
3
j + hj(t, x) ,

for some constants aj > 0, and assume that there is a c > 0 such that

|h(t, x)| ≤ c , for every (t, x) ∈ [0, T ]× RN . (2)

Then, taking the constant functions αj = − 3
√
c/aj , βj = 3

√
c/aj , we see that Theorem 2 applies,

hence (P ) has a solution.

Example 4. Let us consider, for every j ∈ {1, . . . , N},

fj(t, x) = x2
j sinxj + hj(t, x) ,

and assume that there is a c > 0 such that (2) holds. Then, for every ` ∈ Z with |`| sufficiently
large, taking the constant functions αj = −π/2 + 2`π , βj = π/2 + 2`π , we see that Theorem 2
applies, and we conclude that (P ) admits an infinite number of solutions.

In order to work with Leray-Schauder degree, we need to introduce the notions of strict
lower/upper solutions.

Definition 5. The well-ordered pair of lower/upper solutions (α, β) of problem (P ) is said to be strict if
αj(t) < βj(t) for every j ∈ {1, . . . , N} and t ∈ [0, T ], and the following property holds:
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if x(t) is a solution of (P ) such that for a certain j ∈ {1, . . . , N}, αj(t) ≤ xj(t) ≤ βj(t) holds for
every t ∈ [0, T ], then one has αj(t) < xj(t) < βj(t) for every t ∈ [0, T ].

When we have a well-ordered pair of strict lower/upper solutions, the previous theorem
provides some additional information.

Theorem 6. If (α, β) is a strict well-ordered pair of lower/upper solutions of problem (P ), then

d(I − L−1N ,Ω) = 1 ,

where

Ω :=
{
x ∈ C([0, T ],RN ) : αj(t) < xj(t) < βj(t) , for every j ∈ {1, . . . , N} and t ∈ [0, T ]

}
.

Proof. Arguing as in Step 1 of the proof of Theorem 2, we can introduce the modified prob-
lem (P ′) and we know, by Schauder Theorem, that

d(I − L−1Ñ , BR) = 1 ,

where BR is an open ball in RN centered at the origin with a sufficiently large radius R > 0. In
particular, we may assume that Ω ⊆ BR. By the argument in Step 2 of the same proof and the
fact that the pair of lower/upper solutions is strict, we have that all the solutions of (P ′) belong
to Ω. In other words, there are no zeroes of I − L−1Ñ in the set BR \ Ω. Then, by the excision
property of the degree,

d(I − L−1Ñ ,Ω) = 1 .

Finally, since N and Ñ coincide on the set Ω, the conclusion follows.

3 Non-well-ordered lower and upper solutions for systems

In this section we still consider problem (P ) in the finite-dimensional space RN . We will treat
the case in which we can find lower and upper solutions which are not well-ordered. To this
aim, we need to distinguish the components which are well-ordered from the others.

We will say that the couple (J ,K) is a partition of the set of indices {1, . . . , N} if and only if
J ∩ K = ∅ and J ∪ K = {1, . . . , N}. Correspondingly we can decompose a vector

x = (x1, . . . , xN ) = (xn)n∈{1,...,N} ∈ RN

as x = (xJ , xK) where xJ = (xj)j∈J ∈ R#J and xK = (xk)k∈K ∈ R#K. Here #J and #K
denote respectively the cardinality of the sets J and K.

Similarly, every function F : A → RN can be written as F(x) =
(
FJ (x),FK(x)

)
where

FJ : A → R#J and FK : A → R#K.

Definition 7. Given two C2-functions α, β : [0, T ] → RN we will say that (α, β) is a pair of
lower/upper solutions of (P ) related to the partition (J ,K) of {1, . . . , N} if the following four
conditions hold:

1. for any j ∈ J , αj(t) ≤ βj(t) for every t ∈ [0, T ];

2. for any k ∈ K, there exists t0k ∈ [0, T ] such that αk(t0k) > βk(t0k);
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3. for any n ∈ {1, . . . , N} we have

α̈n(t) ≥ fn(t, x1, . . . , xn−1, αn(t), xn+1, . . . , xN ) , (3)

β̈n(t) ≤ fn(t, x1, . . . , xn−1, βn(t), xn+1, . . . , xN ) , (4)

for every (t, x) ∈ E , where

E :=
{

(t, x) ∈ [0, T ]× RN : x = (xJ , xK) , xJ ∈
∏
j∈J

[αj(t), βj(t)]
}
.

4. for any n ∈ {1, . . . , N},

αn(0) = αn(T ) , βn(0) = βn(T ) ,

α̇n(0) ≥ α̇n(T ) , β̇n(0) ≤ β̇n(T ) .

Definition 8. The pair (α, β) of lower/upper solutions of (P ) is said to be strict with respect to the
j-th component, with j ∈ J , if αj(t) < βj(t) for every t ∈ [0, T ], and for every solution x of (P ) we
have (

∀t ∈ [0, T ] , αj(t) ≤ xj(t) ≤ βj(t)
)
⇒
(
∀t ∈ [0, T ] , αj(t) < xj(t) < βj(t)

)
; (5)

it is said to be strict with respect to the k-th component, with k ∈ K, if for every solution x of (P ) we
have (

∀t ∈ [0, T ] , xk(t) ≥ αk(t)
)
⇒
(
∀t ∈ [0, T ] , xk(t) > αk(t)

)
, (6)(

∀t ∈ [0, T ] , xk(t) ≤ βk(t)
)
⇒
(
∀t ∈ [0, T ] , xk(t) < βk(t)

)
. (7)

The following proposition provides a sufficient condition in order to guarantee the strictness
property of a pair of lower/upper solutions of (P ) with respect to a certain component.

Proposition 9. Given a pair (α, β) of lower/upper solutions of (P),

1. if, for any n ∈ J , both (3) and (4) hold with strict inequalities, then (5) holds for n = j;

2. if, for any n ∈ K, (3) holds with strict inequality, then (6) holds for n = k;

3. if, for any n ∈ K, (4) holds with strict inequality, then (7) holds for n = k.

The proof can be easily adapted from the corresponding scalar result in [5, Proposition III-
1.1] and is omitted.

We are able to prove the existence of a solution of (P ) in presence of a pair of lower/upper
solutions (α, β) provided that we ask the strictness property when the components αk, βk are
non-well-ordered.

Theorem 10. Let (α, β) be a pair of lower/upper solutions of (P ) related to the partition (J ,K) of
{1, . . . , N}, and assume that it is strict with respect to the k-th component, for every k ∈ K. Assume
moreover the existence of a constant C > 0 such that

|fK(t, x)| ≤ C , for every (t, x) ∈ E .

Then, (P ) has a solution x with the following property: for any (j, k) ∈ J ×K,
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(Wj) αj(t) ≤ xj(t) ≤ βj(t), for every t ∈ [0, T ] ;

(NWk) there exist t1k, t
2
k ∈ [0, T ] such that xk(t1k) < αk(t1k) and xk(t2k) > βk(t2k) .

In Section 3.2 we will provide a generalization of the above result, removing the strictness
assumption on one of the components κ ∈ K. Let us now present two illustrative examples.

Example 11. Assume J = ∅ and let, for every k ∈ K,

fk(t, x) = − akxk
1 + |xk|

+ hk(t, x) ,

for some ak > 0, with

‖hk‖∞ := sup
{
|hk(t, x)| : (t, x) ∈ [0, T ]× RN

}
< ak . (8)

Then, taking the constant functions

αk =
‖hk‖∞

ak − ‖hk‖∞
+ 1 , βk = − ‖hk‖∞

ak − ‖hk‖∞
− 1 ,

we see that Theorem 10 applies. The same would be true if J 6= ∅, assuming for j ∈ J , e.g., a
situation like in Examples 3 and 4.

Example 12. Let
fn(t, x) = −an sinxn + hn(t, x) ,

with an > 0 and hn satisfying (8) with k = n. For every n ∈ {1, . . . , N} we have constant lower
and upper solutions

αn ∈
{π

2
+ 2mπ : m ∈ Z

}
, βn ∈

{
− π

2
+ 2mπ : m ∈ Z

}
.

Then, for each equation we have both well-ordered and non-well-ordered pairs of lower/upper
solutions. Let us fix, e.g.,

αn =
π

2
, βιn =

π

2
+ ιπ , with ι ∈ {−1, 1} .

Choosing ~ι = (ι1, . . . , ιN ) ∈ {−1, 1}N , and defining (α, β) with βn = βιnn , by Theorem 10 we get
the existence of at least 2N solutions x~ι of problem (P ), whose components are such that

ιn = 1 ⇒ ∀t ∈ [0, T ], x~ιn(t) ∈
[π

2
,

3π

2

]
,

ιn = −1 ⇒ ∃t̄n ∈ [0, T ], x~ιn(t̄n) ∈
[
− π

2
,
π

2

]
.

We notice that, even if the function h(t, x1, . . . , xn) is 2π-periodic in each variable xn, the solu-
tions we find are indeed geometrically distinct. We thus get a generalization of a result obtained
for the scalar equation in [17].

3.1 Proof of Theorem 10

Notice that the case K = ∅ reduces to Theorem 2. We thus assume K 6= ∅ and, without loss
of generality, we take either J = ∅, or J = {1, . . . ,M} and K = {M + 1, . . . , N} for a certain
M ∈ {1, . . . , N}. Indeed, mixing the coordinates of x = (x1, . . . , xN ), we can always reduce to
such a situation. We continue the proof in the case J 6= ∅. (The case J = ∅ can be treated
essentially in the same way.)
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We need to suitably modify problem (P ). For every r > 0, we consider the problem

(Pr)

{
ẍ = gr(t, x) ,

x(0) = x(T ) , ẋ(0) = ẋ(T ) ,

where gr : [0, T ]× RN → RN , with

gr(t, x) =
(
gr,1(t, x), . . . , gr,M (t, x), gr,M+1(t, x), . . . , gr,N (t, x)

)
,

is defined as follows.

We first introduce the functions f̄ : [0, T ]× RN → RN and Γ : [0, T ]× RN → RN as

f̄(t, x) = f(t,Γ(t, x)) ,

Γ(t, x) =
(
γ1(t, x1), . . . , γM (t, xN ), xM+1, . . . , xN

)
.

where, for j ∈ J ,

γj(t, s) =


αj(t) , if s < αj(t) ,

s , if αj(t) ≤ s ≤ βj(t) ,
βj(t) , if s > βj(t) .

Now we define, for every index j ∈ J ,

gr,j(t, x) = f̄j(t, x) + xj − γj(t, xj) ,

and for every index k ∈ K,

gr,k(t, x) =


f̄k(t, x) if |xk| ≤ r ,

(|xk| − r)C
xk
|xk|

+ (1 + r − |xk|)f̄k(t, x) if r < |xk| < r + 1 ,

C
xk
|xk|

if |xk| ≥ r + 1 .

Notice that, for the indices j ∈ J , the value r > 0 does not affect the definition of the compo-
nents gr,j .

Proposition 13. If x is a solution of (Pr), then αj(t) ≤ xj(t) ≤ βj(t) for every j ∈ J and t ∈ [0, T ].

The proof follows from a classical reasoning and can be easily adapted from Step 2 of the
proof of Theorem 2.

Proposition 14. There is a constant K > 0 such that, if x is a solution of (Pr), for any r > 0, which
satisfies (NWk) for a certain index k ∈ K, then ‖xk‖C2 ≤ K.

Proof. Notice that

|gr,k(t, x)| ≤ C , for every (t, x) ∈ [0, T ]× RN , k ∈ K and r > 0 . (9)

Fix any k ∈ K. If x(t) is a solution of (Pr), multiplying the k-th equation by x̃k and integrating,
we have that

‖x̃k‖22 ≤
(
T

2π

)2

‖ẋk‖22 ≤
(
T

2π

)2

C
√
T‖x̃k‖2 .
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So, by a classical reasoning, there is a constant C1 > 0 such that ‖x̃k‖H1 ≤ C1, and there is a
constant C0 > 0 such that ‖x̃k‖∞ ≤ C0, for every solution x of (Pr). Define

uk(t) = min{αk(t), βk(t)} , Uk(t) = max{αk(t), βk(t)} . (10)

Since (NWk) holds, there is a τ0 ∈ [0, T ] such that

uk(τ0) ≤ xk(τ0) ≤ Uk(τ0) . (11)

Then, if x is a solution of (Pr),

|xk(t)| =
∣∣∣xk(τ0) +

∫ t

τ0

ẋk(s) ds
∣∣∣ ≤ |xk(τ0)|+

∫ T

0

|ẋk(s)|ds ≤ |xk(τ0)|+
√
T‖ẋk‖2

≤ max{‖α‖∞ , ‖β‖∞}+
√
TC1 =: K0 ,

hence ‖xk‖∞ ≤ K0. Moreover, by periodicity, there is a τ1 ∈ [0, T ] such that ẋk(τ1) = 0, hence
by (9)

|ẋk(t)| =
∣∣∣ẋk(τ1) +

∫ t

τ1

ẍk(s) ds
∣∣∣ =

∣∣∣ ∫ t

τ1

gr,k(s, x(s)) ds
∣∣∣ ≤ ∫ T

0

|gr,k(s, x(s))|ds ≤ CT ,

so that ‖ẋk‖∞ ≤ CT . Then,

‖xk‖C2 = ‖xk‖∞ + ‖ẋk‖∞ + ‖ẍk‖∞ ≤ K0 + CT + C =: K ,

thus proving the proposition.

From now on, we fix r > max{K, ‖α‖∞ , ‖β‖∞}, where K is given by Lemma 14. Problem
(Pr) is equivalent to the fixed point problem

x = L−1Nrx , x ∈ C([0, T ],RN ) ,

where we have introduced the Nemytskii operator

Nr : C([0, T ],RN )→ C([0, T ],RN ) , (Nrx)(t) = x(t)− gr(t, x(t)) .

Since we are looking for zeros of

Trx := (I − L−1Nr)(x) ,

we are going to compute the Leray-Schauder degree on a family of open sets. Let us define the
constant functions

α̂ = −r − 1 , β̂ = r + 1 ,

as well as the functions

α̌j(t) = αj(t)− 1 , and β̌j(t) = βj(t) + 1 ,

for every j ∈ J .
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We define, for every multi-index µ = (µM+1, . . . , µN ) ∈ {1, 2, 3, 4}N−M , the open set

Ωµ := {x ∈ C([0, T ],RN ) : (O0
j ) and (Oµk

k ) hold for every j ∈ J and k ∈ K
}
, (12)

where the conditions (O0
j ) and (Oµk

k ) read as

(O0
j ) α̌j(t) < xj(t) < β̌j(t), for every t ∈ [0, T ],

(O1
k) α̂ < xk(t) < β̂, for every t ∈ [0, T ],

(O2
k) α̂ < xk(t) < βk(t), for every t ∈ [0, T ],

(O3
k) αk(t) < xk(t) < β̂, for every t ∈ [0, T ],

(O4
k) α̂ < xk(t) < β̂, for every t ∈ [0, T ], and there are t1k, t

2
k ∈ [0, T ] such that x(t1k) < αk(t1k)

and x(t2k) > βk(t2k).

Proposition 15. The Leray-Schauder degree d(Tr,Ωµ) is well-defined for every µ ∈ {1, 2, 3, 4}N−M .

Proof. Assume by contradiction that there is x ∈ ∂Ωµ such that Trx = 0, i.e., x is a solution of
(Pr). All the several different situations which may arise lead back to the following four cases.

Case A. For some index j ∈ J , α̌j(t) ≤ xj(t) ≤ β̌j(t), for every t ∈ [0, T ], and α̌j(τ) = xj(τ)
for a certain τ ∈ [0, T ] (the case when xj(τ) = β̌j(τ) is similar). We can prove that

¨̌αj(t) > gr,j(t, x1(t), . . . , xj−1(t), α̌j(t), xj+1(t), . . . , xN (t)) , for every t ∈ [0, T ] ,

so that arguing as in Step 2 of the proof of Theorem 2 we obtain a contradiction.

Case B. For some index k ∈ K, α̂ ≤ xk(t) ≤ β̂, for every t ∈ [0, T ], and α̂ = xk(τ) for a certain
τ ∈ [0, T ] (the case when xk(τ) = β̂ is similar). Since

gr,k(t, x1(t), . . . , xk−1(t), α̂, xk+1(t), . . . , xN (t)) = −C < 0 , for every t ∈ [0, T ] ,

we easily get a contradiction as before.

Case C. For some index k ∈ K, α̂ < xk(t) ≤ βk(t), for every t ∈ [0, T ], and xk(τ) = βk(τ) for
a certain τ ∈ [0, T ]. Such a situation cannot arise since (7) holds by assumption.

Case D. For some index k ∈ K, αk(t) ≤ xk(t) < β̂, for every t ∈ [0, T ], and xk(τ) = αk(τ) for
a certain τ ∈ [0, T ]. Such a situation cannot arise since (6) holds by assumption.

Proposition 16. For every multi-index µ ∈ {1, 2, 3}N−M we have d(Tr,Ωµ) = 1.

Proof. In this case, it can be verified by the arguments of the previous proof, that the definition
of the set Ωµ provides us a well-ordered pair of strict lower/upper solutions of problem (Pr).
The conclusion is then an immediate consequence of Theorem 6.

For any multi-index µ̂ ∈ {1, 2, 3}N−M−1 we can consider, for every ` ∈ {1, 2, 3, 4}, the multi-
index

(`, µ̂) = (`, µM+2, . . . , µN ) ∈ {1, 2, 3, 4}N−M .

We can verify that Ω(2,µ̂),Ω(3,µ̂),Ω(4,µ̂) are pairwise disjoint and all contained in Ω(1,µ̂) so that

Ω(4,µ̂) = Ω(1,µ̂) \ Ω(2,µ̂) ∪ Ω(3,µ̂) . (13)
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Proposition 17. For every multi-index µ̂ ∈ {1, 2, 3}N−M−1 we have d(Tr,Ω(4,µ̂)) = −1 .

Proof. By Proposition 16 and (13),

1 = d(Tr,Ω(1,µ̂))

= d(Tr,Ω(2,µ̂)) + d(Tr,Ω(3,µ̂)) + d(Tr,Ω(4,µ̂))

= 2 + d(Tr,Ω(4,µ̂))

and the conclusion follows.

Arguing similarly we can prove by induction the following result.

Proposition 18. For everyK ∈ {1, . . . , N −M} and every multi-index µ ∈ {4}K×{1, 2, 3}N−M−K ,
we have

d(Tr,Ωµ) = (−1)K .

Proof. We proceed by induction. The validity of the statement for K = 1 follows by Proposi-
tion 17. So, we fix K ≥ 2 and assume that

d(Tr,Ωµ) = (−1)K−1, for every µ ∈ {4}K−1 × {1, 2, 3}N−M−K+1 .

Consider the multi-index µ = (4, . . . , 4, µM+K , µM+K+1, . . . , µN ) ∈ {4}K−1×{1, 2, 3}N−M−K+1

and define for every ` ∈ {1, 2, 3, 4}, the multi-index

µ̄` = (4, . . . , 4, `, µM+K+1, . . . , µN ) .

We then see that

(−1)K−1 = d(Tr,Ωµ̄1)

= d(Tr,Ωµ̄2) + d(Tr,Ωµ̄3) + d(Tr,Ωµ̄4)

= 2 · (−1)K−1 + d(Tr,Ωµ̄4) ,

yielding d(Tr,Ωµ̄4) = (−1)K . The proof is complete.

By the previous proposition we conclude that

d(Tr,Ω(4,...,4)) = (−1)N−M . (14)

As a consequence, there is a solution x of problem (Pr) in the set Ω(4,...,4). Recalling the
a priori bounds in Propositions 13 and 14, we see that the solution x is indeed a solution of
problem (P ) and satisfies (Wj) and (NWk), for every j ∈ J and k ∈ K. The proof is thus
completed.

3.2 An extension of Theorem 10

The existence of a solution of (P ) can be obtained also removing from the assumptions of The-
orem 10 the strictness assumption on one of the components.

Theorem 19. Let (α, β) be a pair of lower/upper solutions of (P ) related to the partition (J ,K) of
{1, . . . , N}. Fix κ ∈ K and assume that (α, β) is strict with respect to the k-th component, for every
k ∈ K \ {κ}. Assume moreover the existence of a constant C > 0 such that

|fK(t, x)| ≤ C , for every (t, x) ∈ E .

Then, (P ) has a solution x such that (Wj) and (NWk) hold for every (j, k) ∈ J × (K \ {κ}), and
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(ÑWκ) there exist t1κ, t2κ ∈ [0, T ] such that xκ(t1κ) ≤ ακ(t1κ) and xκ(t2κ) ≥ βκ(t2κ).

Proof. Without loss of generality we can choose J = {1, . . . ,M}, K = {M + 1, . . . , N} and
κ = N . We can follow the proof of Theorem 10 step by step in the first part, noticing that
Proposition 14 holds with the same constant when we assume (ÑWN ). Moreover, since we
do not ask the strictness assumption with respect to the N -th component, when we introduce
the sets Ωµ as in (12), we can consider only multi-indices with the last component frozen to 1,
i.e. µ = (µM+1, . . . , µN−1, 1) ∈ {1, 2, 3, 4}N−M−1 × {1}. Indeed, with this new choice of the
multi-indices we can still guarantee that the Leray-Schauder degree is well-defined.

Then, arguing as in Propositions 16, 17 and 18 we have

• d(Tr,Ωµ) = 1 for every µ ∈ {1, 2, 3}N−M−1 × {1},

• d(Tr,Ωµ) = −1 for every µ ∈ {4} × {1, 2, 3}N−M−2 × {1},

• for every K ∈ {1, . . . , N −M − 1}, d(Tr,Ωµ) = (−1)K for every multi-index µ ∈ {4}K ×
{1, 2, 3}N−M−K−1 × {1}.

However, we cannot conclude the proof saying that the Leray-Schauder degree is different from
zero in Ω(4,...,4) as in (14), since we cannot ensure that it is well defined in the sets Ω(4,...,4,`) with
` = 2, 3, 4.

Anyhow, at this step of the proof, we can follow the classical reasoning adopted in the scalar
case in presence of non-well-ordered lower/upper solutions, cf. [5, Theorem III-3.1]. If there
exists x ∈ ∂Ω(4,...,4,2) such that Trx = 0, then we can easily see that x must be a solution of
(Pr) such that xN (t) ≤ βN (t) for every t ∈ [0, T ] and xN (τ) = βN (τ) for a certain τ ∈ [0, T ].
Since the components αN , βN are non-well-ordered, we have αN (t0N ) > βN (t0N ) ≥ xN (t0N ) for
some tN0 ∈ [0, T ]. So (ÑWN ) holds, thus giving us that x is a solution of (Pr) satisfying all the
required assumptions.

We can argue similarly if there exists x ∈ ∂Ω(4,...,4,3) such that Trx = 0.

If the previous situations do not occur, we can compute the degree both in Ω(4,...,4,2) and
Ω(4,...,4,3). As in (13), we have

Ω(4,...,4,4) = Ω(4,...,4,1) \ Ω(4,...,4,2) ∪ Ω(4,...,4,3) . (15)

so that the degree is well defined also for Ω(4,...,4,4). Performing the same computation adopted
in Propositions 17 and 18 we can conclude that d(Tr,Ω(4,...,4)) = (−1)N−M , thus finding also in
this case a solution x with the desired properties. The proof is thus completed.

4 Lower and upper solutions for infinite-dimensional systems

We now focus our attention on a system defined in a separable Hilbert space H with scalar
product 〈·, ·〉 and corresponding norm | · |. We study the problem

(P )

{
ẍ = f(t, x) ,

x(0) = x(T ) , ẋ(0) = ẋ(T ) ,

where f : [0, T ] × H → H is a continuous function. In what follows, we extend the results of
Section 3 to an infinite-dimensional setting, trying to maintain similar notations.
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Let N+ = {1, 2, 3, . . . }. Choosing a Hilbert basis (en)n∈N+ , every vector x ∈ H can be written
as x =

∑
n∈N+

xnen, or x = (xn)n∈N+
= (x1, x2, . . . ). Similarly, for the function f , we will write

f(t, x) = (f1(t, x), f2(t, x), . . . ) .

As in the finite-dimensional case, we will say that the couple (J ,K) is a partition of N+ if
and only if J ∩K = ∅ and J ∪K = N+. Correspondingly, we can decompose the Hilbert space
as H = HJ ×HK, where every x ∈ H can be written as x = (xJ , xK) with xJ = (xj)j∈J ∈ HJ
and xK = (xk)k∈K ∈ HK.

Similarly, every function F : A → H can be written as F(x) =
(
FJ (x),FK(x)

)
where

FJ : A → HJ and FK : A → HK.

We rewrite Definition 7 in this context.

Definition 20. Given two C2-functions α, β : [0, T ] → H we will say that (α, β) is a pair of
lower/upper solutions of (P ) related to the partition (J ,K) of N+ if the four conditions of Defini-
tion 7 hold replacing {1, . . . , N} by N+ and the inequalities (3), (4) by

α̈n(t) ≥ fn(t, x1, . . . , xn−1, αn(t), xn+1, . . . ) , (16)

β̈n(t) ≤ fn(t, x1, . . . , xn−1, βn(t), xn+1, . . . ) . (17)

Moreover, it is said to be strict with respect to the n-th component, with n ∈ N+, if the conditions of
Definition 8 hold.

We recall the definition of the set

E :=
{

(t, x) ∈ [0, T ]× RN : x = (xJ , xK) , xJ ∈
∏
j∈J

[αj(t), βj(t)]
}
.

Here is our result in this infinite-dimensional setting.

Theorem 21. Let (α, β) be a pair of lower/upper solutions of (P ) related to the partition (J ,K) of N+,
and assume the following conditions:

• there exists a sequence (dn)n∈N+
∈ `2 such that

−dn ≤ αn(t) ≤ dn and − dn ≤ βn(t) ≤ dn , for every n ∈ N+ and t ∈ [0, T ];

• (α, β) is strict with respect to the k-th component, for every k ∈ K;

• there exists a constant C > 0 such that

|fK(t, x)| ≤ C , for every (t, x) ∈ E ;

• for every bounded set B ⊂ E , the set fK(B) is precompact.

Then, (P ) has a solution x with the following property: for any (j, k) ∈ J ×K,

(Wj) αj(t) ≤ xj(t) ≤ βj(t), for every t ∈ [0, T ] ;

(NWk) there exist t1k, t
2
k ∈ [0, T ] such that xk(t1k) < αk(t1k) and xk(t2k) > βk(t2k) .

The proof of the theorem is carried out in Section 4.2.
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Remark 22. As in Theorem 19, we can drop the strictness assumption for a certain index κ ∈ K. In
that case, the so-found solution will satisfy the corresponding condition (ÑWκ).

As an immediate consequence of Theorem 21, taking α and β constant functions, we have
the following.

Corollary 23. Let there exist two sequences (pn)n∈N+ and (qn)n∈N+ in `2, with pn < qn for every
n ∈ N+, and a partition (J ,K) of N+, such that, for every (t, x) ∈ [0, T ]×

∏
j∈J [pj , qj ]×HK ,

j ∈ J ⇒ fj(t, x1, . . . , xj−1, pj , xj+1, . . . ) ≤ 0 ≤ fj(t, x1, . . . , xj−1, qj , xj+1, . . . ) ; (18)
k ∈ K ⇒ fk(t, x1, . . . , xk−1, pk, xk+1, . . . ) > 0 > fk(t, x1, . . . , xk−1, qk, xk+1, . . . ) . (19)

Furthermore, let there exists a sequence (Ck)k∈K ∈ `2 such that, for every k ∈ K,

|fk(t, x)| ≤ Ck , for every (t, x) ∈ [0, T ]×
∏
j∈J

[pj , qj ]×HK . (20)

Then, (P ) has a solution x(t) such that, for every j ∈ J , k ∈ K,

{xj(t) : t ∈ [0, T ]} ⊆ [pj , qj ] ; (21)
{xk(t) : t ∈ [0, T ]} ∩ [pk, qk] 6= ∅ . (22)

We now give some examples of applications, where we implicitly assume all the functions
to be continuous.

Example 24. Let, for every j ∈ N+,

fj(t, x) = x3
j + hj(t, x) ,

and assume that there is a c > 0 such that

|hj(t, x)| ≤ c

j3
, for every (t, x) ∈ [0, T ]×H . (23)

Then, f : [0, T ] × `2 → `2 is well-defined and taking qj = −pj = 3
√
c/j , we see that both

(pj)j , (qj)j belong to `2, and (18) is satisfied, so that Corollary 23 applies with K = ∅.

Example 25. Let us consider, for every j ∈ N+,

fj(t, x) = x2
j sinxj + hj(t, x) ,

and assume that there is a c > 0 such that (23) holds. Then, f : [0, T ] × `2 → `2 is well-
defined. Since x2 sinx ≥ 1

2x
3 in the interval [0, π/2], taking qj = −pj = 3

√
2c/j , we see that both

(pj)j , (qj)j belong to `2, and (18) is satisfied, so that Corollary 23 applies with K = ∅.

Furthermore, for every ` ∈ Z with |`| sufficiently large, we can see that the constants p` =
−π/2 + 2`π, q` = π/2 + 2`π satisfy (18), for every j ∈ N+. Thus, we can replace a finite number
of couples (pj , qj) with some couples (p`, q`). Such a replacement must be performed only for
a finite number of indices j ∈ N+ since we need to guarantee that the new sequences (pj)j and
(qj)j remain in `2. Recalling that the so found solution of problem (P ) must satisfy (22) then we
conclude that (P ) admits an infinite number of solutions.
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Example 26. Let, for every k ∈ N+,

fk(t, x) = − xk
1 + k|xk|

+ hk(t, x) ,

and assume that there is a c ∈ ]0, 1[ such that

|hk(t, x)| ≤ c

k
, for every (t, x) ∈ [0, T ]×H .

Then, f : [0, T ] × `2 → `2 is well-defined and taking qk = −pk = c
(1−c)k , we see that both

(pk)k, (qk)k belong to `2, and (19) is verified, so that Corollary 23 applies with J = ∅.

Example 27. Let (an)n and (σn)n be sequences of positive numbers in `2 and let, for every
n ∈ N+,

fn(t, x) = −an sin
(2πxn
σn

)
+ hn(t, x) .

If hn satisfies
sup

{
|hn(t, x)| : (t, x) ∈ [0, T ]×H

}
< an , (24)

we see that, for every n ∈ {1, . . . , N}, it is possible to find pairs of constant lower and upper
solutions

αn ∈
{σn

4
+mσn : m ∈ Z

}
, βn ∈

{
− σn

4
+mσn : m ∈ Z

}
.

Then, for each equation we have both well-ordered and non-well-ordered pairs of lower/upper
solutions. Applying Corollary 23 we thus get the existence of infinitely many solutions of prob-
lem (P ). By the same argument in Example 12 we notice that, even if the function h(t, x1, x2, . . . )
is σn-periodic in each variable xn, the solutions we find are indeed geometrically distinct.

Remark 28. This result should be compared with the ones in [4, 10], where one or two geometrically
distinct solutions were found assuming a Hamiltonian structure of the problem, i.e.,

hn(t, x) =
∂V
∂xn

(t, x) ,

for some function V(t, x1, x2, . . . ) which is σn-periodic in each variable xn. It was said in the final
section of [10] that it remained an open problem to know if the existence of more than two T-periodic
solutions could be proved, and in [4] that “it would be natural to conjecture the existence of infinitely
many T -periodic solutions”. It is interesting to notice that even in [4, 10], in order to recover some
compactness, it was assumed that the sequence of the periods (σn)n belong to `2.

Remark 29. For any choice of a partition (J ,K) of N+, we can consider functions f satisfying the
requirements of Examples 24, 25 or 27 for every j ∈ J and of Examples 26 or 27 for every k ∈ K.
Corollary 23 applies also in this case.

In the next section we provide some preliminary lemmas, which will be used in order to
prove Theorem 21.

4.1 Some compactness lemmas

For every sequence τ = (τn)n∈N+
contained in [0, T ] and every function u ∈ C([0, T ], H), define

the function Pτu : [0, T ]→ H as

(Pτu)n(t) =

∫ t

τn

un(s) ds , n ∈ N+ .

We will need the following extension of [10, Lemma 3.2].
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Lemma 30. Let E ⊆ C([0, T ], H) be such that the set

A = {u(t) : u ∈ E, t ∈ [0, T ]}

is precompact in H . Then the set

Σ =
{
Pτu : τ ∈ [0, T ]N+ , u ∈ E

}
is precompact in C([0, T ], H). As a consequence, the set

Ξ =
{
Pτu(t) : τ ∈ [0, T ]N+ , u ∈ E, t ∈ [0, T ]

}
is precompact in H .

Proof. Fix ε > 0. Since A is precompact, there exist v1, . . . , vm in H such that

A ⊆
m⋃
ι=1

B(vι, ε) . (25)

Let V = Span(v1, . . . , vm), and denote by Q : H → V the corresponding orthogonal projection.
We first prove that the set

R =
{
Pτ (Qu) : u ∈ E, τ ∈ [0, T ]N+

}
is precompact in C([0, T ], V ).

The setQ(A) is precompact in V and hence bounded; there exists a real constantD such that

|Qu(t)| < D , for all u ∈ E and t ∈ [0, T ] . (26)

Moreover, for every u ∈ E, τ ∈ [0, T ]N+ and t ∈ [0, T ],

|(Pτ (Qu))n(t)| =
∣∣∣∣∫ t

τn

(Qu)n(s) ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

τn

|(Qu)n(s)|ds
∣∣∣∣ , n ∈ N+

and consequently

|Pτ (Qu)(t)|2 =

∞∑
n=1

|(Pτ (Qu))n(t)|2 ≤
∞∑
n=1

∣∣∣∣∫ t

τn

|(Qu)n(s)|ds
∣∣∣∣2 ≤ ∞∑

n=1

(∫ T

0

|(Qu)n(s)|ds
)2

;

by the Hölder Inequality and the use of the Monotone Convergence Theorem, recalling (26),
∞∑
n=1

(∫ T

0

|(Qu)n(s)|ds
)2

≤ T
∞∑
n=1

∫ T

0

|(Qu)n(s)|2 ds

= T

∫ T

0

∞∑
n=1

|(Qu)n(s)|2 ds

= T

∫ T

0

|Qu(s)|2 ds < T 2D2,

and then
|Pτ (Qu)(t)| ≤ TD .

Since V is finite dimensional, the set S = {w(t) : w ∈ R} ⊆ V is precompact. On the other hand,
for every u ∈ E, τ ∈ [0, T ]N+ and every t1, t2 ∈ [0, T ] with t1 < t2 , we have

|Pτ (Qu)(t1)− Pτ (Qu)(t2)| =
∣∣∣∣∫ t2

t1

(Qu)(s) ds

∣∣∣∣ ≤ ∫ t2

t1

|(Qu)(s)|ds ≤ D(t1 − t2) ,

so that R is equi-uniformly continuous as a subset of C([0, T ], V ). By the Ascoli–Arzelà Theo-
rem, the setR is precompact in C([0, T ], V ).
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Consequently, there exist f1, . . . , f` in C([0, T ], V ) such that

R ⊆
⋃̀
ι=1

B(fι, ε) . (27)

Now, for every u ∈ E, τ ∈ [0, T ]N+ and t ∈ [0, T ], by (25),

|Pτu(t)− Pτ (Qu)(t)|2 =

∞∑
n=1

|(Pτu)n(t)− (Pτ (Qu))n(t)|2

≤
∞∑
n=1

∣∣∣∣∫ t

τn

|un(s)− (Qu)n(s)|ds
∣∣∣∣2

≤
∞∑
n=1

T

∫ T

0

|un(s)− (Qu)n(s)|2 ds

= T

∫ T

0

∞∑
n=1

|un(s)− (Qu)n(s)|2 ds

= T

∫ T

0

|u(s)− (Qu)(s)|2 ds ≤ T 2ε2,

and so
|Pτu(t)− Pτ (Qu)(t)| ≤ Tε.

On the other hand, since Pτ (Qu) ∈ R, by (27) there exists ῑ such that

‖Pτ (Qu)− fῑ‖∞ < ε ,

hence

|Pτu(t)− fῑ(t)| ≤ |Pτu(t)− Pτ (Qu)(t)|+ |Pτ (Qu)(t)− fῑ(t)| ≤ εT + ε = ε(T + 1).

We have thus shown that, given ε > 0, there are f1, . . . , f` in C([0, T ], H) such that

Σ ⊆
⋃̀
ι=1

B(fι, (T + 1)ε) ,

hence proving that Σ is precompact.

The fact that Ξ is precompact in H now follows again from the Ascoli–Arzelà Theorem,
recalling that this theorem gives a necessary and sufficient condition for precompactness.

Let us denote by ΠN : H → H the projection

ΠN (x) = (x1, . . . , xN , 0, 0, . . . ) . (28)

Lemma 31. Let A be a compact subset of H . Then, for every ε > 0, there is a M ≥ 1 such that, for
every a = (an)n∈N+

in A,
∞∑

n=M

|an|2 ≤ ε2.

In particular limN→∞(ΠN − Id)x = 0 uniformly for x ∈ A.
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Proof. By contradiction, let there exist an ε > 0 such that, for every M ≥ 1, there is aM =
(aMn )n∈N+

∈ A such that
∑∞
n=M |aMn |2 > ε2. By compactness, the sequence (aM )M∈N+

has a
subsequence, for which we keep the same notation, such that aM → a∗, for some a∗ ∈ A. Let
M∗ be any positive integer. Then, taking M ≥M∗ sufficiently large,

( ∞∑
n=M∗

|a∗n|2
)1/2

≥
( ∞∑
n=M

|a∗n|2
)1/2

≥
( ∞∑
n=M

|aMn |2
)1/2

−
( ∞∑
n=M

|aMn − a∗n|2
)1/2

≥ ε− ‖aM − a∗‖`2 ≥
ε

2
.

We thus get a contradiction with the fact that a∗ ∈ H .

As an immediate consequence we find the following compactness property.

Lemma 32. Let A be a compact subset of H . Then, the set

AP :=
⋃

N∈N+

ΠNA

is precompact in H .

Proof. Let us consider a sequence (xn)n∈N+ contained in AP .
If there exists N0 ∈ N+ and a subsequence (xn`

)` such that xn`
∈ ΠN0A for every `, then the

conclusion is reached since ΠN0
A is compact.

If the previous situation does not arise, then we can find a diverging sequence (N`)` ⊂ N+

and a subsequence (xn`
)` such that xn`

∈ ΠN`
A for every `. So, there is a sequence (yn`

)` ⊆ A
such that xn`

= ΠN`
yn`

. Since A is compact, then, up to a subsequence, we have yn`
→ ȳ ∈ A.

Hence,
|xn`
− ȳ| ≤ |xn`

− yn`
|+ |yn`

− ȳ| ≤ |(ΠN`
− Id)yn`

|+ |yn`
− ȳ| → 0 ,

where Lemma 31 has been applied.

Remark 33. The above statements have been formulated for a Hilbert space H . We will apply them also
treating the previously introduced Hilbert spaces HK and HJ .

4.2 Proof of Theorem 21

We consider, for every N ∈ N+, the auxiliary system

ẍ1 = f1(t, x1, . . . , xN , αN+1(t), αN+2(t), . . . )

...
ẍN = fN (t, x1, . . . , xN , αN+1(t), αN+2(t), . . . )

ẍN+1 = 0

ẍN+2 = 0

...
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We recall the projections ΠN , introduced in (28), and define the function

Π̂N : C([0, T ], H)→ C([0, T ], H) (29)

Π̂Nx(t) = (x1(t), . . . , xN (t), αN+1(t), αN+2(t), . . . ) . (30)

The auxiliary problem can then be written as

(P̂N )

{
ẍ = ΠNf(t, Π̂Nx(t)) ,

x(0) = x(T ) , ẋ(0) = ẋ(T ) .

Notice that
(t, Π̂Nx

N (t)) ∈ E , for every N ∈ N+ and t ∈ [0, T ] . (31)

By Theorem 10, for every N ∈ N+, there is a solution xN (t) of (P̂N ) such that (Wj) and (NWk)
hold for every j ∈ J ∩ [1, N ] and k ∈ K ∩ [1, N ]. We impose

xNn (t) = 0 , for every n > N and t ∈ [0, T ] . (32)

Arguing as in the proof of Proposition 14, cf. (10) and (11), we conclude that xN satisfies

{xNj (t) : t ∈ [0, T ]} ⊆ [−dj , dj ] ,
{xNk (t) : t ∈ [0, T ]} ∩ [−dk, dk] 6= ∅ ,

for every k ∈ K and j ∈ J . Concerning the indices j ∈ J we thus have

xNJ (t) ∈ DJ :=
∏
j∈J

[−dj , dj ] , (33)

for every N ∈ N+ and t ∈ [0, T ].

Now, we repeat the arguments of Proposition 14 with a slight modification. Given the solu-
tion xN of (P̂N ), we can compute

‖x̃NK‖22 ≤
(
T

2π

)2

‖ẋNK‖22 ≤
(
T

2π

)2

C
√
T‖x̃NK‖2 ,

so that ‖x̃NK‖H1 ≤ C1 and ‖x̃NK‖∞ ≤ C0 for some constants C1 and C0.

Recalling the validity of (33), we can find a sequence τNK = (τNk )k∈K ⊂ [0, T ] such that

|xNk (τNk )| ≤ dk , for every k ∈ K . (34)

Then, we can prove that the sequence (xNK )N∈N+
is uniformly bounded. Indeed,

|xNK (t)|2 =
∑
k∈K

|xNk (t)|2 =
∑
k∈K

∣∣∣∣∣xNk (τNk ) +

∫ t

τN
k

ẋNk (s) ds

∣∣∣∣∣
2

≤ 2
∑
k∈K

|xNk (τNk )|2 +

∣∣∣∣∣
∫ t

τN
k

ẋNk (s) ds

∣∣∣∣∣
2


≤ 2
∑
k∈K

d2
k + 2T‖ẋNK‖22 ≤ 2

∑
k∈K

d2
k + 2TC2

1 =: %2 ,

19



Then, choosing B = {(t, x) ∈ E : |xK| ≤ %} and recalling (31) and that fK is completely
continuous in E , we notice that the set A = {fK(t, Π̂Nx

N (t)) : N ∈ N+ , t ∈ [0, T ]} ⊆ fK(B)
is precompact. Then, using Lemma 32, we deduce that the set {ẍNK (t) : N ∈ N+ , t ∈ [0, T ]}
is precompact. By periodicity, there exists a sequence tNK = (tNk )k∈K such that ẋNk (tNk ) = 0 for
every k ∈ K. Writing

ẋNk (t) = ẋNk (tNk ) +

∫ t

tNk

ẍNk (s) ds =

∫ t

tNk

ẍNk (s) ds =
(
PtNK ẍ

N
K

)
(t) ,

we deduce from Lemma 30 that the set {ẋNK (t) : N ∈ N+ , t ∈ [0, T ]} is precompact.

Finally we prove that also the set {xNK (t) : N ∈ N+ , t ∈ [0, T ]} is precompact. Recalling the
sequence τNK = (τNk )k∈K in (34), we can write using the notation of Section 4.1,

xNK (t) = ξNK +
(
PτN
K
ẋNK

)
(t) , where ξNK := (xNk (τNk ))k∈K .

By construction ξNK ∈ DK :=
∏
k∈K[−dk, dk], so that, by Lemma 30, we conclude that both the

addenda are in a compact set. Hence there is a compact set D̂K such that

xNK (t) ∈ D̂K , for every N ∈ N+ and t ∈ [0, T ] . (35)

We can now prove similar properties for the components of xN (t), and their derivatives, with
indices j ∈ J . At this step, the continuity of fJ is sufficient. Indeed, from (33) and (35), the
compactness of {fJ (t, Π̂Nx

N (t)) : N ∈ N+ , t ∈ [0, T ]} follows. Then, arguing as above, we can
prove that both {ẍNJ (t) : N ∈ N+ , t ∈ [0, T ]} and {ẋNJ (t) : N ∈ N+ , t ∈ [0, T ]} are precompact.

Consider now the sequence (uN )N∈N+
of functions uN : [0, T ]→ H ×H defined by

uN (t) = (xN (t), ẋN (t)) .

By the above arguments, the sequence (uN )N∈N+ takes its values in a compact set, and it is equi-
uniformly continuous. By the Ascoli–Arzelà Theorem there exists a subsequence, for which we
keep the same notation, which uniformly converges to some u∗ : [0, T ] → H × H . Writing
u∗(t) = (x∗(t), y∗(t)), we have that (xN , ẋN ) uniformly converges to (x∗, y∗). In particular
x∗(0) = x∗(T ), y∗(0) = y∗(T ). Rewriting the differential equation in (P̂N ) as a planar system,
we have

(Q̂N )

{
ẋ = y,

ẏ = ΠNf(t, Π̂Nx(t)) ,

or equivalently
u̇ = FN (t, u) ,

where FN (t, x, y) = (y,ΠNf(t, Π̂Nx(t))). The corresponding integral formulation is then

u(t) = u(0) +

∫ t

0

FN (s, u(s)) ds . (36)

System (Q̂N ) has a solution uN = (xN , ẋN ) such that uN (0) = uN (T ) for every N ∈ N+. We
want to show that

FN (t, uN (t))→ F (t, u∗(t)) , uniformly in t ∈ [0, T ] , (37)
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where F (t, x, y) = (y, f(t, x)). Fix ε > 0; for N sufficiently large, we have

|FN (t, uN (t))− F (t, u∗(t))| ≤ |yN (t)− y∗(t)|+ |ΠNf(t, Π̂Nx
N (t))− f(t, x∗(t))|

≤ ε+ |ΠNf(t, Π̂Nx
N (t))− f(t, Π̂Nx

N (t))|+ |f(t, Π̂Nx
N (t))− f(t, x∗(t))| .

Since {Π̂Nx
N (t) : N ∈ N+ , t ∈ [0, T ]} is precompact, cf. (33) and (35), then by continuity

{f(t, Π̂Nx
N (t)) : N ∈ N+ , t ∈ [0, T ]} is precompact, too. So, by Lemma 31, for N sufficiently

large,
|ΠNf(t, Π̂Nx

N (t))− f(t, Π̂Nx
N (t))| = |(ΠN − Id)f(t, Π̂Nx

N (t))| ≤ ε .

Moreover,

|Π̂Nx
N (t)−ΠNx

N (t)| = |(0, . . . , 0, αN+1(t), αN+2(t), . . . )| (38)

≤
∞∑
n=N

d2
n → 0 , as N →∞ . (39)

Then, applying Lemma 31,

|Π̂Nx
N (t)− x∗| ≤ |Π̂Nx

N (t)−ΠNx
N (t)|+ |ΠNx

N (t)− xN (t)|+ |xN (t)− x∗(t)| → 0 ,

as N →∞, so that by continuity, for N large enough,

|f(t, Π̂Nx
N (t))− f(t, x∗(t))| ≤ ε .

Summing up, if N is large, then

|FN (t, uN (t))− F (t, u∗(t))| ≤ 3ε , for every t ∈ [0, T ] ,

thus proving (37). Passing to the limit in (36), we get

u∗(t) = u∗(0) +

∫ t

0

F (s, u∗(s)) ds ,

and so x∗(t) is a solution of (P ). The proof is thus completed.

5 Final remarks

In this final section, we briefly outline some possible extensions of the previous results.

1. The boundedness assumption on the function fK(t, x) could be replaced by a nonresonance
condition with respect to the higher part of the spectrum of the differential operator −ẍ with
T -periodic conditions. For instance, denoting by λ2 the first positive eigenvalue (2π/T )2, one
could assume that

−fK(t, x) = γK(t, x)x+ rK(t, x) ,

where γK(t, x) ≤ c < λ2 and rK(t, x) is bounded. Or, more generally, one could assume an
asymmetric behaviour of the type

−fK(t, x) = µK(t, x)x+ − νK(t, x)x− + rK(t, x) ,

where (µK(t, x), νK(t, x)) lie below the first curve of the Fučík spectrum (here, as usual, x+ =
max{x, 0} and x− = max{−x, 0}).
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2. One could deal with nonlinearities of the type f(t, x, ẋ), depending also on the derivative
of x, assuming some type of Nagumo growth condition (see [5]). Such a situation has already
been studied in the infinite-dimensional setting, e.g., in [21].

3. In this paper we defined the lower and upper solutions as C2-functions. However, this
regularity could be weakened, and different definitions could be adopted. We do not enter into
the details, for briefness, and we refer to the book [5] for further possible developments.

4. The results of this paper hold the same for the Neumann problem{
ẍ = f(t, x) ,

ẋ(0) = 0 = ẋ(T ) ,

with almost identical proofs. Concerning the Dirichlet problem{
ẍ = f(t, x) ,

x(0) = 0 = x(T ) ,

some modifications are needed in the non-well-ordered case. Both problems have their par-
tial differential equations analogues. We will provide in [9] an extension of Theorem 10 in a
finite-dimensional abstract setting including the case of elliptic and parabolic type systems with
different types of boundary conditions, thus generalizing the results in [6, 7, 11]. However, an
infinite-dimensional extension in the PDE case remains an open problem.
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