Errata - The Kurzweil-Henstock Integral for Undergraduates, by Alessandro Fonda

1. page 30 , line -2 : replace "competed" by "completed".
2. page 35 , line 5 : replace "e" by "and".
3. page 44 , line 10 , delete " 5 ."
4. page 46 , line -4 , replace " 0 " by $\frac{\pi}{4}$.

5 . page 55 , line 6 , replace "a Riemann on" by "a Riemann sum on".
6. page 65, line -3: replace "dDominated" by "Dominated".
7. page 86 , line 3 , replace "Theorem 2.27 " by "Theorem 2.29 ".
8. page 97 , line -1 , replace "Corollary 2.22 " by "Proposition 2.22 ".
9. page 104, line -5 , replace "epigraph" by "hypograph".
10. page 105 , line $6, ~ " ~ x$ " should be in vector representation.
11. page 110 , line 8 , write $\times\{0\})$) instead of $\times\{0\}$).
12. page 112, exercise 1 : replace

$$
E_{\mathrm{rot}}=\left\{(x, y, z) \in \mathbb{R}^{3}:\left(x, \sqrt{y^{2}+z^{2}}\right) \in E\right\}
$$

(i.e., the set obtained rotating E around the x-axis)
by

$$
E_{\mathrm{rot}}=\left\{(x, y, z) \in \mathbb{R}^{3}:\left(\sqrt{x^{2}+z^{2}}, y\right) \in E\right\}
$$

(i.e., the set obtained rotating E around the y-axis).
13. page 122, exercise 3: replace
"What is its value?"
by
"What is its value if $\alpha=2$?"
14. page 150 , exercise 2: replace $\gamma(t)=\left(t, t^{2}, t^{3}\right)$ by $\gamma(t)=(t, 2 t, 3 t)$.
15. page 150, exercise 3: replace

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\right\} .
$$

by

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+\frac{z^{2}}{4}=1\right\} .
$$

16. page 150, exercise 4: replace

$$
\sigma(u, v)=(u \sin v, v \sin u, \cos (u v))
$$

by

$$
\sigma(u, v)=\left(u^{2}, v^{2}, u^{2}-v^{2}\right) .
$$

17. page 150 , exercise 5 : replace

$$
\mathcal{M}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+4 y^{2}+9 z^{2}=1\right\}
$$

by

$$
\mathcal{M}=\left\{(x, y, z) \in \mathbb{R}^{3}: z=x^{2}+y^{2} \leq 1\right\} .
$$

18. page 150, exercise 5: replace

$$
f(x, y, z)=x y z
$$

by

$$
f(x, y, z)=1+4 x^{2}+4 y^{2} .
$$

19. page 154 , line -1 , replace β^{+}by β_{k}^{+}.
20. page 162 , line -5 : replace $F\left(b_{1}, u_{2}, u_{3}\right)$ by $F\left(\sigma\left(b_{1}, u_{2}, u_{3}\right)\right)$.
21. page 162, line -4: replace $\int_{\beta_{1}^{+}}$by $\int_{\sigma \circ \beta_{1}^{+}}$.
22. page 166 , exercise 4: replace
"Compute $\int_{\sigma} \operatorname{div} F d x \wedge d y \wedge d z$, both directly and by the use of the Gauss-Ostrogradski formula."
by "Compute $\int_{\partial \sigma}\langle F, d \mathcal{S}\rangle$."
23. page 167 , line -8 , replace $F((t)$ by $F((t))$.
24. page 171 , line -2 , replace " $F=$ div" by " $f=$ div" .

25 . page 172 , line 4 , replace

$$
\frac{\partial f}{\partial x_{1}}(t x)+\frac{\partial f}{\partial x_{2}}(t x)+\frac{\partial f}{\partial x_{3}}(t x)
$$

by

$$
\frac{\partial f}{\partial x_{1}}(t x) x_{1}+\frac{\partial f}{\partial x_{2}}(t x) x_{2}+\frac{\partial f}{\partial x_{3}}(t x) x_{3} .
$$

26. page 182 , all " x, h " should be of vector representation.
27. page 184, line $6, " x_{0}$ " should be of vector representation.
28. page 189, line - 10 , replace V_{2} by V_{N}.
29. page 191, line -4 , " y_{0} " should be of vector representation.
30. page 211, line 12 , replace Θ_{1} by Θ_{0}.
31. page 211, line 16, replace Θ_{2} by Θ_{n}.
32. page 217, line 3, replace "Mac Shane" by "McShane".
33. page 219, line 10, replace "Generalized" by "General".
