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Generalizing the Lusternik–Schnirelmann critical point theorem
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To the memory of François Munjamarere

Abstract

We provide a multiplicity result for critical points of a functional defined on the product
of a compact manifold without boundary and a convex set, by assuming, for example, an
avoiding rays condition at the boundary of that set. We then extend this result to an infinite-
dimensional setting which well applies to the search of periodic solutions of pendulum-like
equations.

1. Introduction

In their pioneering paper [15], Lusternik and Schnirelmann opened the way to the search of
multiple critical points of regular functionals by exploiting the topological properties of their
domain. Let us recall their result.

Theorem 1 (Lusternik–Schnirelmann). Let V be an N -dimensional compact manifold of
class C2 without boundary, and let ϕ : V → R be a continuously differentiable functional. Then,
ϕ has at least cat(V) critical points.

In the above statement, cat(V) stands for the Lusternik–Schnirelmann category, introduced
for that purpose in [15]: it is the least number of closed contractible sets which are needed
to cover V. For example, if V = S

N , the N -dimensional sphere, we have cat(SN ) = 2, while if
V = T

N , the N -dimensional torus, we have cat(TN ) = N + 1.
Different generalizations of the above theorem have been proposed in the case of a manifold V

with boundary. Typically, as in [1], the gradient of ϕ is assumed to ‘point outward’ or ‘inward’
on the boundary. See also, for example, [13, 16, 17, 25].

The aim of this paper is to obtain multiple critical points of a continuously differentiable
functional ϕ : V ×D → R, defined on the product of an N -dimensional compact manifold V
of class C2 without boundary and an M -dimensional convex compact set D with nonempty
interior. In this case, our assumptions on the direction of the gradient of ϕ on the boundary
are indeed much weaker than the ones usually considered in literature.

In order to state our results, let νD(y) denote the unit outward normal to the boundary of
D at some point y ∈ ∂D. Here is our first contribution.

Theorem 2. Assume that D has a smooth boundary, and that

∇yϕ(x, y) /∈ {α νD(y) : α � 0} , for every (x, y) ∈ V × ∂D. (1)

Then, there are at least cat(V) critical points of ϕ in V ×D.
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Note that Theorem 1 could be seen as a special case of Theorem 2, taking M = 0. The
avoiding outer rays condition (1) recalls the usual assumption in the Poincaré–Bohl theorem.
It can easily be replaced by the following avoiding inner rays condition

∇yϕ(x, y) /∈ {−α νD(y) : α � 0} , for every (x, y) ∈ V × ∂D. (2)

We will also prove the following variant of Theorem 2, where the gradient of ϕ on the boundary
is in some sense driven by a symmetric matrix. We assume here that D is strongly convex,
meaning that, for any y ∈ ∂D, the height function η �→ 〈η − y,−νD(y)〉 has a nondegenerate
minimum at η = y.

Theorem 3. Assume that D is strongly convex, with a smooth boundary, and that there
exists a regular symmetric (M ×M)-matrix A for which

〈∇yϕ(x, y), AνD(y)〉 > 0 , for every (x, y) ∈ V × ∂D. (3)

Then, there are at least cl(V) + 1 critical points of ϕ in V ×D.

Here we have the entrance of cl(V), the cup length of V. Denoting by Ȟ∗(V) the Alexander–
Spanier cohomology of V with coefficients in R, and by � the cup product in Ȟ∗(V), we recall
that cl(V) is a positive integer m if there are m elements ui ∈ Ȟni(V), with ni � 1, such that
u1 � · · · � um �= 0, and m is maximal with respect to this property. Such an m always exists
if V is compact, cf. [24]. It can be proved that cat(V) � cl(V) + 1, and in many interesting
cases equality holds. For example, if V = S

N , the N -dimensional sphere, we have cl(SN ) = 1,
while if V = T

N , the N -dimensional torus, we have cl(TN ) = N .
It is reasonable that Theorem 3 should provide at least cat(V) critical points of ϕ in V ×D,

but I have not been able to prove it. Moreover, I guess that (1), (2), and (3) could be replaced
by a nonzero degree assumption, but this seems to be a rather difficult task. However, some
more general avoiding cones conditions could be considered, as in [6].

The proof of Theorem 2 is provided in Section 2, making use of some ideas introduced
in [9]. In Section 3, a more general infinite-dimensional setting is considered, so to extend a
critical point theorem in [26]. In Section 4 we propose two possible corollaries, thus generalizing
Theorem 3 above. Finally, in Section 5, we provide an application to pendulum-like systems.

2. Proof of Theorem 2

By some extension theorems going back to Whitney (see, for example, [2, 12]), our functional
can be extended to a continuously differentiable functional on V × R

M , for which we keep the
same notation ϕ.

Let πDy denote the projection on the convex set D of a point y ∈ R
M . Choose some r̄ ∈ ]0, 1[

and a C∞-smooth cutoff function a : R → R, with

a(s) =

{
1 , if s � 0 ,

0 , il s � r̄ .

After multiplying ϕ(x, y) by a(|y − πDy|) we see that, for the sake of proving Theorem 2, there
is no loss of generality in assuming that

ϕ(x, y) = 0 , if dist(y,D) � r̄.

Then, there must exist a constant c̄ > 0 for which

|∇yϕ(x, y)| < c̄ , for every (x, y) ∈ V × R
M . (4)



GENERALIZING THE LUSTERNIK–SCHNIRELMANN CRITICAL POINT THEOREM 27

We claim that there is a ρ ∈ ]0, r̄[ such that

∇yϕ(x, y) /∈ {α νD(πDy) : α � 0} , if 0 < dist(y,D) < ρ. (5)

Indeed, if not, there are a sequence (xn, yn)n in V × R
M and a sequence (αn)n of nonnegative

real numbers such that

0 < dist(yn, D) � 1/n and ∇yϕ(xn, yn) = αnνD(πDyn),

for every n. By the compactness of V ×D and (4), there are two subsequences (xnk
, ynk

)k and
(αnk

)k such that, for some (x̄, ȳ) ∈ V × ∂D and ᾱ � 0,

(xnk
, ynk

) → (x̄, ȳ) and αnk
→ ᾱ.

By continuity,

∇yϕ(x̄, ȳ) = lim
k

∇yϕ(xnk
, ynk

) = lim
k

αnk
νD(πDynk

) = ᾱνD(ȳ),

in contradiction with (1).
Let γ : R → R be the function defined as

γ(s) =

{
0, if s � 0 ,

s2, if s � 0 .

We define the continuously differentiable functional ϕ̃ : V × R
M → R as

ϕ̃(x, y) = ϕ(x, y) − c̄

2ρ
γ(|y − πDy|).

We see that ϕ̃ coincides with ϕ on the set V ×D, and

ϕ̃(x, y) = − c̄

2ρ
|y − πDy|2 , if dist(y,D) � r̄.

This fact easily implies that −ϕ̃ is bounded from below and satisfies the Palais–Smale condition,
and we deduce that ϕ̃ has at least cat(V) critical points, cf. [21–23]. We will now show that
these critical points must belong to V ×D, so that they are indeed critical points of ϕ. Hence,
to conclude the proof, we only need to show that ϕ̃ has no critical points outside V ×D.

So, let (x, y) be such that y /∈ D. We have

∇yϕ̃(x, y) = ∇yϕ(x, y) − c̄

ρ
|y − πDy| νD(πDy).

We distinguish two cases: if 0 < dist(y,D) < ρ, then ∇yϕ̃(x, y) �= 0 by (5). On the other hand,
if dist(y,D) � ρ, then, by (4),

|∇yϕ(x, y)| < c̄ � c̄

ρ
|y − πDy|,

so that ∇yϕ̃(x, y) �= 0 also in this case.
The proof is thus completed.

3. An extension of Theorem 2

Let H be a Hilbert space, Y a finite-dimensional subspace, and let Z = Y ⊥, so that H = Y ⊕ Z.
(In the following, we will often identify H with Y × Z.) As before, V will be an N -dimensional
compact manifold of class C2 without boundary.

Assume that D ⊆ Y is a convex compact set with nonempty interior (in the topology of Y ).
We are interested in finding the critical points of a continuously differentiable functional

ϕ : V ×D × Z → R,
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having the property that

ϕ(x, y, z) = 1
2 〈Lz, z〉 + ψ(x, y, z), (6)

where L : Z → Z is a bounded self-adjoint linear invertible operator, and ψ : V ×D × Z → R

is a continuously differentiable function, with a completely continuous and bounded gradient
∇ψ. Recalling the usual definition of differentiability, we are thus assuming that, for some open
neighborhood U of D, the functions ψ,ϕ are indeed defined on V × U × Z, and continuously
differentiable there.

Let h : Y → R be a continuously differentiable function for which

D = {y ∈ Y : ∇h(y) = 0}, (7)

and assume that there are a constant C > 0 and an invertible linear operator S : Y → Y such
that

|∇h(y) − Sy| � C , for every y ∈ Y. (8)

Without loss of generality, we can also assume that

h(y) = 0 , for every y ∈ D.

Here is the main result of this section.

Theorem 4. In the above setting, assume that there is a constant ρ > 0 such that

∇yϕ(x, y, z) �∈ {α∇h(y) : α � 0} , if 0 < dist(y,D) < ρ. (9)

Then, there are at least cl(V) + 1 critical points of ϕ in V ×D × Z.

Proof. Since the set D × Z is convex, we can use some theorems from [2, 12] so to find a
continuously differentiable extension of the functional ψ to the domain V × Y × Z, for which we
retain the same notation ψ, while keeping its gradient ∇ψ bounded and completely continuous.
Let c̄ > 0 be such that

|∇yψ(x, y, z)| < c̄ , for every (x, y, z) ∈ V × Y × Z. (10)

We claim that there is a constant ε ∈ ]0, 1[ such that

0 < |∇h(y)| < ε ⇒ 0 < dist(y,D) < ρ. (11)

Indeed, assume by contradiction that for every positive integer n there is a yn ∈ Y such that
0 < |∇h(yn)| < 1/n and dist(yn, D) � ρ. By (8), being S invertible, there is an R > 0 such
that |yn| � R, for every n. Hence, the sequence (yn)n remains in a compact set, and there
is a subsequence (ynk

)k such that ynk
→ ȳ, for some ȳ /∈ D. Then, by continuity, ∇h(ȳ) =

limk ∇h(ynk
) = 0, in contradiction with (7).

We now define the bounded self-adjoint operator L̃ : H → H as

L̃(y + z) = Lz − c̄

ε
Sy.

Note that, since L and S are invertible, also L̃ is such. The continuously differentiable functional
ϕ̃ : V ×H → R, given by

ϕ̃(x, y, z) = 1
2 〈Lz, z〉 + ψ(x, y, z) − c̄

ε
h(y),

coincides with ϕ on the set V ×D × Z, and satisfies

ϕ̃(x,w) = 1
2 〈L̃w,w〉 + ψ̃(x,w),
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where ψ̃ : V ×H → R is defined as

ψ̃(x, y, z) = ψ(x, y, z) − c̄

ε

(
h(y) − 1

2 〈Sy, y〉
)
.

Hence, ψ̃ has a bounded and completely continuous gradient. We can thus apply [26,
Theorem 3.8] to deduce that ϕ̃ has at least cl(V) + 1 critical points. We will now show that
these critical points must belong to V ×D × Z, so that they are indeed critical points of ϕ.
Hence, to conclude the proof, we only need to show that ϕ̃ has no critical points (x, y, z) with
y /∈ D.

So, let (x, y, z) ∈ V × Y × Z be such that y /∈ D. We will show that ∇yϕ̃(x, y, z) �= 0, that
is,

∇yψ(x, y, z) �= c̄

ε
∇h(y). (12)

We examine two cases: if 0 < |∇h(y)| < ε, then (12) holds, by (11) and (9). On the other hand,
if |∇h(y)| � ε, then, by (10),

|∇yψ(x, y, z)| < c̄ �
∣∣∣ c̄
ε
∇h(y)

∣∣∣ ,
so that (12) holds, again. The proof is thus completed. �

4. Some corollaries

In this section we assume again that H is a Hilbert space, Y a finite-dimensional subspace, and
Z = Y ⊥. As before, V is an N -dimensional compact manifold of class C2 without boundary, and
D ⊆ Y is a convex compact set with nonempty interior. The functional ϕ : V ×D × Z → R is
like in (6), that is,

ϕ(x, y, z) = 1
2 〈Lz, z〉 + ψ(x, y, z),

where L : Z → Z is a bounded self-adjoint linear invertible operator, and ψ : V ×D × Z → R

is a continuously differentiable function, with a completely continuous and bounded gradient
∇ψ.

We will now state and prove two corollaries of Theorem 4, and finally give a proof of
Theorem 3.

Corollary 5. Assume that D has a smooth boundary, and that there is a constant ρ > 0
such that

∇yϕ(x, y, z) /∈ {α νD(πDy) : α � 0} , if 0 < dist(y,D) < ρ. (13)

Then, there are at least cl(V) + 1 critical points of ϕ in V ×D × Z.

Proof. We need to consider a C∞-smooth function σ : R → R such that

σ(s) =

{
0 , if s � 0 ,
1 , if s � 1 ,

σ′(s) > 0 , if s ∈ ]0, 1[.

We define the function h : Y → R by

h(y) = ξ(y)|y − πDy|2,
where

ξ(y) =

{
0 , if y ∈ D ,
1
2σ(|y − πDy|) , if y ∈ Y \D .

(14)
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Note that

∇ξ(y) =
σ′(|y − πDy|)
2|y − πDy| (y − πDy) , for every y ∈ Y \D. (15)

Then, if y ∈ Y \D,

∇h(y) =
[
1
2σ

′(|y − πDy|)|y − πDy| + σ(|y − πDy|)] (y − πDy),

hence (7) and (8) hold, with S = I. Moreover, since ∇h(y) has the same direction as νD(πDy),
for every y ∈ Y \D, we see that (13) is equivalent to (9), and the result follows from
Theorem 4. �

Remark 6. Note that assumption (13) can be replaced by

∇yϕ(x, y, z) /∈ {−α νD(πDy) : α � 0} , if 0 < dist(y,D) < ρ. (16)

In the proof, it is sufficient to take h(y) = −ξ(y)|y − πDy|2, and the result follows in a similar
way.

Here is our second corollary.

Corollary 7. Assume that D is strongly convex, with a smooth boundary, and that there
exist a symmetric invertible linear operator A : Y → Y and a constant ρ > 0 for which

〈∇yϕ(x, y, z), AνD(πDy)〉 > 0 , if 0 < dist(y,D) < ρ. (17)

Then, there are at least cl(V) + 1 critical points of ϕ in V ×D × Z.

Proof. We consider the C∞-smooth function ξ : Y → R introduced in the proof of
Corollary 5, and define h : Y → R by

h(y) = −ξ(y)〈A(y − πDy), y − πDy〉.
By the chain rule, if y ∈ Y \D,

∇h(y) = −〈A(y − πDy), y − πDy〉∇ξ(y) − 2ξ(y)(Id − π′
D(y))∗A(y − πDy).

For |y| large enough, since ξ(y) = 1
2 and ∇ξ(y) = 0, we have

|∇h(y) + Ay| = |AπDy + π′
D(y)∗A(y − πDy)|

� |AπDy| + ‖π′
D(y)∗‖ ‖A‖ |y − πDy|.

Since D is strongly convex, by [9, Lemma 2.2] there is a constant c > 0 such that

‖π′
D(y)‖ |y − πDy| � c , for every y ∈ Y \D,

hence (8) holds, with S = −A. Moreover, if y ∈ Y \D,

〈∇h(y),−AνD(πDy)〉 = 〈A(y − πDy), y − πDy〉〈∇ξ(y),Aν(πDy)〉 +

+2ξ(y)〈(Id − π′
D(y))∗A(y − πDy),Aν(πDy)〉.

Now, in view of (15), ∇ξ(y) has the same direction as y − πDy. Since y − πDy =
dist(y, ∂D)ν(πDy), the first term in the right-hand side of the equality is nonnegative. On
the other hand, by [9, Lemma 2.2], we have that (Id − π′

D(y))∗ is positive definite, for any
y ∈ Y \D, and the second term in the right-hand side of the equality is positive. Therefore,

〈∇h(y),AνD(πDy)〉 < 0 , for every y ∈ Y \D. (18)
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This implies (7), and we see that (17) and (18) imply (9), hence the result follows from
Theorem 4. �

We finish this section showing how Theorem 3 follows from Corollary 7.

Proof of Theorem 3. Let H = Y = R
M (so that the space Z is reduced to {0}). Assume by

contradiction that (17) does not hold. Then, there is a sequence (xn, yn)n in V × Y such that

0 < dist(yn, D) � 1
n

and 〈∇yϕ(xn, yn), AνD(πDyn)〉 � 0,

for every n. By the compactness of V ×D, there is subsequence (xnk
, ynk

)k which converges
to some (x̄, ȳ) ∈ V × ∂D. By continuity,

〈∇yϕ(x̄, ȳ), AνD(ȳ)〉 = lim
k
〈∇yϕ(xnk

, ynk
), AνD(πDynk

)〉 � 0,

in contradiction with (3). �

5. An example of application

Let us start from the periodically forced pendulum equation

q̈ + a sin q = e(t),

where e : R → R is a locally integrable T -periodic function with zero mean, that is,

1
T

∫ T

0

e(t) dt = 0. (19)

Setting E(t) =
∫ t

0
e(s) ds, we can write the equivalent Hamiltonian system

q̇ = p + E(t) , −ṗ = a sin q. (20)

We now work on the Hilbert space H1/2([0, T ],R2), cf. [11, Section 3.3]. Set

x =
1
T

∫ T

0

q(t) dt , y =
1
T

∫ T

0

p(t) dt,

and define the zero-mean functions u, v : R → R such that

q(t) = x + u(t) , p(t) = y + v(t).

Finally, let z : R → R
2 be the vector-valued function

z(t) = (u(t), v(t)).

Since the Hamiltonian function is T -periodic in x, we will consider x as varying in the manifold
S1. Denote by Y the one-dimensional space of the constants y, and let Z be the space of those
functions z = (u, v) having zero-mean. Finally, let H = Y ⊕ Z. Define the bounded self-adjoint
operator L : Z → Z formally as follows: writing z = (u, v) and w = (û, v̂),

〈Lz,w〉 =
∫ T

0

[u̇(t)v̂(t) − v̇(t)û(t) + v(t)v̂(t)] dt.

Note that L is invertible. Setting D = [d−, d+], with

d− <
1
T

∫ T

0

E(t) dt < d+,
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we consider the functional ψ : S1 ×D × Z → R, defined as

ψ(x, y, z) =
∫ T

0

[
1
2 y

2 − a cos(x + u(t)) + E(t)(y + v(t))
]
dt.

It has a completely continuous and bounded gradient (since D is bounded). The T -periodic
solutions of our system can be obtained as critical points of the functional ϕ : S1 ×D × Z → R

given by (6). Note that this functional is indeed defined on S1 × R × Z. Being

∂yϕ(x, y, z) = Ty +
∫ T

0

E(t) dt,

it is easily seen that (16) holds, that is, for ρ > 0,

∂yϕ(x, y, z)

{
< 0 , if y ∈ ]d− − ρ, d−[ ,

> 0 , if y ∈ ]d+, d+ + ρ[ .
(21)

Then, by Remark 6, we can apply Corollary 5, which provides us the existence of at least
cl(S1) + 1 = 2 critical points of ϕ, corresponding to two geometrically distinct T -periodic
solutions of system (20). We thus recover a classical result by Mawhin and Willem [19]. Note
that an assumption like (21), reminiscent of the Landesman–Lazer condition, has been already
considered in [8, Theorem 5.1] for pendulum-like equations.

The above argument can be extended to systems of the type

q̈ + ∇qV (t, q) = e(t).

Here V : R × R
N → R is assumed to be continuously differentiable, T -periodic in t and

2π-periodic in each component of q = (q1, . . . , qN ). The function e : R → R
N is locally

integrable, T -periodic, and has a zero (vector) mean, that is, (19) holds. The equivalent system
now reads as

q̇ = p + E(t), −ṗ = ∇qV (t, q), (22)

where E(t) =
∫ t

0
e(s) ds. This time, x varies in the N -dimensional torus T

N , and taking as D
a closed ball centered at the origin, with a sufficiently large radius R > 0, we see that there is
some ρ > 0 for which both (13) and (17) hold, with A = Id. In this case, Corollaries 5 and 7
give us at least cl(TN ) + 1 = N + 1 critical points of ϕ, corresponding to N + 1 geometrically
distinct T -periodic solutions of system (22). This result, first proved in [20], has been further
extended in [3–5, 7, 10, 14, 18, 26]; we do not enter into details, for briefness.

This situation can be generalized. Let Π be the projection defined as

Π p =
1
T

∫ T

0

p(s) ds.

Clearly, p = Π p + (Id − Π)p. We may then consider the Hamiltonian system

q̇ = ∇φ(Π p) + (Id − Π)p + E(t), −ṗ = ∇qV (t, q), (23)

where φ : R
N → R is a continuously differentiable function such that

−∇φ(y) /∈ {αy + 1
T

∫ T

0
E(t) dt : α � 0} , if |y| > R,

and we get the same conclusion, by Corollary 5 and Remark 6.
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