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1 Introduction and main result
We are interested in finding periodic solutions of a nonautonomous Hamiltonian system in ℝ2N . Writing
x = (x1, . . . , xN) and y = (y1, . . . , yN), we consider the system

{{{
{{{
{

x�k = fk(t, yk) + ∂U
∂yk

(t, x, y; ε),

−y�k = gk(t, xk) + ∂U
∂xk

(t, x, y; ε),
k = 1, . . . , N. (1.1)

All functions fk , gk : ℝ × ℝ → ℝ are assumed to be continuous, T-periodic in their first variable and locally
Lipschitz continuous in their second variable. The function U : ℝ × ℝ2N × ℝ → ℝ is continuous, T-periodic
in t, continuously differentiable in (x, y) ∈ ℝ2N , and

U(t, x, y; 0) = 0 for every (t, x, y) ∈ [0, T] × ℝ2N .

In addition, for every k = 1, . . . , N, the following four assumptions on the functions fk, gk are made.

Assumption (A1). There exists a constant C > 0 such that

|fk(t, η)| ≤ C(1 + |η|), |gk(t, ξ)| ≤ C(1 + |ξ|)

for every t ∈ [0, T] and η, ξ ∈ ℝ.
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2 | A. Fonda and R. Toader, Subharmonic solutions of Hamiltonian systems

Assumption (A2). The functions fk(t, η), gk(t, ξ) are bounded from above for negative ξ , η, bounded from
below for positive ξ , η, and

T

∫
0

lim sup
η→−∞ fk(t, η) dt < 0 <

T

∫
0

lim inf
η→+∞ fk(t, η) dt,

T

∫
0

lim sup
ξ→−∞ gk(t, ξ) dt < 0 <

T

∫
0

lim inf
ξ→+∞ gk(t, ξ) dt.

Assumption (A3). For every σ > 0 there are Rk > 0 and a planar sector

Θk = {ρ(cos θ, sin θ) : ρ ≥ 0, θ̂k ≤ θ ≤ θ̌k},

with θ̂k < θ̌k ≤ θ̂k + 2π, for which

sup{ gk(t, ξ)ξ + fk(t, η)η
ξ2 + η2

: (ξ, η) ∈ Θk , ξ2 + η2 ≥ R2
k} ≤ σ(θ̌k − θ̂k).

Assumption (A4). Either fk or gk is strictly increasing in its second variable.
We now need to recall the notion of rotation number around the origin for a planar curve. For τ1 < τ2, let

ζ : [τ1, τ2] → ℝ2 be continuously differentiable and such that ζ(t) = (ξ(t), η(t)) ̸= (0, 0) for every t ∈ [τ1, τ2].
The rotation number of ζ around the origin is defined as

Rot(ζ; [τ1, τ2]) =
1
2π

τ2

∫
τ1

ξ �(t)η(t) − ξ(t)η�(t)
ξ(t)2 + η(t)2

dt.

In other terms, writing ζ(t) = ρ(t)(cos θ(t), sin θ(t)), one has

Rot(ζ; [τ1, τ2]) = −
θ(τ2) − θ(τ1)

2π .

We aremainly interested in proving the existence andmultiplicity of subharmonic solutions, i.e., periodic
solutions of period ℓT for some positive integer ℓ. Writing zk = (xk , yk) for k = 1, . . . , N and z = (z1, . . . , zN),
we will find solutions z(t) whose planar components zk(t) rotate around the origin a prescribed number of
times in their period time. The following is our main result.

Theorem 1.1. Let assumptions (A1)–(A4) hold, let R̄ be a positive real number and let M1, . . . ,MN be some
positive integers. Then there is a positive integer ℓwith the following property: for every integer ℓ ≥ ℓ, there exists
εℓ > 0 such that if |ε| ≤ εℓ, system (1.1) has at least N + 1 distinct ℓT-periodic solutions z(t) = (z1(t), . . . , zN(t)),
with zk(t) = (xk(t), yk(t)), which satisfy

min{|zk(t)| : t ∈ [0, ℓT]} ≥ R̄ and Rot(zk; [0, ℓT]) = Mk (1.2)

for every k = 1, . . . , N.

Therefore, roughly speaking,when ε is small enough, there are large amplitude subharmonic solutionswhose
planar components perform a prescribed number of rotations around the origin in its period time ℓT. Hence,
if at least one of these components makes exactly one rotation, the solution z(t) necessarily has minimal
period equal to ℓT. As a consequence, if N ≥ 2, there will be a myriad of periodic solutions having minimal
period ℓT: when one of the components performs exactly one rotation, the others rotate an arbitrary number
of times. We thus have the following direct consequence of Theorem 1.1.

Corollary 1.2. Let N ≥ 2 and fix an arbitrary positive integer K. Then, under the assumptions of Theorem 1.1,
there is a positive integer ℓ with the following property: for every integer ℓ ≥ ℓ, there exists εℓ > 0 such that if
|ε| ≤ εℓ, system (1.1) has at least K periodic solutions with minimal period ℓT.
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Let us clarify what wemean by distinct subharmonic solutions. With the nonlinearities being T-periodic in t,
once an ℓT-periodic solution z(t) has been found, many others appear by just making a shift in time, thus
giving rise to the periodicity class

z(t), z(t + T), z(t + 2T), . . . , z(t + (ℓ − 1)T).

We say that two ℓT-periodic solutions are distinct if they are not related to each other in this way, i.e., if they
do not belong to the same periodicity class.

Some remarks on our hypotheses are now in order. Assumptions (A1)–(A4) involve only the functions
fk, gk, and are meant to govern the behavior of the solutions of (1.1) when ε = 0. Assumption (A1) is the
usual linear growth condition. In assumption (A2) we have the well-known Landesman–Lazer conditions:
they will force the large-amplitude solutions of the uncoupled planar systems to rotate around the origin.
This property, which might have an independent interest, has already been exploited in [3, 4, 9, 23], and
is stated in Lemma 2.5 below. Assumption (A3), first proposed in [5], is needed in order to have a control
on the angular velocity of the large-amplitude solutions, while crossing the planar sector Θk: it implies that
the large-amplitude solutions will not be able to complete an entire rotation in a given period time [0, ℓT].
Finally, assumption (A4) will be used, after a change of variables, to forbid counterclockwise rotations in the
phase planes.

A particular case of (1.1) is the system

{{{{{{{
{{{{{{{
{

(ϕ1(x�1))� + g1(t, x1) = ∂V
∂x1

(t, x1, . . . , xN ; ε),

...

(ϕN(x�N))� + gN(t, xN) = ∂V
∂xN

(t, x1, . . . , xN ; ε).

(1.3)

Here, the functions ϕk : Ik → ℝ are strictly increasing diffeomorphisms defined on some open intervals Ik,
containing the origin, with ϕk(0) = 0; the functions gk : ℝ × ℝ → ℝ are continuous, T-periodic in their first
variable and locally Lipschitz continuous in their second variable; the function V : ℝ × ℝN × ℝ → ℝ is con-
tinuous, T-periodic in t, continuously differentiable in x1, . . . , xN , and

V(t, x1, . . . , xN ; 0) = 0 for every (t, x1, . . . , xN) ∈ [0, T] × ℝN .

System (1.3) can be viewed as a mathematical model of N coupled oscillators, with small coupling forces.
It can be translated into the form of system (1.1) by setting fk(t, y) = ϕ−1k (y). Concerning our functions ϕk,
typically we have in mind either the case ϕk(s) = s, leading to classical second-order differential equations,
or the case ϕk(s) = s/√1 − s2, when dealing with a relativistic type of operator. When N = 1, the study of the
case when the function ϕ is defined on the whole real line was started by García-Huidobro, Manásevich and
Zanolin in [15], while, in recent years, following Bereanu andMawhin [1], a lot of effort has also been devoted
to the singular case. See the review paper [20] and the references therein.

Let us state a corollary of our main result in the case when ϕk(s) = s.

Corollary 1.3. Assume ϕk(s) = s, and let the functions gk satisfy the linear growth assumption (A1) and the
Landesman–Lazer condition (A2). If, moreover,

lim
ξ→+∞ gk(t, ξ)

ξ
= 0 uniformly in t ∈ [0, T], (1.4)

then the same conclusion of Theorem 1.1 holds for system (1.3), with zk(t) = (xk(t), x�k(t)).
Notice that assumption (1.4) could be replaced by the analogous one at −∞.

On the other hand, in the case when ϕk(s) = s/√1 − s2 we have the following result.

Corollary 1.4. Assume ϕk(s) = s/√1 − s2, and let the functions gk satisfy the linear growth assumption (A1)
and the Landesman–Lazer condition (A2). Then the same conclusion of Theorem 1.1 holds for system (1.3),
with zk(t) = (xk(t), ϕk(x�k(t))).
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We thus generalize to higher-order systems some of the results obtained in [3, 4, 8, 9, 21, 23] for planar
systems and, in particular, for scalar second-order differential equations. We will use phase plane analysis
methods, combinedwith a generalized version of the Poincaré–Birkhoff Theorem for Hamiltonian timemaps
recently proved by the first author and Ureña in [14]. This last theorem has already been used in [2, 5, 11,
12, 14] to prove the multiplicity of periodic solutions for different kinds of systems.

Let us remark that, when N ≥ 2, there are few results in the literature concerning the existence of sub-
harmonic solutions for systems in a situation like the one described above. Among those we know, let us
mention [7, 25–27], where variational methods have been used. When compared to these results, we can
see that our theorem gives more information on the behavior of the solutions, even though it applies only
to systems involving small coupling terms. However, let us emphasize that we are not dealing with a stan-
dard perturbation problem: the periodic solutions we are looking for do not bifurcate from some particular
solutions of the uncoupled system corresponding to ε = 0.

The paper is organized as follows: In Section 2,weprovide the proof of Theorem1.1,which is divided into
several steps. First, in Section 2.1, we prove the existence of a T-periodic solution for each of theN uncoupled
planar systems corresponding to ε = 0. Then, in Section 2.2, we use this solution to perform a change of
variables, which leads to some equivalent planar systems, each of which has the constant solution (0, 0). In
Section 2.3, we need a delicate analysis of the rotating behavior of the solutions in the phase plane. Finally,
in Section 2.4, we prove our main result by the use of the above mentioned generalized Poincaré–Birkhoff
Theorem. In Section 3, besides providing the proofs of Corollaries 1.3 and 1.4, we argue on some variants of
our main result, which can be obtained by the same methods. Different situations are illustrated, including
Lotka–Volterra systems and systems with singularities.

2 Proof of Theorem 1.1
The proof will be divided into several steps. In order to fix the ideas, we assume in (A4) that

fk(t, ⋅ ) is strictly increasing for every t ∈ ℝ.

First of all, we recall that the Landesman–Lazer conditions in assumption (A2) can be written in a dif-
ferent form. Following, e.g., [13, Lemma 1], we can find two constants d1 > 0, δ > 0 and four L1-functions
φ±k , ψ±k : [0, T] → ℝ, such that the following conditions hold:

[η ≤ −d1 â⇒ fk(t, η) ≤ φ−k (t)] and
T

∫
0

φ−k (t)dt ≤ −δ,

[η ≥ d1 â⇒ fk(t, η) ≥ φ+k (t)] and
T

∫
0

φ+k (t)dt ≥ δ,
[ξ ≤ −d1 â⇒ gk(t, ξ) ≤ ψ−k (t)] and

T

∫
0

ψ−k (t)dt ≤ −δ,

[ξ ≥ d1 â⇒ gk(t, ξ) ≥ ψ+k (t)] and
T

∫
0

ψ+k (t)dt ≥ δ.

(2.1)

Next, we will find a T-periodic solution of (1.1) with ε = 0, which will be used in a change of variables,
in order to have the origin as a constant solution. This will enable us to compute the rotation number on
each planar subsystem, so to finally apply a generalized version of the Poincaré–Birkhoff Theorem recently
obtained in [14].
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2.1 Existence of a T -periodic solution when ε = 0
We consider system (1.1) with ε = 0. We thus have N uncoupled subsystems

x�k = fk(t, yk), −y�k = gk(t, xk), k = 1, . . . , N, (2.2)

and we will study each of them separately.
We first prove that system (2.2) has a T-periodic solution. For simplicity in the notation, we write the

subsystem corresponding to a given k ∈ {1, . . . , N} as

x� = fk(t, y), −y� = gk(t, x). (2.3)

Since fk(t, ⋅ ) is strictly increasing, it is easy to see that the Landesman–Lazer condition in (A2) implies the
existence of a constant η ∈ ℝ for which

T

∫
0

fk(t, η) dt = 0.

The change of variables

u(t) = x(t) −
t

∫
0

fk(τ, η) dτ, v(t) = y(t) − η

leads to the system
u� = ̃fk(t, v), −v� = g̃k(t, u),

where

̃fk(t, v) = fk(t, v + η) − fk(t, η), g̃k(t, u) = gk(t, u +
t

∫
0

fk(τ, η) dτ).

We notice that ̃fk(t, 0) = 0 for every t ∈ [0, T].

Proposition 2.1. The assumptions (A1)–(A4) hold for the functions ̃fk and g̃k as well.

Proof. Conditions (A1), (A2) and (A4) are readily verified. Concerning condition (A3), let us fix σ > 0. Then
there are Rk > 0 and a planar sector

Θk = {ρ(cos θ, sin θ) : ρ ≥ 0, θ̂k ≤ θ ≤ θ̌k},

with θ̂k < θ̌k ≤ θ̂k + 2π, for which

gk(t, ξ)ξ + fk(t, η)η ≤
1
2σ(θ̌k − θ̂k)(ξ

2 + η2)

whenever (ξ, η) ∈ Θk \ B((0, 0),Rk). Let us choose θ̂�k, θ̌�k such that
θ̂k < θ̂�k < θ̌�k < θ̌k , θ̌�k − θ̂�k ≥ 3

4 (θ̌k − θ̂k),

and consider the planar sector

Θ�
k = {ρ(cos θ, sin θ) : ρ ≥ 0, θ̂�k ≤ θ ≤ θ̌�k}.

Taking R�
k ≥ Rk large enough, if (u, v) ∈ Θ�

k and u
2 + v2 ≥ R�

k
2, then

(u +
t

∫
0

fk(τ, η̄) dτ, v + η̄) ∈ Θk \ B((0, 0),Rk) for every t ∈ [0, T].

Then, using assumptions (A1) and (A3), we can find a R��
k ≥ R�

k such that if (u, v) ∈ Θ
�
k \ B((0, 0),R

��
k ), then

g̃k(t, u)u + ̃fk(t, v)v ≤ σ(θ̌�k − θ̂�k)(u2 + v2),
thus ending the proof.
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Hence, for the sake of proving the existence of a T-periodic solution to system (2.2) we may assume without
loss of generality that fk( ⋅ , 0) is identically equal to zero. Then, by the monotonicity of fk(t, ⋅ ),

fk(t, η) > 0 for η > 0 and fk(t, η) < 0 for η < 0. (2.4)

We will now use the following result due to Mawhin [18, 19].

Theorem 2.2 (Mawhin, 1969). LetF : [0, T] × Rm → Rm be a Carathéodory vector field, and assume that there
exists an open bounded set Ω ⊆ ℝm such that, for every λ ∈ ]0, 1], all possible solutions of the problems

{
z� = λF(t, z),

z(0) = z(T)

satisfy
z(t) ∈ Ω for every t ∈ [0, T]. (2.5)

If the averaged map F♯ : ℝm → ℝm, defined as

F♯(ζ) = 1
T

T

∫
0

F(t, ζ) dt,

has no zeros on ∂Ω and the Brouwer degree d(F♯, Ω) is different from zero, then the problem

{
z� = F(t, z),

z(0) = z(T)

has a solution satisfying (2.5).

We thus need to find an a priori bound for the T-periodic solutions of the system

x� = λfk(t, y), −y� = λgk(t, x), (2.6)

with λ ∈ ]0, 1]. Integrating in (2.6), we have

T

∫
0

fk(t, y(t)) dt = 0 =
T

∫
0

gk(t, x(t)) dt.

Using assumption (A2), we see that the solutions have to cross both the horizontal and the vertical strips
of width 2d1 around the coordinate axes, where d1 > 0 is the constant introduced in conditions (2.1): there
exist t1, t2 ∈ [0, T] such that |x(t1)| < d1 and |y(t2)| < d1.

Let us prove that there exists r > 0 such that, for every T-periodic solution of (2.6),

min{x(t)2 + y(t)2 : t ∈ [0, T]} < r2. (2.7)

By taking r > √2d1, if (2.7) were not true, the fact that |x(t1)| < d1 and |y(t2)| < d1, together with (2.4) would
imply that the solution has to rotate at least once around the origin as t varies in [0, T]. Passing to polar
coordinates

x(t) = ρ(t) cos θ(t), y(t) = ρ(t) sin θ(t),

we have
−θ�(t) = λgk(t, x(t))x(t) + λfk(t, y(t))y(t)

x(t)2 + y(t)2
.

Hence, by taking σ ∈ ]0, 1T [, assumption (A3) tells us that if r is large enough and ̃t1 < ̃t2 are such that
θ( ̃t1) = θ̌k and θ( ̃t2) = θ̂k, with θ(t) ∈ ]θ̂k , θ̌k[ for every t ∈ ] ̃t1, ̃t2[, then ̃t2 − ̃t1 > T, which is a contradiction.
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Using assumption (A1), as long as (x(t), y(t)) ̸= (0, 0), we have

|ρ�(t)| = !!!!!!
λfk(t, y(t))x(t) + λgk(t, x(t))y(t)

√x(t)2 + y(t)2
!!!!!!

≤ C (1 + |y(t)|)|x(t)| + (1 + |x(t)|)|y(t)|
√x(t)2 + y(t)2

≤ 2C(1 + ρ(t)).

By the use of Gronwall’s lemma, we can then find a constant R > r such that ρ(t) < R for every t ∈ [0, T]. In
particular, setting Ω = ] − R, R[ × ] − R, R[, we have (x(t), y(t)) ∈ Ω for every t ∈ [0, T]. The a priori bound is
thus established.

Let us consider the averaged functions

f ♯k (y) = 1
T

T

∫
0

fk(t, y) dt and g♯k(x) = 1
T

T

∫
0

gk(t, x) dt,

and define F
♯
k : ℝ

2 → ℝ2 as F♯
k(x, y) = (f ♯k (y), g♯k(x)). By enlarging R if necessary, in order to have R > d1,

conditions (2.1) allow to apply the Poincaré–Miranda Theorem (cf. [6]), andwe have that the Brouwer degree
d(F♯

k , Ω) is different from0. ThenTheorem2.2 applies, andwe conclude that there exists a T-periodic solution
of (2.3) for every fixed k ∈ {1, . . . , N}.

We have thus proved that system (2.2) has a T-periodic solution.

2.2 A change of variables

Let (x(t), y(t)) be a T-periodic solution of system (2.2), with

x(t) = (x̄(t), . . . , x̄N(t)), y(t) = (ȳ(t), . . . , ȳN(t)),

whose existence has been proved in the previous section. Going back to system (1.1), we make the change of
variables

u(t) = x(t) − x(t), v(t) = y(t) − y(t),

thus obtaining a new system

{{{{
{{{{
{

u�k = f̂k(t, vk) + ∂Û
∂vk

(t, u, v; ε),

−v�k = ĝk(t, uk) + ∂Û
∂uk

(t, u, v; ε),
k = 1, . . . , N, (2.8)

where
f̂k(t, v) = fk(t, v + yk(t)) − fk(t, yk(t)),

ĝk(t, u) = gk(t, u + xk(t)) − gk(t, xk(t)),

and
Û(t, u, v; ε) = U(t, u + x(t), v + y(t); ε).

All functions f̂k , ĝk : ℝ × ℝ → ℝ are continuous, T-periodic in their first variable and locally Lipschitz contin-
uous in their second variable. The function Û : ℝ × ℝ2N × ℝ → ℝ is continuous, T-periodic in t, continuously
differentiable in (u, v) ∈ ℝ2N , and

Û(t, u, v; 0) = 0 for every (t, u, v) ∈ [0, T] × ℝ2N .

We write wk = (uk , vk), for k = 1, . . . , N, andw = (w1, . . . , wN). Notice that

f̂k(t, 0) = 0 and ĝk(t, 0) = 0 for every t ∈ [0, T].
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Proposition 2.3. Assumptions (A1)–(A4) hold for the functions f̂k and ĝk as well.

Proof. The linear growth condition (A1) follows immediately from the boundedness of x̄(t), ȳ(t) and the con-
tinuity of fk, gk. Condition (A2) is readily verified after noticing that

T

∫
0

fk(t, ȳk(t)) dt =
T

∫
0

x̄�k(t) dt = 0

and
T

∫
0

gk(t, x̄k(t)) dt = −
T

∫
0

ȳ�k(t) dt = 0.

The proof of condition (A3) is practically the same as in Proposition 2.1. Finally, if fk(t, ⋅ ) is strictly increasing,
then also f̂k(t, ⋅ ) is such. Hence, condition (A4) holds as well.

Let D > 0 be such that

x̄2k(t) + ȳ
2
k(t) ≤ D

2 for every t ∈ [0, T] and k = 1, . . . , N.

Proposition 2.4. For the sake of proving Theorem 1.1, we may assume without loss of generality that

fk(t, 0) = 0 and gk(t, 0) = 0 for every t ∈ [0, T]. (2.9)

Proof. Assume that Theorem 1.1 holds for the new system (2.8). Taking R̂ > R̄ + D, we will find N + 1 distinct
ℓT-periodic solutions of the new system (2.8) satisfying

min{|wk(t)| : t ∈ [0, ℓT]} ≥ R̂ and Rot(wk; [0, ℓT]) = Mk

for every k = 1, . . . , N. Then, by the Rouché property, the opposite change of variables

x(t) = u(t) + x(t), y(t) = v(t) + y(t)

gives us N + 1 distinct periodic solutions of the original system (1.1), satisfying both conditions in (1.2).

Notice that (2.9), together with the fact that fk(t, ⋅ ) is strictly increasing, yields that

fk(t, η) > 0 for η > 0 and fk(t, η) < 0 for η < 0. (2.10)

In the following,wewill assumewithout any furthermention that (2.9) and (2.10) hold for every k = 1, . . . , N.

2.3 The rotational lemma

The following lemma tells us that the Landesman–Lazer conditions force all components zk(t) = (xk(t), yk(t))
of the solutions to rotate around the origin, provided that they start sufficiently far away from the origin itself.

Lemma 2.5. Let M ≥ 1 be an integer and R1 > 0 a real number. If assumption (A2) holds, then there are an
R2 > R1 andan increasing function τ : [R2, +∞[ → ]0, +∞[, satisfying the following property: for every R ≥ R2,
if z(t) = (z1(t), . . . , zN(t)), with zk(t) = (xk(t), yk(t)), is a solution of (2.2) such that, for some index k and some
t0 ∈ ℝ, one has that |zk(t0)| = R, then there is a t1 ∈ ]t0, t0 + τ(R)] such that zk is defined on [t0, t1],

|zk(t)| > R1 for every t ∈ [t0, t1], Rot(zk; [t0, t1]) > M.

Proof. It will be sufficient to analyze the behavior of each component zk(t) = (xk(t), yk(t)) of the solu-
tion z(t). Hence, we fix k ∈ {1, . . . , N} and, to simplify the notation, we consider system (2.3) and denote by
z(t) = (x(t), y(t)) its solutions. Set

Dk := max{‖ψ+k ‖L1 , ‖ψ−k ‖L1 , ‖φ+k ‖L1 , ‖φ−k ‖L1},
where ψ±k and φ±k are the functions introduced in condition (2.1). The key information for the argument of
the proof is contained in the following two propositions.

Authenticated | a.fonda@units.it author's copy
Download Date | 8/21/17 2:44 PM



A. Fonda and R. Toader, Subharmonic solutions of Hamiltonian systems | 9

Proposition 2.6 (Eastern region of the plane). For any fixed α < β and γ ≥ d1, by setting

γ∗ = γ + (
β + Dk − α

δ
+ 1)T""""fk|[0,T]×[α,β+Dk]""""∞, (2.11)

if z(t0) ∈ ]γ∗, +∞[ × ]α, β[, then there is a t1 > t0 with the following three properties:
(i) y(t1) = α;
(ii) for every t ∈ [t0, t1[, one has α < y(t) < β + Dk and

γ < x(t) ≤ x(t0) + (t1 − t0)""""fk|[0,T]×[α,β+Dk]""""∞;

(iii) t1 − t0 ≤ ( β+Dk−αδ + 1)T.

Proof. We assume that z(t0) ∈ ]γ∗, +∞[ × ]α, β[, and we define t1 > t0 as the maximal time for which
z(t) ∈ ]γ, +∞[ × ]α, +∞[ for every t ∈ ]t0, t1[. So,

y(t) = y(t0) −
t

∫
t0

gk(t, x(t)) dt

≤ y(t0) − ⌊
t − t0
T ⌋

T

∫
0

ψ+k (t) dt + t

∫

t0+⌊ t−t0T ⌋T ψ+k (t) dt
≤ y(t0) − δ⌊

t − t0
T ⌋ + ‖ψ+k ‖L1 .

(Here and below, we denote by ⌊α⌋ the integer part of a real number α, that is, the integer n(α) such that
n(α) ≤ α < n(α) + 1.) In particular, α < y(t) < β + ‖ψ+k ‖L1 for every t ∈ [t0, t1[, and

⌊
t − t0
T ⌋ ≤

β + ‖ψ+k ‖L1 − α
δ

,

whence, since
t − t0
T

≤ ⌊
t − t0
T ⌋ + 1,

we have that (iii) holds. Moreover, since

|x�(t)| ≤ |fk(t, y(t))| ≤ """"fk|[0,T]×[α,β+‖ψ+k ‖L1 ]""""∞
for every t ∈ [t0, t1[, we see that there is no blow-up in finite time, and

|x(t) − x(t0)| ≤
t

∫
t0

|x�(t)| dt ≤ (t − t0)""""fk|[0,T]×[α,β+‖ψ+k ‖L1 ]""""∞.
So, (ii) follows by the choice of γ∗, and hence necessarily y(t1) = α.
Proposition 2.7 (North-eastern region of the plane). For any fixed μ ≥ d1 and ν ≥ d1, by setting

ν∗ = ν + Dk , (2.12)

if z(t0) ∈ ]ν∗, +∞] × ]μ, +∞[, then there is a t1 > t0 with the following three properties:
(i) y(t1) = μ;
(ii) for every t ∈ [t0, t1[, one has μ < y(t) < y(t0) + Dk and

ν < x(t) ≤ x(t0) + (t1 − t0)""""fk|[0,T]×[μ,y(t0)+Dk]""""∞;

(iii) t1 − t0 ≤ ( y(t0)+Dk−μδ + 1)T.
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Proof. We assume that z(t0) ∈ ]ν∗, +∞[ × ]μ, +∞[, and we define t1 > t0 as the maximal time for which
z(t) ∈ ]ν, +∞[ × ]μ, +∞[ for every t ∈ ]t0, t1[. As in the proof of Proposition 2.6, we have

y(t) ≤ y(t0) − δ⌊
t − t0
T ⌋ + ‖ψ+k ‖L1

for every t ∈ [t0, t1[. In particular, μ < y(t) < y(t0) + ‖ψ+k ‖L1 and
⌊
t − t0
T ⌋ ≤

y(t0) + ‖ψ+k ‖L1 − μ
δ

,

whence (iii) holds. On the other hand,

x(t) = x(t0) +
t

∫
t0

fk(t, y(t)) dt

≥ x(t0) + ⌊
t − t0
T ⌋

T

∫
0

φ+k (t) dt + t

∫

t0+⌊ t−t0T ⌋T φ+k (t) dt
≥ x(t0) − ‖φ+k ‖L1

for every t ∈ [t0, t1[. Moreover, since

|x�(t)| ≤ |fk(t, y(t))| ≤ """"fk|[0,T]×[μ,y(t0)+‖ψ+k ‖L1 ]""""∞
for every t ∈ [t0, t1[, we see that there is no blow-up in finite time, and

|x(t) − x(t0)| ≤ (t1 − t0)""""fk|[0,T]×[μ,y(t0)+‖ψ+k ‖L1 ]""""∞.
So, (ii) follows by the choice of ν∗, and hence necessarily y(t1) = μ.
By the symmetry of our assumption (A2), we can write the analogous of Proposition 2.6 in the northern,
western and southern regions, and the analogous of Proposition 2.7 in the north-western, south-western and
south-eastern regions. For briefness, we leave this easy but tedious charge to the patient reader.

Let us now proceed with the proof of Lemma 2.5. Let M be a positive integer and let R1 > 0 be fixed:
we can assume, without loss of generality, that R1 ≥ 2d1. We will define two polygonal curves Γk1 and Γ

k
2,

represented in Figure 1,whichwill guide the components of the solutions: they are spiral-like curves, rotating
counterclockwise around the origin infinitelymany times as their distance from the origin goes to infinity. (For
a similar approach, see also [10].)

We start by fixing three constants β1 ≥ R1, α1 = −β1 and γ1 ≥ R1.

First part of Γk1. This is simply the segment {γ1} × [−β1, β1].

First part of Γk2. This is made up of three joined segments, which will now be defined. Using Proposition 2.6
(eastern region), with α = α1, β = β1 and γ = γ1, we find a γ∗1 > γ1, defined as in (2.11), i.e.,

γ∗1 = γ1 + (
2β1 + ‖ψ+k ‖L1

δ
+ 1)T""""fk|[0,T]×[−β1 ,β1+‖ψ+k ‖L1 ]""""∞.

The first of the three segments is {γ∗1} × [−β1, β1]. We now use Proposition 2.7 (north-eastern region), with
μ = β1 and ν = γ∗1, and we find a ν∗1 > γ∗1, defined as in (2.12), i.e.,

ν∗1 = γ∗1 + ‖φ+k ‖L1 .
The second of the three segments is [γ∗1 , ν∗1] × {β1}. We now use the northern version of Proposition 2.6, with
α = −ν∗1, β = ν∗1 and γ = β1, and we find a γ∗2 > β1, defined similarly to (2.11), precisely

γ∗2 = β1 + (
2ν∗1 + ‖φ+k ‖L1

δ
+ 1)T""""gk|[0,T]×[−ν∗1−‖φ+k ‖L1 ,ν∗1 ]""""∞.

The third of the three segments is then {ν∗1} × [β1, γ∗2].
We now iterate such a procedure in the other regions, as briefly explained below.
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ν∗3 γ∗3 −ν∗1 γ1 γ∗1 ν∗1 −ν∗3 γ∗5 x
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−β1

ν∗2
y

Figure 1. The curves Γk1 and Γ
k
2.

Second part of Γk1. This is the segment [−ν∗1 , γ1] × {β1}.

Second part of Γk2. As before, this is made up of three segments. The first one is [−ν∗1 , ν∗1] × {γ∗2}. We now
use the north-western version of Proposition 2.7, with μ = −ν∗1 and ν = γ∗2, and we find a ν∗2 > γ∗2, similarly
to (2.12), precisely

ν∗2 = γ∗2 + ‖ψ+k ‖L1 .
The second of the three segments is {−ν∗1} × [γ∗2 , ν∗2]. We then use the western version of Proposition 2.6, with
α = −ν∗2, β = ν∗2 and γ = −ν∗1, and we find a γ∗3 > ν∗1 (we prefer writing γ∗3 instead of −γ∗3 in order to deal with
a positive constant, even if x(t) is negative in this region), similarly to (2.11), precisely

γ∗3 = ν∗1 + (
2ν∗2 + ‖ψ−k ‖L1

δ
+ 1)T""""fk|[0,T]×[−ν∗2−‖ψ−k ‖L1 ,ν∗2 ]""""∞.

The third of the three segments is then [−γ∗3 , −ν∗1] × {ν∗2}.
Third part of Γk1. This is the segment {−ν∗1} × [−ν∗2 , β1].
Third part of Γk2. This time, the first segment is {−γ∗3} × [−ν∗2 , ν∗2]. Using the south-western version of Propo-
sition 2.7, with μ = −ν∗2 and ν = −γ∗3, we find a ν∗3 > γ∗3 (again we prefer dealing with positive constants),
precisely

ν∗3 = γ∗3 + ‖φ−k ‖L1 .
The second segment is [−ν∗3 , −γ∗3] × {−ν∗2}. Using the southern version of Proposition 2.6,with α = −ν∗3, β = ν∗3
and γ = −ν∗2, and we find a γ∗4 > ν∗2 (again a positive constant), precisely

γ∗4 = ν∗2 + (
2ν∗3 + ‖φ−k ‖L1

δ
+ 1)T""""gk|[0,T]×[−ν∗3 ,ν∗3+‖φ−k ‖L1 ]""""∞.

The third segment is then {ν∗3} × [−γ∗4 , −ν∗2].
Fourth part of Γk1. This is simply the segment [−ν∗1 , ν∗3] × {−ν∗2}.
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Fourth part of Γk2. As usual, this is made up of three segments. The first one is [−ν∗3 , ν∗3] × {−γ∗4}. We now use
the south-eastern version of Proposition 2.7, with μ = ν∗3 and ν = −γ∗4, and we find a ν∗4 > γ∗4 (again positive),
precisely

ν∗4 = γ∗4 + ‖ψ−k ‖L1 .
The second segment is {ν∗3} × [−ν∗4 , −γ∗4]. We now use the eastern version of Proposition 2.6, with α = −ν∗4,
β = ν∗4 and γ = ν∗3, and we find a γ∗5 > ν∗3, precisely

γ∗5 = ν∗3 + (
2ν∗4 + ‖ψ+k ‖L1

δ
+ 1)T""""fk|[0,T]×[−ν∗4 ,ν∗4+‖ψ+k ‖L1 ]""""∞.

The third segment is then [ν∗3 , γ∗5] × {−ν∗4}.
Fifth part of Γk1. This is simply the segment {ν∗3} × [−ν∗2 , ν∗4].
Fifth part of Γk2. This is constructed exactly as the first part, starting with the segment {γ∗5} × [−ν∗4 , ν∗4], and
then continuing analogously.

After having completed the first lap, we can now proceed recursively, until the curves Γk1 and Γ
k
2 have

completed M + 1 rotations around the origin.
Fix R2 > 0 so that the curves Γk1 and Γ

k
2 are contained in the ball centered at the origin, with radius R2.

Choose R ≥ R2, and let z(t) = (x(t), y(t)) be a solution of (2.3) such that, for some t0 ∈ ℝ, one has that
|z(t0)| = R. We will analyze the behavior of z(t) showing that its orbit is controlled, and in some sense
guided, by the curves Γk1 and Γ

k
2. Indeed, the curve Γ

k
1 keeps z(t) from getting too close to the origin, while Γk2

provides some reference lines whichmust be crossed by the orbit of z(t), forcing it to rotate around the origin.
Moreover, the estimates given in Propositions 2.6 and 2.7, and their analogues in the other regions of the
plane, show that the amplitudes of the orbit and the times needed by the orbit to cross the different regions
of the plane are all controlled by some constants which can be chosen to depend only on R.

Moreprecisely, let z(t)be a solutionwith |z(t0)| = R ≥ R2. It is possible to determine the regionwhere z(t0)
is located with respect to the last lap of Γk2. Assume, for instance, that it is in the “northern region”, by which
we mean that α ≤ x(t0) ≤ β and y(t0) ≥ γ, where α = −β and γ are as shown in Figure 2.

Then, by the analogue of Proposition 2.6, there is a first time t1 ≥ t0 at which the orbit reaches a point
z(t1) = (x(t1), y(t1)), with x(t1) = β, and

α − Dk ≤ x(t) ≤ β, μ ≤ y(t) ≤ κ1(R) for every t ∈ [t0, t1],

where μ > 0 is determined by the inner curve Γk1, and

κ1(R) = R + (
2R + Dk

δ
+ 1)T""""gk|[0,T]×[−R−Dk ,R]""""∞.

Moreover, by the analogue of Proposition 2.6, the time interval t1 − t0 is controlled from above by a constant
which may be chosen to depend only on R, since the starting point lies on a compact set.

Therefore, we have that z(t1) ∈ {β} × [μ, κ1(R)]. The solution now enters the “north-eastern region”
depicted in Figure 3 and, by Proposition 2.7, there is a first time t2 ≥ t1 at which the orbit reaches a point
z(t2) = (x(t2), y(t2)) with y(t2) = μ, and

ν ≤ x(t) ≤ κ2(R), μ ≤ y(t) ≤ κ1(R) + Dk for every t ∈ [t1, t2],

where ν = β − Dk and

κ2(R) = κ1(R) + (
κ1(R) + Dk

δ
+ 1)T""""fk|[0,T]×[0,κ1(R)+Dk]""""∞.

By Proposition 2.7, the time interval t2 − t1 is controlled from above by a constant which may be chosen
to depend only on R since we started from a compact set.

Now the solution has arrived at z(t2) ∈ [β − Dk , κ2(R)] × {μ}, and it enters the “eastern region”, where it
behaves similarly to the northern region: we will find a first time t3 ≥ t2 at which the orbit reaches a point
z(t3) = (x(t3), y(t3)), with y(t3) = −μ, and

ρ ≤ x(t) ≤ κ3(R), −μ ≤ y(t) ≤ μ + Dk for every t ∈ [t2, t3],
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where ρ > 0 is determined by Γk1, and κ3(R) is a constant depending only on R (see Figure 4). Again, the time
interval t3 − t2 is controlled from above by a constant which only depends on R.

And this can be repeated on and on, until the solution has completed one rotation around the origin.
Observe that, while crossing the different regions, the orbit of z(t) is always “controlled from below” by the
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Figure 4. The eastern region.

inner curve Γk1, which will guarantee that, during all the time needed to perform a complete rotation, the
distance from the origin will remain greater than R1.

Clearly enough, the same type of reasoning applies when z(t0), instead of being in the “northern region”,
belongs to the “north-eastern region”. The estimates will still depend only on R by continuity and compact-
ness. When z(t0) belongs to any of the other regions, the situation is perfectly symmetrical with the above,
as can be seen by rotating Figure 1 by a multiple of 90 degrees.

After the solution has completed one rotation around the origin, it could have approached the origin, but
not too much, due to the fact that it cannot intersect the curve Γk1. Hence, we can repeat the same argument,
taking this time as reference regions those determined by the inner lap of Γk2, until the solution has completed
the second rotation around the origin. And all this can be repeated until the solution has performed M + 1
rotations around the origin, thus completing the proof.

Remark 2.8. Assumptions (A2) and (A3) alone imply that the solutions of system (2.2) are globally defined.

Indeed, assume by contradiction that for some k ∈ {1, . . . , N} there is a solution zk of (2.3) and a strictly
increasing bounded sequence (tn)n along which

|zk(tn)| → +∞.

By (A3), there is an R1 > 0 and a sector Θk such that, as long as |zk(t)| remains greater than R1, the time
needed to cross this sector is greater than 1. Using Lemma 2.5 with M = 1, we determine R2 > R1. Take n
such that |zk(tn)| ≥ R2. Then there is a ̂tn > tn such that zk is defined on [tn , ̂tn],

|zk(t)| > R1 for every t ∈ [tn , ̂tn], Rot(zk; [tn , ̂tn]) > 1.

It follows that ̂tn − tn ≥ 1. Now let us take an n1 > n such that tn1 ≥ ̂tn and |zk(tn1 )| ≥ R2. Repeating the same
argument, we find a ̂tn1 > tn1 such that zk is defined on [tn1 , ̂tn1 ],

|zk(t)| > R1 for every t ∈ [tn1 , ̂tn1 ], Rot(zk; [tn1 , ̂tn1 ]) > 1.

It follows that ̂tn1 − tn1 ≥ 1. Iterating this process, we find a subsequence (tnj )j such that tnj+1 − tnj ≥ 1, thus
contradicting the boundedness of (tn)n.

Wehave thus proved global existence in the future. Concerning the past, this canbe obtainedby reversing
the time and arguing similarly.
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2.4 End of the proof

The proof will follow from a generalized version of the Poincaré–Birkhoff Theorem recently proposed in [14].
We now recall this result, which is stated for a general Hamiltonian system of the type

{{{
{{{
{

x�k = ∂H
∂yk

(t, x, y),

−y�k = ∂H
∂xk

(t, x, y),
k = 1, . . . , N. (2.13)

Here,H : ℝ × ℝ2N → ℝ is continuous, T-periodic in t and continuously differentiable in (x, y) ∈ ℝ2N .
Assume that for each k = 1, . . . , N we have two strictly star-shaped Jordan curves around the origin

Ck1, C
k
2 ⊆ ℝ2 such that, by denoting byD(Γ) the open bounded region delimited by the Jordan curve Γ,

0 ∈ D(Ck1) ⊆ D(Ck1) ⊆ D(Ck2).

We consider the annular regionsAk = D(Ck2) \D(Ck1) for k = 1, . . . , N, and set

A = A1 × ⋅ ⋅ ⋅ ×AN .

Wewill write zk = (xk , yk), for k = 1, . . . , N, and z = (z1, . . . , zN). Let us state the result in [14, Theorem 1.2].

Theorem 2.9. Assume that every solution of the Hamiltonian system (2.13), departing with z(0) ∈ A, is defined
on [0, ℓT], where ℓ is a positive integer, and satisfies

zk(t) ̸= (0, 0) for every t ∈ [0, ℓT] and k = 1, . . . , N.

Assume moreover that, for each k = 1, . . . , N, there is an integer Mk such that

Rot(zk; [0, ℓT])
{
{
{

> Mk if zk(0) ∈ Γk1,
< Mk if zk(0) ∈ Γk2.

Then the Hamiltonian system (2.13) has at least N + 1 distinct ℓT-periodic solutions z0(t), . . . , zN(t), with
z0(0), . . . , zN(0) ∈ A, such that

Rot(zjk; [0, ℓT]) = Mk for every j = 0, . . . , N and k = 1, . . . , N.

Whydowe say that these solutions z0(t), . . . , zN(t) are distinct? Could they not belong to the sameperiodicity
class?Well, the fact that these N + 1 solutions are distinct is a consequence of the proof of [14, Theorem 1.2],
which is carried out by a variational method. Indeed, these solutions are obtained as critical points of a suit-
able functional φ : TN ×H → ℝ, using a generalized Lusternik–Schnirelmann theorem. Here, TN is the
N-dimensional torus, and H is a Hilbert space. The theory says that either all the corresponding critical
levels are different or the set of critical points is not contractible. The claim then follows since the solutions
belonging to the same periodicity class are critical points on which the functional has the same value.

Let us go back to the proof of Theorem1.1.Wefirst consider system (1.1)with ε = 0,which is split in theN
uncoupled subsystems, as in (2.2). Notice that, by (2.9), the subsystem (2.3) has the solution zk = (xk , yk)
with xk and yk identically equal to 0. Hence, as a consequence of the uniqueness of solutions to Cauchy
problems, if zk(t) is a solution of (2.3) with zk(0) ̸= (0, 0), then zk(t) ̸= (0, 0) for every t ≥ 0.

We now use Lemma 2.5: by taking M = max{M1, . . . ,MN} + 1 and R1 = R̄, there is an rk > R̄ such that
if zk is a solution of (2.3) satisfying |zk(t0)| = rk for some t0 ∈ ℝ, then there is a tk1 ∈ ]t0, t0 + τ(rk)] such that
Rot(zk , [t0, tk1]) > M. Fix an integer ℓ such that

ℓT ≥ max{τ(rk) : k = 1, . . . , N},

and take an integer ℓ ≥ ℓ. By (2.10), the solutions can never rotate counterclockwise more than half a turn.
Hence,

|zk(0)| = rk â⇒ Rot(zk , [0, ℓT]) > M +
1
2 . (2.14)
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We now estimate the rotation of large amplitude solutions. By assumption (A3), taking σ = 1/(2ℓT), we
can find an Rk > rk such that if zk(t) is a solution of (2.3) such that |zk(t)| ≥ Rk for every t ∈ [0, ℓT], then
the time needed to cross the angular sector Θk is greater than 2ℓT. Hence, there is a γ ∈ ]0, 1[ such that
Rot(zk , [0, ℓT]) < 1 − γ. On the other hand, assumption (A1) implies that there is an Rk ≥ Rk such that if
|zk(0)| ≥ Rk, then |zk(t)| ≥ Rk for every t ∈ [0, ℓT]. Hence,

|zk(0)| = Rk â⇒ Rot(zk , [0, ℓT]) < 1 − γ. (2.15)

We define the planar annulus

Ak = B((0, 0), Rk) \ B((0, 0), rk),

so that, by takingA = A1 × ⋅ ⋅ ⋅ ×AN , the assumptions of Theorem2.9 are satisfiedby system (1.1)when ε = 0,
i.e., by system (2.2). SinceA is a compact set, the solutions of this system, startingwith z(0) ∈ A, will remain,
for every t ∈ [0, ℓT], in the interior of a larger set Ã = Ã1 × ⋅ ⋅ ⋅ × ÃN , where

Ãk = B((0, 0), R̃k) \ B((0, 0), ̃rk)

for some positive ̃rk < rk and R̃k > Rk. Since the partial derivatives ofUwith respect to xk and yk are continu-
ous, they are bounded on the compact set [0, T] × Ãk × [−1, 1]. Therefore, if ε ∈ [−1, 1] is takenwith |ε| small
enough, the solutions z(t) of (1.1) starting with z(0) ∈ Awill also remain in Ã for every t ∈ [0, ℓT]. Moreover,
by (2.14) and (2.15), if |ε| is sufficiently small, then

|zk(0)| = rk â⇒ Rot(zk , [0, ℓT]) > Mk

and
|zk(0)| = Rk â⇒ Rot(zk , [0, ℓT]) < 1 ≤ Mk .

Hence, Theorem 2.9 applies, providing the existence of N + 1 distinct ℓT-periodic solutions z0(t), . . . , zN(t)
of (1.1), with z0(0), . . . , zN(0) ∈ A, such that

Rot(zjk; [0, ℓT]) = Mk for every j = 0, . . . , N and k = 1, . . . , N.

Moreover, it has to be |zjk(t)| > rk, for every t ∈ [0, ℓT], since otherwise Lemma 2.5 would imply the rotation
number to be greater than Mk + 1.

The proof of Theorem 1.1 is thus completed.

3 Proof of the corollaries and final remarks
Let us first prove the two corollaries stated in Section 1.

Proof of Corollary 1.3. Since fk(t, η) = η, we have that (A1), (A2) and (A4) certainly hold, hence we just have
to verify (A3). Let σ ∈ ]0, π3 [ be fixed.We consider the planar sector Θk with θ̂k = −σ and θ̌k = σ. If (ξ, η) ∈ Θk,
by writing ξ = ρ cos θ and η = ρ sin θ, since cos θ ≥ 1

2 , there is an Rk > 0 such that if ρ ≥ Rk, then

gk(t, ξ)ξ + fk(t, η)η
ξ2 + η2

≤ sin2 θ +
!!!!!!
g(ρ cos θ)
ρ cos θ

!!!!!! cos
2 θ

≤ θ2 +
!!!!!!
g(ρ cos θ)
ρ cos θ

!!!!!!

≤ 2σ2 = σ(θ̌k − θ̂k),

thus completing the proof.
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Proof of Corollary 1.4. Since fk(t, η) = η/√1 + η2, also in this case (A1), (A2) and (A4) hold, and we need to
verify only (A3). Recall that, by (A1), |g(t, ξ)| ≤ C(1 + |ξ|). Let σ ∈ ]0, Cπ3 [ be fixed. We consider the planar
sector Θk with

θ̂k =
π
2 −

σ
C
, θ̌k =

π
2 +

σ
C
.

If (ξ, η) ∈ Θk, by writing ξ = ρ cos θ and η = ρ sin θ, since sin θ ≥ 1
2 and |cos θ| ≤ σ

C , there is an Rk > 0 such
that if ρ ≥ Rk, then

gk(t, ξ)ξ + fk(t, η)η
ξ2 + η2

≤ C cos2 θ + C|cos θ|
ρ

+
sin2 θ

√1 + ρ2 sin2 θ

≤ C σ
2

C2
+
C
ρ
+

2

√4 + ρ2

≤ 2σ
2

C
= σ(θ̌k − θ̂k),

and the proof is thus completed.

We conclude with some final remarks.
1. Our results still hold if the continuity assumptions are replaced by some Lp-Carathéodory conditions,

with p > 1. Indeed, [14, Theorem 1.2] still holds in this case, as noticed in [14, Section 8].
2. Instead of having a single parameter ε, in our 2N equations we could have several of them. The state-

ments of our theorems can be easily modified, in this case.
3. Our results hold for weakly coupled systems, but we think that they should not be included in what is

usually called perturbation theory [22]. (For the use of the Poincaré–Birkhoff Theorem to the study of periodic
perturbations of Hamiltonian systems, see [5].) Indeed, we do not have some known solutions of the uncou-
pled systemwith ε = 0,whichgive rise to theperiodic solutionsweare looking for. This fact suggests that there
should be some generalizations of our Theorem 1.1 to systems which do not necessarily explicitly depend on
one or more parameters but satisfy some assumptions guaranteeing the main qualitative properties of the
solutions, which have been emphasized in this paper.

4. When N = 1, a scalar second-order equation has been proposed as a simple model for the vertical
oscillations of suspension bridges by Lazer and McKenna in [16]. For such a model, subharmonic solutions
have been found in [8, 9]. A more realistic model would involve the partial differential equation of an elastic
beam, cf. [17]. However, one could try to discretize this equation in space, thus obtaining a system of second-
order differential equations, coupled by a symmetric matrix. It would be interesting to generalize the results
obtained in this paper, showing that large amplitude subharmonic vertical oscillations also arise for this type
of suspension bridge models.

5. Another model which can be reduced to our setting is the Lotka–Volterra predator-prey system

{{{
{{{
{

u�k = αkuk − (βk +
∂W
∂vk

(t, u, v; ε))ukvk ,

−v�k = γkvk − (δk +
∂W
∂uk

(t, u, v; ε))ukvk ,
k = 1, . . . , N, (3.1)

where αk, βk, γk, δk are positive constants, u = (u1, . . . , uN), v = (v1, . . . , vN), andW is T-periodic in t and
identically zero when ε = 0. Notice that the point (γk/δk , αk/βk) is an equilibrium for the corresponding pla-
nar subsystem with ε = 0. We look for solutions having all components uk, vk positive. By following [3], the
change of variables (xk , yk) = (ln uk , ln vk) can be performed to translate the system into the form (1.1). We
thus get the following result.

Theorem 3.1. Let R̄ be a positive real number and let M1, . . . ,MN be some positive integers. Then there is
a positive integer ℓwith the following property: for every integer ℓ ≥ ℓ, there exists εℓ > 0 such that if |ε| ≤ εℓ, sys-
tem (3.1) has at least N + 1 distinct ℓT-periodic solutionsw(t) = (w1(t), . . . , wN(t)), with wk(t) = (uk(t), uk(t))
having positive components, which satisfy

min{|ln uk(t)| + |ln vk(t)| : t ∈ [0, ℓT]} ≥ R̄
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and
Rot((uk −

γk
δk
, vk −

αk
βk

); [0, ℓT]) = Mk

for every k = 1, . . . , N.

The proof uses the same ideas as before, but is simplified by the fact that the systemwith ε = 0 is autonomous.
The boundaries of the planar annuli needed for the application of the Poincaré–Birkhoff Theorem can indeed
be chosen as the orbits of this autonomous system.

A more general system where αk, βk, γk, δk are replaced by T-periodic positive continuous functions
could be considered as well. The same result still holds, and the proof can be carried out similarly, using the
estimates in [3].

As an example of application, we could have four species involved, the first species predating only the
second, and the third species predating only the fourth. A weak interaction among all of them then preserves
the existence of periodic solutions.

6. Some nonlinearities with a singularity can also be treated with the same approach. For example, let
us consider the system

{{{{{{{
{{{{{{{
{

x��1 + g1(x1) =
∂V
∂x1

(t, x1, . . . , xN ; ε),

...

x��N + gN(xN) =
∂V
∂xN

(t, x1, . . . , xN ; ε),

and let us assume gk : ℝ+ → ℝ, with ℝ+ =]0, +∞[, to be locally Lipschitz continuous functions, while
V : ℝ × ℝN+ × ℝ → ℝ satisfies the assumptions stated for system (1.3). Let us define the primitive functions

Gk(ξ) =
ξ

∫
1

gk(s) ds. (3.2)

The following is an illustrative example of the corresponding existence result.

Theorem 3.2. Assume the following conditions:
(i) limξ→+∞ Gk(ξ)/ξ2 = 0;
(ii) gk(ξ)(ξ − 1) > 0 for every ξ ̸= 1;
(iii) limξ→0+ Gk(ξ) = limξ→+∞ Gk(ξ) = +∞.

Then the same conclusion of Theorem 1.1 holds, with zk(t) = (xk(t), x�k(t)) and (1.2) replaced by
min{(xk(t)2 +

1
xk(t)2

+ x�k(t)2)1/2 : t ∈ [0, ℓT]} ≥ R̄,

and
Rot((xk − 1, x�k); [0, ℓT]) = Mk

for every k = 1, . . . , N.

The proof is indeed easier in this case, since each planar annulus is determined by choosing two level curves
of the corresponding Hamiltonian function Hk(ξ, η) = 1

2η
2 + Gk(ξ). Condition (i) then implies that the time

map has an infinite limit, i.e., the large amplitude solutions rotate very slowly. A similar argument as in the
proof of Theorem 1.1 then leads to the conclusion. It should be clear that the choice of the point (1, 0) around
which the solutions rotate is not significant.

7. We can also adapt our approach to a system like (1.1), with fk and gk defined onℝ×]0, +∞[ and both
having a singularity at 0, a situation which has already been considered in [24]. For instance, in the case
when fk and gk do not depend on t, define Gk as in (3.2) and Fk similarly, and assume for both that condi-
tions (ii) and (iii) of Theorem 3.2 hold true. In this setting, the orbits of the unperturbed planar subsystems
are the level lines of the function Hk(ξ, η) = Gk(ξ) + Fk(η), which are star-shaped closed curves surrounding
the point (1, 1). If in addition assumptions (A3) and (A4) hold, with 0 < θ̂k < θ̌k < π

2 , we are able to conclude
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similarly: there are large-amplitude subharmonic solutions performing a given number of rotations around
the point (1, 1) in their period time.

8. As observed in Corollary 1.2, when N ≥ 2, in all the above examples we get a myriad of subharmonic
solutions with minimal period ℓT, with one planar component performing exactly one rotation, while the
other components rotate an arbitrary number of times.

9. Clearly enough, the different types of equations considered above could be mixed up in the same
system.

Funding: The authors have been partially supported by the Italian project GNAMPA–INdAM.
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