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Generalizing the Lusternik—Schnirelmann critical point theorem

Alessandro Fonda

To the memory of Frangois Munjamarere

ABSTRACT

We provide a multiplicity result for critical points of a functional defined on the product
of a compact manifold without boundary and a convex set, by assuming, for example, an
avoiding rays condition at the boundary of that set. We then extend this result to an infinite-
dimensional setting which well applies to the search of periodic solutions of pendulum-like
equations.

1. Introduction

In their pioneering paper [15], Lusternik and Schnirelmann opened the way to the search of
multiple critical points of regular functionals by exploiting the topological properties of their
domain. Let us recall their result.

THEOREM 1 (Lusternik—Schnirelmann). Let V be an N-dimensional compact manifold of
class C? without boundary, and let ¢ : V — R be a continuously differentiable functional. Then,
¢ has at least cat(V) critical points.

In the above statement, cat()) stands for the Lusternik—Schnirelmann category, introduced
for that purpose in [15]: it is the least number of closed contractible sets which are needed
to cover V. For example, if V = S, the N-dimensional sphere, we have cat(S") = 2, while if
V = TV, the N-dimensional torus, we have cat(T") = N + 1.

Different generalizations of the above theorem have been proposed in the case of a manifold V
with boundary. Typically, as in [1], the gradient of ¢ is assumed to ‘point outward’ or ‘inward’
on the boundary. See also, for example, [13, 16, 17, 25].

The aim of this paper is to obtain multiple critical points of a continuously differentiable
functional ¢ : V x D — R, defined on the product of an N-dimensional compact manifold V
of class C? without boundary and an M-dimensional convex compact set D with nonempty
interior. In this case, our assumptions on the direction of the gradient of ¢ on the boundary
are indeed much weaker than the ones usually considered in literature.

In order to state our results, let vp(y) denote the unit outward normal to the boundary of
D at some point y € 9D. Here is our first contribution.

THEOREM 2. Assume that D has a smooth boundary, and that
Vyo(z,y) ¢ {avp(y) : >0}, for every (z,y) €V x 0D. (1)

Then, there are at least cat(V) critical points of ¢ in V x D.
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Note that Theorem 1 could be seen as a special case of Theorem 2, taking M = 0. The
avoiding outer rays condition (1) recalls the usual assumption in the Poincaré-Bohl theorem.
It can easily be replaced by the following avoiding inner rays condition

Vye(z,y) ¢ {—avp(y) : « >0}, forevery (z,y) €V xadD. (2)

We will also prove the following variant of Theorem 2, where the gradient of ¢ on the boundary
is in some sense driven by a symmetric matrix. We assume here that D is strongly convex,
meaning that, for any y € 9D, the height function n — (n —y, —vp(y)) has a nondegenerate
minimum at n = y.

THEOREM 3. Assume that D is strongly convex, with a smooth boundary, and that there
exists a regular symmetric (M x M)-matrix A for which

(Vyeo(z,y), Avp(y)) >0, for every (z,y) €V x 0D. (3)

Then, there are at least cl(V) + 1 critical points of ¢ in V x D.

Here we have the entrance of cl(V), the cup length of V. Denoting by H*(V) the Alexander—
Spanier cohomology of V with coefficients in R, and by — the cup product in H *(V), we recall
that cl(V) is a positive integer m if there are m elements u; € H™ (V), with n; > 1, such that
Uy — - — Uy # 0, and m is maximal with respect to this property. Such an m always exists
if V is compact, cf. [24]. It can be proved that cat(V) > cl(V) + 1, and in many interesting
cases equality holds. For example, if V = SV the N-dimensional sphere, we have cl(SV) = 1,
while if V = TV, the N-dimensional torus, we have cl(T") = N.

It is reasonable that Theorem 3 should provide at least cat()V) critical points of ¢ in V x D,
but I have not been able to prove it. Moreover, I guess that (1), (2), and (3) could be replaced
by a nonzero degree assumption, but this seems to be a rather difficult task. However, some
more general avoiding cones conditions could be considered, as in [6].

The proof of Theorem 2 is provided in Section 2, making use of some ideas introduced
in [9]. In Section 3, a more general infinite-dimensional setting is considered, so to extend a
critical point theorem in [26]. In Section 4 we propose two possible corollaries, thus generalizing
Theorem 3 above. Finally, in Section 5, we provide an application to pendulum-like systems.

2. Proof of Theorem 2

By some extension theorems going back to Whitney (see, for example, [2, 12]), our functional
can be extended to a continuously differentiable functional on V x RM | for which we keep the
same notation .

Let mpy denote the projection on the convex set D of a point y € RM. Choose some 7 €]0, 1]
and a C*°-smooth cutoff function a : R — R, with

1, ifs<0,
a(s) =
0, ils>r.

After multiplying ¢(z,y) by a(ly — mpyl|) we see that, for the sake of proving Theorem 2, there
is no loss of generality in assuming that

o(z,y) =0, if dist(y,D) > 7.
Then, there must exist a constant ¢ > 0 for which

|V,e(z,y)| <&, forevery (z,y) €V xRY. (4)
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We claim that there is a p €0, 7] such that
Vyo(z,y) ¢ {avp(rpy) : a2 0}, if 0 <dist(y, D) < p. (5)

Indeed, if not, there are a sequence (z,,, yp ), in V X RM and a sequence (an)n of nonnegative
real numbers such that

0 < dist(y,, D) < 1/n and Vyo(zn,yn) = anvp(Tpyn),

for every n. By the compactness of V x D and (4), there are two subsequences (2, , Yn, )r and
(aun, )i such that, for some (Z,7) € V x 9D and & > 0,

(Tnys Yny,) = (Z,9) and «,, — a.
By continuity,
vng(f, g) = h{n vy¢(xnkaynk) = h]gn Qi VD('/TDynk) = dVD(g)a

in contradiction with (1).
Let v : R — R be the function defined as

0, ifs<
s) =
7(s) 2 N

0,
, ifs>0

We define the continuously differentiable functional @ :V x RM — R as

Bay) = o(,y) - ;’pmy p—_—

We see that ¢ coincides with ¢ on the set V x D, and
~ c e 1 _
Play) =5 Iy~ moyl®, if dist(y, D) > 7.

This fact easily implies that —g is bounded from below and satisfies the Palais—Smale condition,
and we deduce that @ has at least cat(V) critical points, cf. [21-23]. We will now show that
these critical points must belong to V x D, so that they are indeed critical points of . Hence,
to conclude the proof, we only need to show that ¢ has no critical points outside ¥V x D.

So, let (z,y) be such that y ¢ D. We have

~ C
Vyo(x,y) = Vyp(z,y) — 5 |y — 7oyl vp(TpY).

We distinguish two cases: if 0 < dist(y, D) < p, then V,@(z,y) # 0 by (5). On the other hand,
if dist(y, D) > p, then, by (4),

IVyp(z,y)l << —ly —mpyl,

X |l

so that V,@(x,y) # 0 also in this case.
The proof is thus completed.

3. An extension of Theorem 2

Let H be a Hilbert space, Y a finite-dimensional subspace, andlet Z =Y+ sothat H =Y @ Z.
(In the following, we will often identify H with Y x Z.) As before, V will be an N-dimensional
compact manifold of class C? without boundary.

Assume that D CY is a convex compact set with nonempty interior (in the topology of Y).
We are interested in finding the critical points of a continuously differentiable functional

w:VXxDxZ =R,
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having the property that
p(x,y,2) = 3(Lz,2) +9(2,y,2), (6)

where L : Z — Z is a bounded self-adjoint linear invertible operator, and ¢ : V x D x Z — R
is a continuously differentiable function, with a completely continuous and bounded gradient
V. Recalling the usual definition of differentiability, we are thus assuming that, for some open
neighborhood U of D, the functions ¥, ¢ are indeed defined on V x U x Z, and continuously
differentiable there.

Let A : Y — R be a continuously differentiable function for which

D={y€e Y :Vh(y) =0}, (7)

and assume that there are a constant C' > 0 and an invertible linear operator S : Y — Y such
that

|Vh(y) —Sy| < C, for every y € Y. (8)
Without loss of generality, we can also assume that
h(y) =0, for every y € D.

Here is the main result of this section.

THEOREM 4. In the above setting, assume that there is a constant p > 0 such that
Vye(z,y,2) € {aVh(y) : >0}, if 0<dist(y,D) < p. (9)
Then, there are at least cl(V) + 1 critical points of ¢ in V x D x Z.
Proof. Since the set D x Z is convex, we can use some theorems from [2, 12] so to find a
continuously differentiable extension of the functional ¥ to the domain V x Y x Z, for which we

retain the same notation v, while keeping its gradient Vi bounded and completely continuous.
Let ¢ > 0 be such that

IV, (z,y,2)| <, forevery (z,y,2) eV XY X Z. (10)
We claim that there is a constant € €0, 1[ such that
0<|Vh(y)|<e = 0<dist(y,D)<p. (11)

Indeed, assume by contradiction that for every positive integer n there is a y,, € Y such that
0 < |[Vh(y,)| < 1/n and dist(y,, D) > p. By (8), being S invertible, there is an R > 0 such
that |y,| < R, for every n. Hence, the sequence (y,), remains in a compact set, and there
is a subsequence (y,,)r such that y,, — ¢, for some § ¢ D. Then, by continuity, Vh(gy) =
lim, VAh(y,,) = 0, in contradiction with (7).

We now define the bounded self-adjoint operator L:H — H as

L(y+z):sz§Sy.

Note that, since L and S are invertible, also L is such. The continuously differentiable functional
¢ :V x H— R, given by

~ c
@(9571/72) = %<LZ7Z> + w(xayvz) - g h(y)7
coincides with ¢ on the set V x D x Z, and satisfies

Pl w) = ${Lw, w) + Pz, w),
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where {E: YV x H — R is defined as

~ Cc

1Z)(m7yvz) = ¢($»yaz) - g (h(y) - %<Sy7y>) .

Hence, 1Z has a bounded and completely continuous gradient. We can thus apply [26,
Theorem 3.8] to deduce that ¢ has at least cl(V) + 1 critical points. We will now show that
these critical points must belong to V x D x Z, so that they are indeed critical points of ¢.
Hence, to conclude the proof, we only need to show that @ has no critical points (z,y, z) with
y¢D.

So, let (z,y,2) € V x Y x Z be such that y ¢ D. We will show that V,o(z,y, z) # 0, that

is,
V,0(@.,2) # < Vhy) (12

We examine two cases: if 0 < |Vh(y)| < e, then (12) holds, by (11) and (9). On the other hand,
if [Vh(y)| = ¢, then, by (10),

)

V(a9 2)| <2< | Vh(y)

so that (12) holds, again. The proof is thus completed. O

4. Some corollaries

In this section we assume again that H is a Hilbert space, Y a finite-dimensional subspace, and
Z =Y+, As before, V is an N-dimensional compact manifold of class C? without boundary, and
D CY is a convex compact set with nonempty interior. The functional ¢ : V x D x Z — R is
like in (6), that is,

p(z,y,2) = 5(Lz,2) + (2,9, 2),

where L : Z — Z is a bounded self-adjoint linear invertible operator, and ¢ : V x D x Z — R
is a continuously differentiable function, with a completely continuous and bounded gradient

V.
We will now state and prove two corollaries of Theorem 4, and finally give a proof of
Theorem 3.

COROLLARY 5. Assume that D has a smooth boundary, and that there is a constant p > 0
such that

Vyo(z,y,2) ¢ {avp(rpy) : o> 0}, if 0 <dist(y, D) < p. (13)
Then, there are at least cl(V) 4+ 1 critical points of p in V X D x Z.

Proof. We need to consider a C*°-smooth function o : R — R such that

ifs>1

)

0, ifs<0,
a(s):{ ne o'(s) > 0, if s €]0,1[-

We define the function h: Y — R by
h(y) = &y)ly — mpyl*,

where

0, ifyeD,
p— 4
W {éa(lyﬂpy% ity e\ D. (0
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Note that

/ —

Ve(y) = M(y —mpy), foreveryyeY \D. (15)
2|y — 7oy

Then, if y € Y\ D,

Vh(y) = [50'(ly = moyDly — 7oyl + o (ly — 7pyl)] (y — 7pY),
hence (7) and (8) hold, with S = I. Moreover, since Vh(y) has the same direction as vp(wpy),
for every y € Y\ D, we see that (13) is equivalent to (9), and the result follows from
Theorem 4. O
REMARK 6. Note that assumption (13) can be replaced by
Vyo(z,y,2) ¢ {—avp(rpy) :a >0}, if 0<dist(y,D) < p. (16)
In the proof, it is sufficient to take h(y) = —£(y)|y — mpy|?, and the result follows in a similar
way.
Here is our second corollary.
COROLLARY 7. Assume that D is strongly convex, with a smooth boundary, and that there
exist a symmetric invertible linear operator A : Y — Y and a constant p > 0 for which
(Vyo(z,y, 2), Avp(mpy)) >0, if 0 <dist(y,D) < p. (17)
Then, there are at least cl(V) + 1 critical points of ¢ in V x D x Z.

Proof. We consider the C°°-smooth function £:Y — R introduced in the proof of
Corollary 5, and define h : Y — R by

h(y) = =€W)(Aly — mpy),y — DY)
By the chain rule, if y € Y\ D,
Vh(y) = —(Aly — mpy),y — mpy) VE(y) — 26(y)(Id — 75 (y)) " Aly — 7py).
For |y| large enough, since £(y) = 4 and VE(y) = 0, we have
[Vh(y) + Ayl = [Ampy + 7 (y) Aly — 7py)]
< [Ampyl+ 7 @) I [Allly — 7pyl.
Since D is strongly convex, by [9, Lemma 2.2] there is a constant ¢ > 0 such that
175 ly — 7oyl < e, forevery y € Y\ D,
hence (8) holds, with S = —A. Moreover, if y € Y\ D,
(Vh(y), —Avp(rpy)) = (Aly — mpy),y — mpy)(VE(y), Av(Tpy)) +

+26(y)((Id — 75 (y))"Aly — mpy), Av(mpy)).

Now, in view of (15), V&(y) has the same direction as y—mpy. Since y— mpy =
dist(y, 0D)v(mwpy), the first term in the right-hand side of the equality is nonnegative. On
the other hand, by [9, Lemma 2.2], we have that (Id — 7, (y))* is positive definite, for any
y € Y\ D, and the second term in the right-hand side of the equality is positive. Therefore,

(Vh(y),Avp(mpy)) <0, foreveryye Y\ D. (18)
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This implies (7), and we see that (17) and (18) imply (9), hence the result follows from
Theorem 4. 0

We finish this section showing how Theorem 3 follows from Corollary 7.

Proof of Theorem 3. Let H =Y = RM (so that the space Z is reduced to {0}). Assume by
contradiction that (17) does not hold. Then, there is a sequence (2, yn), in V X Y such that

1
0 < dist(yn, D) <

— and (Vyp(zn, yn), Avp(Tpyn)) <0,

for every n. By the compactness of V x D, there is subsequence (z, ,Yn, )r Which converges
to some (Z,y) € V x dD. By continuity,

<vy90(3_3ag)7 AVD(@» = li£n<vy¢(mnkaynk)v Avp (T"Dynk» <0,

in contradiction with (3). O

5. An example of application

Let us start from the periodically forced pendulum equation
G+ asing = e(t),

where e : R — R is a locally integrable T-periodic function with zero mean, that is,
1 T
= t)dt = 0. 19
7| e (19)
Setting E(t) = fot e(s) ds, we can write the equivalent Hamiltonian system

i=p+E(), —p = asing. (20)
We now work on the Hilbert space H'/?([0,T],R?), cf. [11, Section 3.3]. Set

I I
= _ t)dt = — t)dit
o=z [ awar =7 [ e
and define the zero-mean functions u, v : R — R such that
q(t) =z +u(t),  pt)=y+v(t).
Finally, let z : R — R? be the vector-valued function
z(t) = (u(t), v(t)).

Since the Hamiltonian function is T-periodic in x, we will consider x as varying in the manifold
S1. Denote by Y the one-dimensional space of the constants y, and let Z be the space of those
functions z = (u, v) having zero-mean. Finally, let H =Y @ Z. Define the bounded self-adjoint
operator L : Z — Z formally as follows: writing z = (u,v) and w = (4, 0),

T
(Lz,w) = / [a(t)8(t) — D()a(t) + v(t)i ()] dt.
0
Note that L is invertible. Setting D = [d_,d; ], with

1 T
d_ < —/ E(t)dt < ds,
T 0
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we consider the functional ¢ : S' x D x Z — R, defined as

T
(2,9, 2) = / [14? — acos(z +u(t) + E(t)(y + v(t))] dt.

It has a completely continuous and bounded gradient (since D is bounded). The T-periodic
solutions of our system can be obtained as critical points of the functional ¢ : S x D x Z —+ R
given by (6). Note that this functional is indeed defined on S* x R x Z. Being

T
dyele,y,2) = Ty + / B(t) dt,
0

it is easily seen that (16) holds, that is, for p > 0,

<0, ifyeld. —p,d_|,

yp(,y, 2) 21)

Then, by Remark 6, we can apply Corollary 5, which provides us the existence of at least
cl(S1) +1 = 2 critical points of ¢, corresponding to two geometrically distinct T-periodic
solutions of system (20). We thus recover a classical result by Mawhin and Willem [19]. Note
that an assumption like (21), reminiscent of the Landesman—Lazer condition, has been already
considered in [8, Theorem 5.1] for pendulum-like equations.

The above argument can be extended to systems of the type

G+ V,V(tq) = e(d).

Here V:R xRN = R is assumed to be continuously differentiable, T-periodic in ¢ and
2m-periodic in each component of ¢ = (qi,...,qnx). The function e:R — RY is locally
integrable, T-periodic, and has a zero (vector) mean, that is, (19) holds. The equivalent system
now reads as

§=p+E(l), —p=VV(tq), (22)

where E(t) = fg e(s) ds. This time, x varies in the N-dimensional torus TV, and taking as D
a closed ball centered at the origin, with a sufficiently large radius R > 0, we see that there is
some p > 0 for which both (13) and (17) hold, with A = Id. In this case, Corollaries 5 and 7
give us at least cI(TV) + 1 = N + 1 critical points of ¢, corresponding to N + 1 geometrically
distinct T-periodic solutions of system (22). This result, first proved in [20], has been further
extended in [3-5, 7, 10, 14, 18, 26]; we do not enter into details, for briefness.

This situation can be generalized. Let II be the projection defined as

1 [T
Ip= T/o p(s) ds.
Clearly, p = I p + (Id — II)p. We may then consider the Hamiltonian system
¢=Vo(lp)+ (Id —Ip+ E(t), —p=V,V(tq), (23)
where ¢ : RV — R is a continuously differentiable function such that
Vo) ¢ {oy + 7 i B@Wdiza>0}, if [y >R,

and we get the same conclusion, by Corollary 5 and Remark 6.
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