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By the use of the Poincaré–Birkhoff fixed point theorem, we prove a multiplicity result for
periodic solutions of a second order differential equation, where the nonlinearity exhibits
a singularity of repulsive type at the origin and has linear growth at infinity. Our main
theorem is related to previous results by Rebelo (1996, 1997) [4,5] and Rebelo and Zanolin
(1996) [6,7], in connection with a problem raised by del Pino et al. (1992) [1].
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1. Introduction

In [1], del Pino, Manásevich and Montero considered an equation like

x
�� − 1

xν
+ βx = p(t), (1.1)

where p : R → R is continuous and T -periodic, ν ≥ 1, and β > 0. They proved that, if

β �=
�
kπ

T

�2

, for every k ∈ N, (1.2)

then there exists at least one positive T -periodic solution to (1.1). Their result followed the path opened by Lazer and Solimini
in [2], where the case β = 0 was analyzed. It was shown there that, in this case, a necessary and sufficient condition for the
existence of a positive T -periodic solution is that

�
T

0 p(t) dt < 0.
In general, condition (1.2) is not eliminable. Indeed, if β =

�
kπ
T

�2 for some positive integer k, some kind of resonance can
occur: as shown in [3, Theorem 3], taking p(t) = � sin( 2πk

T
t), with |�| sufficiently small, no T -periodic solutions to (1.1) can

exist.
Quoting the last sentence in [1],

‘‘. . . the solution we are predicting in our ‘‘Fredholm alternative’’ for (1.1) is not necessarily unique, so the multiplicity

problem for this simple equation is raised as an open question’’.
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In [4–7], Rebelo and Zanolin analyzed themultiplicity problemassuming the forcing term to be of the form p(t) = s+e(t),
being s a real parameter. By the use of the Poincaré–Birkhoff fixed point theorem, they proved that, for |s| large enough,
Eq. (1.1) may have a large number of T -periodic solutions. Their results apply to the wider class of T -periodic problems of
the type

�
x
�� + h(x) = s + e(t)
x(0) = x(T ), x

�(0) = x
�(T ),

(1.3)

where h :]0, +∞[→ R is a continuously differentiable function, with a suitable singularity of repulsive type at the origin,
and linear growth at +∞.

In this paper, similarly as in [8,9], we consider the more general problem
�
x
�� + g(t, x) = sw(t)
x(0) = x(T ), x

�(0) = x
�(T ),

(1.4)

where g : [0, T ]× ]0, +∞[ → R satisfies some kind of Carathéodory conditions, with locally Lipschitz continuity in its
second variable, and w ∈ L

∞(0, T ). We will prove the following result.

Theorem 1.1. Assume that:

• there exist δ > 0 and a continuous function f :]0, δ] → R such that

g(t, x) ≤ f (x), for a.e. t ∈ [0, T ], and every x ∈ ]0, δ],
and

lim
x→0+

f (x) = −∞,

� δ

0
f (x) dx = −∞;

• there exist a function a ∈ L
∞(0, T ) and a positive integer m such that

– uniformly for almost every t ∈ [0, T ],

lim
x→+∞

g(t, x)

x
= a(t); (1.5)

– for almost every t ∈ [0, T ],
�
mπ

T

�2

< a− ≤ a(t) ≤ a+ <

�
(m + 1)π

T

�2

, (1.6)

for suitable real constants a−, a+;
– the unique solution x̂(t) to

�
x
�� + a(t)x = w(t)
x(0) = x(T ), x

�(0) = x
�(T )

(1.7)

is strictly positive, i.e., x̂(t) > 0 for every t ∈ [0, T ].
Then, there exists s

∗ > 0 such that, for every s ≥ s
∗
, problem (1.4) has at least

�
m + 2 solutions if m is odd,
m + 1 solutions if m is even.

Observe that (1.6) is a nonresonance assumption with respect to the set

ΣD =
��

kπ

T

�2

| k = 1, 2, . . .

�

,

which is the spectrum of the differential operator x �→ −x
��, with Dirichlet boundary conditions on [0, T ]. This implies that

we also have nonresonancewith respect to the T -periodic problem, so that the Fredholm alternative ensures the uniqueness
of the solution to (1.7).

Recall that, as shown in [8, Remark 6], condition (1.6) is not enough to ensure that the solution x̂(t) is positive; in the case
when w(t) ≡ 1, some sufficient conditions (in terms of some L

p-norm of a(t)) to guarantee this fact have been introduced
in [10, Corollary 2.3].

We emphasize that, in comparison with the results obtained in [4–7], besides the introduction of a possibly nonconstant
function w(t), we do not assume any differentiability hypothesis on the function g(t, x), and the nonresonance assumption
at +∞ relies only on the asymptotic behavior of the quotient g(t, x)/x.
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As it is clear, in the case w(t) ≡ 1 and a(t) ≡ β �∈ ΣD, with β > 0, the unique solution to (1.7) is strictly positive, being
x̂(t) ≡ 1

β
, so that, in the particular case of problem (1.3), we have the following.

Corollary 1.1. Let e ∈ L
∞(0, T ) and assume that h(x) is a locally Lipschitz continuous function such that

lim
x→0+

h(x) = −∞,

� 1

0
h(x) dx = −∞,

and

lim
x→+∞

h(x)

x
= β, (1.8)

with β > 0 satisfying (1.2). Then, there exists s∗ > 0 such that, for every s ≥ s
∗
, problem (1.3) has at least Nβ solutions, being

Nβ = 2
��

T
√

β

π

�
−

�
T
√

β

2π

��
+ 1.

(Here, for every positive number a, we denote by the symbol �a� the greatest integer less than or equal to a.)

Notice that
lim

β→+∞
Nβ = +∞.

This fact could be related with a result in [11], where the case of superlinear growth at +∞ was considered, as well as the
case of a second repulsive singularity at a point b̄ > 0. In both cases, the existence of infinitely many solutions was proved.

A result similar to Corollary 1.1 has been proved in [4, Theorem 2.5], where the function h(x) was supposed to be
continuously differentiable, and some conditions on h

�(x) were assumed instead of (1.8).
The proof of Theorem 1.1 follows an argument introduced by del Pino et al. in [12], in the context of asymmetric

nonlinearities, motivated by a suspension bridge model proposed by Lazer and McKenna [13]. In the same line, further
generalizations were given in [8,14,9]. We first find a solution x̂s(t) to (1.4) by means of topological degree arguments, and
then, after a change of variable which transforms this solution into the origin, we use the Poincaré–Birkhoff fixed point
theorem (see Section 2 for the details) to find the other solutions. In particular, focusing on Corollary 1.1, for every integer

k ∈
�
T
√

β

2π
,
T
√

β

π

�
,

we find two solutions x1
s,k(t), x

2
s,k(t) such that xi

s,k(t) − x̂s(t) has exactly 2k zeros in [0, T [, for i = 1, 2.
Let us now briefly summarize the content of the forthcoming sections. In Section 2, we recall the precise version of the

Poincaré–Birkhoff theorem which we will use, as well as some useful preliminaries about the rotation number of plane
paths. Section 3 is devoted to the proof of the main result. Finally, in Section 4 we give a more general statement which
shows how condition (1.6) can be weakened, together with some final remarks.

For further results on the periodic problem for second order differential equations with a singularity, we refer to the
book [15], and the references therein.

2. Preliminaries for the proof

In this section, we introduce some preliminaries which will be useful for the proof of Theorem 1.1. First, we recall the
notion of rotation number of a plane curve around the origin.

Definition 2.1. For t1 < t2, let z : [t1, t2] → R2 be an absolutely continuous path such that z(t) �= 0 for every t ∈ [t1, t2].
The rotation number of z(t) = (u(t), v(t)) around the origin is defined as

Rot(z(t); [t1, t2]) = 1
2π

�
t2

t1

v(t)u�(t) − u(t)v�(t)

u(t)2 + v(t)2
dt.

It iswell known that Rot(z(t); [t1, t2]) counts the normalized clockwise angular displacement of the curve z(t) around the
origin, in the time interval [t1, t2]. Precisely, writing z(t) = ρ(t)(cos θ(t), sin θ(t)), with ρ(t), θ(t) absolutely continuous
functions, and ρ(t) > 0, it holds that

Rot(z(t); [t1, t2]) = −θ(t2) − θ(t1)

2π
.

In particular, when z(t1) = z(t2), namely when z(t) is a closed path, the number Rot(z(t); [t1, t2]) is an integer.

Remark 2.1. Wewill also need the followingmodified version of the rotation number, considered first in [16]. Precisely, for
any positive real number κ and any absolutely continuous path z : [t1, t2] → R2 such that z(t) �= 0 for every t ∈ [t1, t2],
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we set

Rotκ (z(t); [t1, t2]) = κ

2π

�
t2

t1

v(t)u�(t) − u(t)v�(t)

κ2u(t)2 + v(t)2
dt.

Such a definition corresponds to writing z(t) = ρ(t)( 1
κ
cos θ(t), sin θ(t)) and, in general, gives a different value with

respect to the classical rotation number of Definition 2.1. However, the remarkable fact (which is implicitly used in [16], see
also [6, Theorem 4 and Remark 1] for a detailed proof) is that, for every integer j,

Rot(z(t); [t1, t2]) < j ⇐⇒ Rotκ (z(t); [t1, t2]) < j,

Rot(z(t); [t1, t2]) > j ⇐⇒ Rotκ (z(t); [t1, t2]) > j.

We will need the following homotopy invariance of the rotation number.

Proposition 2.2. Let z : [t1, t2]×[0, 1] → R2
be a continuous function, with z(·; λ) absolutely continuous for every λ ∈ [0, 1].

Assume that:

• z(t; λ) �= 0 for every t ∈ [t1, t2] and every λ ∈ [0, 1];
• there exist P,Q ∈ R2 \ {0} such that, for every λ ∈ [0, 1],

z(t1; λ) = P and z(t2; λ) = Q .

Then

Rot(z(t; 0); [t1, t2]) = Rot(z(t; 1); [t1, t2]).

This property follows from the fact that, defining the differential form

ω(u, v) = vdu − udv

u2 + v2 ,

it holds that

Rot(z(t; λ); [t1, t2]) =
�

z(·;λ)

ω,

for every λ ∈ [0, 1]. Sinceω is a closed differential form onR2\{0} and the paths z(·, 0) and z(·, 1) are joint by an admissible
homotopy (with the same endpoints P and Q ), the conclusion follows from the standard theory of differential forms (see,
for instance, [17, Chapter 2, Theorem 2]).

In the proof of the forthcoming Lemma 3.4, we will consider two paths z1, z2 : [0, T ] → R2 and a convex compact set K

such that:
• z1(t) �∈ K for every t ∈ [0, T ];
• z2(t) is a closed path such that z2(t) ∈ K for every t ∈ [0, T ].
We will apply Proposition 2.2 with

z(t; λ) = z1(t) − (λz2(t) + (1 − λ)P),

where P = z2(0) = z2(T ). In this situation, z2(t) is thus continuously deformed into its initial/final point P , so that it is
possible to conclude that

Rot(z1(t) − z2(t); [0, T ]) = Rot(z1(t) − P; [0, T ]).
Finally, for reader’s convenience, we recall here the theoremwhichwill be used in Section 3 to get ourmultiplicity result.

We give the precise statement for the general case of a planar Hamiltonian system. In the following, we denote by

J =
�
0 −1
1 0

�

the standard symplectic matrix and by D(Γ ) the open bounded region delimited by a Jordan curve Γ ⊂ R2 (according to
the Jordan Theorem).

Theorem 2.3. Let O be a relatively open subset of [0, T ]×R2
and H : O → R be such that ∇H(t, z) is a Carathéodory function

(cf. [18]), locally Lipschitz continuous with respect to z. Assume further that

[0, T ] × {0} ⊂ O and ∇H(t, 0) ≡ 0.

Finally, assume that there exist two Jordan curves Γ0, Γ∞ ⊂ R2
, with

0 ∈ D(Γ0) ⊂ D(Γ0) ⊂ D(Γ∞),
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both strictly star-shaped around the origin, and two positive integers k0 ≤ k∞ such that:

• for every z̄ ∈ D(Γ∞), one has (0, z̄) ∈ O, and the (unique) solution to the Cauchy problem

�
Jz

� = ∇H(t, z)
z(0) = z̄,

which we denote by z(·; z̄), is defined on [0, T ], with (t, z(t; z̄)) ∈ O for every t ∈ [0, T ];
• Rot(z(t; z̄); [0, T ]) < k0, for every z̄ ∈ Γ0;
• Rot(z(t; z̄); [0, T ]) > k∞, for every z̄ ∈ Γ∞.

Then, for every integer k ∈ [k0, k∞], the problem
�
Jz

� = ∇H(t, z)
z(0) = z(T )

(2.1)

has at least two (distinct) solutions z1,k(t), z2,k(t), with

z1,k(0), z2,k(0) ∈ D(Γ∞) \ D(Γ0),

such that

Rot(z1,k(t); [0, T ]) = Rot(z2,k(t); [0, T ]) = k.

Observe that the local Lipschitz continuity assumption on ∇H(t, z) ensures the uniqueness for every Cauchy problem
associated with the differential equation in (2.1). In particular, since ∇H(t, 0) ≡ 0, it turns out that z(t; z̄) �= 0 for every
t ∈ [0, T ], provided that z̄ �= 0. As a consequence, the rotation numbers appearing in the statement are well defined.

Theorem 2.3 is actually a consequence of the Poincaré–Birkhoff fixed point theorem, in the version by Ding [19], when
applied to the Poincaré map associated with the planar system Jz

� = ∇H(t, z), as an area preserving map

Ψ : D(Γ∞) → R2, z̄ �→ z(T ; z̄). (2.2)

The result in [19], however, requires an extra assumption, i.e. the strictly star-shapedness of the outer boundary of the
annular region, as recently pointed out in [20]. For a proof of Theorem 2.3 under this stronger assumption, we refer to [21,
Corollaries 2 and 3]. See also [22] for a recent account on the state of the art concerning the Poincaré–Birkhoff theorem.

Theorem 2.3 will be applied to an equation of the type

u
�� + h(t, u) = 0, (2.3)

with h(t, u) defined on a relatively open subsetΩ ⊂ [0, T ]×R and such that h(t, 0) ≡ 0; such an equation will be obtained
starting from the differential equation in (1.4) by means of a suitable change of variable. Indeed, (2.3) is equivalent to the
planar Hamiltonian system Jz

� = ∇H(t, z), with the position z = (u, v), O = Ω × R ⊂ [0, T ] × R2, and, for (t, u, v) ∈ O,

H(t, u, v) = 1
2
v2 +

�
u

0
h(t, ξ) dξ .

In the situation of Eq. (2.3), the solutions z(t) to the equivalent Hamiltonian system (2.1) having rotation number equal to
k correspond to T -periodic solutions u(t) with 2k zeros in [0, T [.

3. Proof of Theorem 1.1

Let us first clarify our regularity assumptions. The function g : [0, T ]×]0, +∞[→ R is supposed to be an L
∞-

Carathéodory function which is locally Lipschitz continuous in its second variable, that is:
• g(·, x) ∈ L

∞(0, T ), for every x > 0,
• for every compact interval I ⊂]0, +∞[, there exists a constant CI > 0 such that, for almost every t ∈ [0, T ] and for every

x, y ∈ I ,

|g(t, x) − g(t, y)| ≤ CI |x − y|.

For further convenience, we set

N (x, y) =
�

1
x2

+ x2 + y2, x > 0, y ∈ R.

Such a function plays the role of a ‘‘norm’’ in the phase-plane for solutions of equations with a singularity at the origin, in the
sense that a solution x(t) is considered ‘‘large’’ whenN (x(t), x�(t)) is ‘‘large’’. In particular, this is the casewhen x(t)2+x

�(t)2

is large, or when x(t) approaches the origin.
Our proof of Theorem 1.1 is based on four preliminary lemmas. The first one concerns the global continuability for the

Cauchy problems associated with the differential equation in (1.4).
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Lemma 3.1. For every s ∈ R, the unique solution to the Cauchy problem

�
x
�� + g(t, x) = sw(t),
x(0) = x̄ > 0,
x
�(0) = ȳ,

(3.1)

is globally defined on [0, T ].

Proof. Let us suppose by contradiction that there exists a solution x(t) of (3.1) whosemaximal interval of definition is [0, τ [
for τ < T . By standard arguments in the theory of initial value problems, one has

lim sup
σ→τ−

N (x(σ ), x�(σ )) = +∞.

A contradiction will then be achieved by using some properties of the rotation number of large solutions which have been
proved in [23]. Indeed, by the arguments therein, it has to be

lim
σ→τ−

Rot((x(t) − 1, x�(t)); [0, σ ]) = +∞. (3.2)

On the other hand, following the computations in [23, Lemma 2], it is possible to see that the time needed for large solutions
to perform a complete rotation around (1, 0) is bounded below by a positive constant, so that the solution necessarily has
to perform only a finite number of rotations in the time interval [0, τ [. We thus have a contradiction with (3.2). �

In the second lemma, by topological degree arguments (developed in [9]), we find a first solution of (1.4), for s > 0
sufficiently large.

Lemma 3.2. There exist s1 > 0 and two positive constants 0 < c < C such that, for every s ≥ s1, problem (1.4) has a solution

x̂s(t) satisfying

c ≤ x̂s(t)

s
≤ C, for every t ∈ [0, T ]. (3.3)

In particular,

lim
s→+∞

x̂s(t) = +∞, uniformly in t ∈ [0, T ].

Proof. Let us define, for t ∈ [0, T ] and x ∈ R, the truncated function

�g(t, x) =
�
g(t, x) if x ≥ 1
g(t, 1) if x ≤ 1.

Since, uniformly for almost every t ∈ [0, T ],

lim
x→+∞

�g(t, x)
x

= a(t),

and the unique solution of (1.7) is positive, using [9, Theorem 2.1] we have that, for every s large enough, there exists a
solution x̂s(t) of

�
x
�� +�g(t, x) = sw(t)
x(0) = x(T ), x

�(0) = x
�(T ).

In particular, from the proof of [9, Theorem 2.1] it also follows that (3.3) is satisfied for suitable constants c, C > 0. Indeed,
such a solution is proved to be of the form

x̂s(t) = s(x̂(t) + �s(t)),

with x̂(t) as in Theorem 1.1, and ��s�∞ ≤ 1
2 mint∈[0,T ] x̂(t). Hence, (3.3) is satisfied for

c = 1
2

min
t∈[0,T ]

x̂(t) and C = max
t∈[0,T ]

x̂(t) + 1
2

min
t∈[0,T ]

x̂(t).

Clearly, (3.3) implies that xs(t) → +∞ uniformly in t ∈ [0, T ], so that, for large values of s, x̂s(t) ≥ 1 for every t ∈ [0, T ],
and hence x̂s(t) solves (1.4). �
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We now perform the following change of variable:

u(t) = x(t) − x̂s(t)

s
. (3.4)

In this way, the solution x̂s(t) is transformed into the origin, and also rescaled by a factor s, as suggested by formula (3.3).
Accordingly, the differential equation in (1.4) is changed into

u
�� + hs(t, u) = 0, (3.5)

where we have set, for simplicity,

hs(t, u) = g(t, su + x̂s(t)) − g(t, x̂s(t))

s
.

Notice that Eq. (3.5) is now of the type considered in the discussion after Theorem 2.3, that is to say, hs(t, u) is an
L
∞-Carathéodory function, locally Lipschitz continuous in u, which iswell defined on a relatively open subsetΩs of [0, T ]×R,
namely

Ωs =
�

(t, u) ∈ [0, T ] × R | u > − x̂s(t)

s

�

,

and hs(t, 0) ≡ 0. Observe in particular that, for the Cauchy problem
�
u

�� + hs(t, u) = 0,
u(0) = ū > −x̂s(0)/s,
u

�(0) = v̄,

there is global continuability on [0, T ]. Indeed, u(t) is a solution if and only if x(t) = su(t)+ x̂s(t) solves (3.1) with x(0) > 0.
By Lemma 3.1, x(t) is globally extendable on [0, T ], so that the same holds for u(t).

Henceforth, we set

Ds =
�

(u, v) ∈ R2 | u > − x̂s(0)
s

�

.

In view of the previous discussion, the Poincaré operator (2.2) associated with the planar system equivalent to (3.5) is well
defined on Ds.

The next lemma deals with the construction of the inner Jordan curve Γ0 of Theorem 2.3, which, as a matter of fact, will
be taken as a circumference around the origin. Such a construction is possible, provided that the parameter s is large enough.

Lemma 3.3. There exist r̃ ∈ ]0, c/2[, with c as in (3.3), and s2 ≥ s1 such that, for every s ≥ s2,

• B(0, r̃) ⊂ Ds, where B(0, r̃) denotes the closed ball of radius r̃ centered at the origin;

• for every u : [0, T ] → R, solution to (3.5) satisfying u(0)2 + u
�(0)2 = r̃

2
, it holds that

Rot((u(t), u�(t)); [0, T ]) <






m + 1
2

if m is odd,

m

2
+ 1 if m is even.

Proof. We begin with the following claims.
Claim 1. For every s ≥ s1, hs(t, u) is defined for almost every t ∈ [0, T ] and every u ∈ [−c/2, c/2], where c is as in (3.3);
moreover, it holds that

lim
s→+∞

(hs(t, u) − a(t)u) = 0, (3.6)

uniformly for almost every t ∈ [0, T ] and every u ∈ [−c/2, c/2].
Proof of Claim 1. From the definition, we see that hs(t, u) is well defined for

u > − x̂s(t)

s
,

so that, by (3.3), the first part of the claim is proved.
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Computing now the expression in (3.6) and using (3.3), we have, for u ∈ [−c/2, c/2],

|hs(t, u) − a(t)u| ≤
����
g(t, su + x̂s(t)) − a(t)(su + x̂s(t))

s

���� +
����
a(t)x̂s(t) − g(t, x̂s(t))

s

����

=
�
u + x̂s(t)

s

� ����
g(t, su + x̂s(t)) − a(t)(su + x̂s(t))

su + x̂s(t)

���� + x̂s(t)

s

����
a(t)x̂s(t) − g(t, x̂s(t))

x̂s(t)

����

≤ (c + C)

����
g(t, su + x̂s(t)) − a(t)(su + x̂s(t))

su + x̂s(t)

���� + C

����
a(t)x̂s(t) − g(t, x̂s(t))

x̂s(t)

���� .

The conclusion is thus achieved, in view of (1.5), since x̂s(t) → +∞ and su + x̂s(t) → +∞, uniformly in t ∈ [0, T ] and in
u ∈ [−c/2, c/2]. �
Claim 2. There exist b,�r , with 0 < b <�r < c/2 and�s1 ≥ s1 such that, for every s ≥�s1, one has
• B(0,�r) ⊂ Ds,
• for every u : [0, T ] → R, solution to (3.5) satisfying u(0)2 + u

�(0)2 =�r2, it holds that

b
2 ≤ u(t)2 + u

�(t)2 ≤
�
c

2

�2

, (3.7)

for every t ∈ [0, T ].
Proof of Claim 2. Set ρ(t) =

�
u(t)2 + u�(t)2 and fix

�r = c

8
exp

�

−1 + a+
2

T

�

,

where a+ is as in (1.6). Observe that, since�r < c/2, we have B(0,�r) ⊂ Ds. We begin to prove the second inequality in (3.7),
namely that ρ(t) < c/2 for every t ∈ [0, T ]. Notice that ρ(0) =�r < c/2.

Assume by contradiction that there exists t̄ ∈ [0, T ] such that

ρ(t) <
c

2
for every t ∈ [0, t̄[, and ρ(t̄) = c

2
.

From Eq. (3.5), we get

ρ �(t) = u
�(t)(u(t) − hs(t, u(t)))�

u(t)2 + u�(t)2
. (3.8)

In view of Claim 1, since |u(t)| ≤ ρ(t) ≤ c/2 for every t ∈ [0, t̄], there exists�s1 ≥ s1 such that, for every s ≥�s1 and almost
every t ∈ [0, T ],

|hs(t, u(t)) − a(t)u(t)| ≤ �r
T

.

Hence, by elementary inequalities, we achieve, from (3.8),

ρ �(t) ≤ 1 + a+
2

ρ(t) + �r
T

.

By Gronwall’s lemma, we get

ρ(t̄) ≤
�

ρ(0) + �r t̄
T

�

exp
�
1 + a+

2
t̄

�
≤ 2�r exp

�
1 + a+

2
T

�
= c

4
,

whence the contradiction.
The proof of the other inequality in (3.7), i.e., ρ(t) > b for every t ∈ [0, T ], is similar. Indeed, it suffices to exploit a time

inversion argument, by observing that the function�u(σ ) = u(T − σ) satisfies the equation�u��(σ ) + hs(T − σ ,�u(σ )) = 0.
Hence, Gronwall’s lemma can be used just as before, and the conclusion follows by choosing

b = �r
4
exp

�

−1 + a+
2

T

�

. �

Going back to the proof of Lemma 3.3, recall that, from assumption (1.6),

T
√
a+

2π
<

m + 1
2

;
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hence, it is possible to fix ζ > 0 so small that

T
√
a+

2π

�
1 + cζ

2b2 min{a+, 1}

�
<

m + 1
2

.

Moreover, in view of Claim 1, there exists s2 ≥�s1 such that, for s ≥ s2, it holds that

|hs(t, u) − a(t)u| ≤ ζ ,

for almost every t ∈ [0, T ] and every u ∈ [−c/2, c/2]. Let now u : [0, T ] → R be a solution to (3.5), satisfying
u(0)2 + u

�(0)2 =�r2. In view of Claim 2, we have b
2 ≤ u(t)2 + u

�(t)2 ≤ (c/2)2 for every t ∈ [0, T ], so that

Rot√a+((u(t), u�(t)); [0, T ]) =
√
a+

2π

�
T

0

u
�(t)2 + hs(t, u(t))u(t)

u�(t)2 + a+u(t)2
dt

≤
√
a+

2π

��
T

0

u
�(t)2 + a(t)u(t)2

u�(t)2 + a+u(t)2
dt +

�
T

0

(hs(t, u(t)) − a(t)u(t))u(t)

u�(t)2 + a+u(t)2
dt

�

≤ T
√
a+

2π

�
1 + cζ

2b2 min{a+, 1}

�

<
m + 1

2
≤






m + 1
2

ifm is odd
m

2
+ 1 ifm is even.

By the property recalled in Remark 2.1, we conclude. �

The last lemma concerns the construction of the outer Jordan curve Γ∞ appearing in Theorem 2.3, which will turn out to be
a translation of a level curve of the function N (x, y). Notice that, now, we do not need to enlarge s any more.

Lemma 3.4. For every s ≥ s2, there exists a strictly star-shaped Jordan curve Υs around the origin such that

• denoting by D(Υs) the open bounded region delimited by Υs, one has

B(0,�r) ⊂ D(Υs) ⊂ D(Υs) ⊂ Ds,

where�r is as in Lemma 3.3;
• for every u : [0, T ] → R, solution to (3.5) satisfying (u(0), u�(0)) ∈ Υs, it holds that

Rot((u(t), u�(t)); [0, T ]) > m.

Proof. Fix s ≥ s2. Since�r < c/2, in view of (3.3) we can fix r̂ such that

�r < r̂ <
x̂s(0)
s

. (3.9)

We prove the following claims.
Claim 1. There exists Rs > 0 such that, if

(u, v) ∈ Ds and N (su + x̂s(0), sv + x̂
�
s
(0)) ≥ Rs,

then
�
u2 + v2 ≥ r̂.

Proof of Claim 1. If u ≤ −r̂ , the inequality clearly holds. On the other hand, if u > −r̂ , writing explicitly the expression of
N (su + x̂s(0), sv + x̂

�
s
(0)) and using elementary inequalities, we have, in view of (3.9),

2s2(u2 + v2) ≥ R
2
s
− 2(x̂s(0)2 + x̂

�
s
(0)2) − 1

(su + x̂s(0))2

> R
2
s
− 2(x̂s(0)2 + x̂

�
s
(0)2) − 1

(−sr̂ + x̂s(0))2
,

so that we conclude choosing Rs large enough. �
Claim 2. There exists R̂s ≥ Rs such that, for every x : [0, T ] → R, solution to the differential equation in (1.4) satisfying

N (x(t), x�(t)) ≥ R̂s for every t ∈ [0, T ],
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it holds that

Rot((x(t) − x̂s(0), x�(t) − x̂
�
s
(0)); [0, T ]) > m.

Proof of Claim 2. First of all, fix α ∈](mπ/T )2, a−[ and, accordingly, thanks to (1.5) and (1.6), choose d > x̂s(0) such that

α(x − x̂s(0)) ≤ g(t, x) − sw(t), for a.e. t ∈ [0, T ], and every x ≥ d. (3.10)

Second, fix η > 0 so small that

π√
α

+ 4η <
T

m
. (3.11)

Let R̂s ≥ Rs be such that N (x̂s(0), x̂�
s
(0)) < R̂s. Let x : [0, T ] → R be a solution to the differential equation in (1.4) satisfying

N (x(t), x�(t)) ≥ R̂s for every t ∈ [0, T ]. In the rest of the proof, we will possibly enlarge R̂s, taking care of the fact that all
the estimates will be independent of the solution considered.

Writing (x(t) − x̂s(0), x�(t) − x̂
�
s
(0)) in polar coordinates for t ∈ [0, T ], namely

x(t) = x̂s(0) + ρ(t) cos θ(t), x
�(t) = x̂

�
s
(0) + ρ(t) sin θ(t),

a standard computation yields, for every t ∈ [0, T ],

− θ �(t) = x
�(t)(x�(t) − x̂

�
s
(0)) + (g(t, x(t)) − sw(t))(x(t) − x̂s(0))

(x(t) − x̂s(0))2 + (x�(t) − x̂�
s
(0))2

. (3.12)

We are going to show that the time needed for (x(t), x�(t)) to perform a whole revolution around the point (x̂s(0), x̂�
s
(0)) is

strictly less than T/m.
We first consider the case when x(0) > d and m = 1.

Step 1. We claim that, enlarging R̂s, if necessary, there is a first time instant t1 ∈ ]0, T ] such that x(t1) = d and x(t) > d for
every t ∈ [0, t1[. Moreover, x�(t1) < 0.

To this aim, we first show that, up to choosing R̂s larger if necessary, we have

− θ �(t) ≥ sin2(θ(t)) + α cos2(θ(t)) − η

2T
min{α, 1}, (3.13)

whenever x(t) ≥ d. Indeed, by (3.12) and (3.10), one has, for x(t) ≥ d,

− θ �(t) ≥ sin2(θ(t)) + α cos2(θ(t)) + x̂
�
s
(0)x�(t) − x̂

�
s
(0)2

(x(t) − x̂s(0))2 + (x�(t) − x̂�
s
(0))2

(3.14)

and elementary arguments show that, if R̂s is large,
�
N (x, y) ≥ R̂s

x ≥ d,
�⇒

����
x̂
�
s
(0)y − x̂

�
s
(0)2

(x − x̂s(0))2 + (y − x̂�
s
(0))2

���� ≤ η

2T
min{α, 1}.

Suppose now by contradiction that x(t) > d for every t ∈ [0, T ]. From (3.13), we get

π√
α

≥ 1√
α

arctan

�
1√
α

tan θ(t)

������

T

0

=
� θ(0)

θ(T )

dθ

sin2 θ + α cos2 θ
≥ T

�

1 − η

2T

�

,

which contradicts (3.11). Notice that this argument also shows that

0 < t1 <
1√
α

�

arctan

�
1√
α

tan θ(0)

�

− arctan

�
1√
α

tan θ(t1)

��

+ η. (3.15)

Moreover, since x
��(t) < 0 for every t ∈ [0, t1], it follows that x�(t1) < 0.

Step 2. Choosing R̂s large enough, one has

− θ �(t) > 0, for a.e. t ∈ [0, T ]. (3.16)

Indeed, if x(t) ≥ d, this follows from the computationsmade in Step 1. On the other hand, if x(t) ∈ ]0, d[, sinceN (x(t), x�(t))
is large for every t ∈ [0, T ], either x(t) is near the singularity or |x�(t)| is large. Formula (3.16) then follows from the fact
that limx→0+(g(t, x) − sw(t)) = −∞ uniformly for almost every t ∈ [0, T ], similarly as in [23, Lemma 2].
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Fig. 1. Two possible behaviors for the solution in the phase-plane.

Arguing as in [23, Lemma 2] again, up to enlarging R̂s we can find a second time instant t2 > t1, with

t2 − t1 < η, (3.17)

such that x(t2) = d, x�(t2) > 0, x(t) ∈ ]0, d[ for every t ∈ ]t1, t2[, and π < θ(0) − θ(t2) < 2π .
Step 3. We claim that there exists t3 ∈]t2, T ] such that θ(0) − θ(t3) = 2π .

Assume the contrary, that is, θ(0) − θ(t) < 2π for every t ∈ [t2, T ]. By convexity reasons it has to be x(t) > d in a right
neighborhood of t2.

If x(t) > d for every t ∈ ]t2, T ], with the same computations as in (3.14), together with (3.15), we get

t1 + (T − t2) <
π√
α

+ 2η,

a contradiction with (3.11), in view of (3.17). Therefore, there exists t
� ∈ ]t2, T ] such that x(t �) = d, with x(t) > d for

t ∈ ]t2, t �[ (see Fig. 1). Then, as before,

t1 + (t � − t2) <
1√
α

�

arctan

�
1√
α

tan θ(t2)

�

− arctan

�
1√
α

tan θ(t �)

�

+ arctan

�
1√
α

tan θ(0)

�

− arctan

�
1√
α

tan θ(t1)

��

+ 2η

<
π√
α

+ 2η.

Hence, using (3.17) and (3.11), we see that t � < T − η. Consequently, the computations in [23, Lemma 2] imply that there
exists t �� ∈]t �, t � + η[ such that x(t ��) = x̂s(0) and x

�(t ��) < x̂
�
s
(0), so that θ(0) − θ(t ��) > 2π , a contradiction.

From the above discussion, we can also conclude that

t3 − t2 <
1√
α

�

arctan

�
1√
α

tan θ(t2)

�

− arctan

�
1√
α

tan θ(t3)

��

+ 2η.

Step 4. We have just proved that, in the phase-plane, (x(t), x�(t)) performs at least one turn around the point (x̂s(0), x̂�
s
(0))

in the time from 0 to T . In particular, we have the following upper bound for the time needed to perform such a revolution:

t3 = t1 + (t2 − t1) + (t3 − t2) ≤ π√
α

+ 4η <
T

m
.
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In view of (3.16), the proof of Claim 2 is completed in the casewhen x(0) > d andm = 1. It can be easily seen that analogous
considerations permit to conclude also in the case when x(0) ≤ d.

Ifm > 1, we can argue as above for any of the subsequent revolutions, with the same upper bounds on the time needed
for each of them, until m turns are performed. Hence, the time needed to perform m revolutions has to be strictly less than
T , and we conclude the proof of Claim 2 in view of (3.16). �

We are now ready to conclude the proof of Lemma 3.4. Let Ks be a suitable closed rectangle in the half-plane {x > 0}
such that (x̂s(t), x̂

�
s
(t)) ∈ Ks for every t ∈ [0, T ]. Up to enlarging R̂s, it is not restrictive to assume that

N (x, y) ≥ R̂s �⇒ (x, y) �∈ Ks.

As a standard consequence of the global continuability (the elastic property, cf. [6, Lemma 10]), there exists�Rs ≥ R̂s such
that, for any x : [0, T ] → R, solution to the differential equation in (1.4), one has

N (x(0), x�(0)) ≥�Rs �⇒ N (x(t), x�(t)) ≥ R̂s for every t ∈ [0, T ].
Set now

Υs = {(u, v) ∈ Ds | N (su + x̂s(0), sv + x̂
�
s
(0)) =�Rs}.

By Claim 1, B(0,�r) ⊂ D(Υs); moreover, Υs is a strictly star-shaped Jordan curve around the origin. Let u : [0, T ] → R be
a solution to (3.5), satisfying (u(0), u�(0)) ∈ Υs. In view of (3.4), N (x(0), x�(0)) = �Rs, so that (x(t), x�(t)) �∈ Ks for every
t ∈ [0, T ]. By Proposition 2.2, we then have that

Rot((x(t) − (λx̂s(t) + (1 − λ)x̂s(0)), x�(t) − (λx̂�
s
(t) + (1 − λ)x̂�

s
(0))); [0, T ])

is independent of λ ∈ [0, 1]. Hence, recalling (3.4) and Claim 2,

m < Rot((x(t) − x̂s(0), x�(t) − x̂
�
s
(0)); [0, T ])

= Rot((x(t) − x̂s(t), x
�(t) − x̂

�
s
(t)); [0, T ])

= Rot((su(t), su�(t)); [0, T ])
= Rot((u(t), u�(t)); [0, T ]).

The lemma is then proved. �

We now collect the results proved in the previous lemmas to prove Theorem 1.1. Choose s
∗ = s2 and fix s ≥ s

∗. A first
solution to (1.4) is provided by Lemma 3.2. Moreover, setting Γ0 = ∂B(0,�r) and Γ∞ = Υs, Lemmas 3.3 and 3.4 imply, via
Theorem 2.3, the existence ofm + 1 (if m is odd) or m (ifm is even) nontrivial solutions to

�
u

�� + hs(t, u) = 0
u(0) = u(T ), u

�(0) = u
�(T ).

Coming back to the original equation, in view of (3.4), the proof is thus concluded.

4. Final remarks

In this section, we present a possible generalization of Theorem1.1. The proof just exploits the same arguments as before.
In the following, for a > 0, with the symbol �a� we will mean the greatest integer less than or equal to a, while by �a�

we will denote the least integer greater than or equal to a. Moreover, we introduce the notation

E
−(a) =

�
�a� if a �∈ N,
a − 1 if a ∈ N,

E
+(a) =

�
�a� if a �∈ N,
a + 1 if a ∈ N,

so that E
−(a) ≤ �a� ≤ a ≤ �a� ≤ E

+(a). For instance,

3 = E
−(π) = �π� < π < �π� = E

+(π) = 4,

while

2 = E
−(3) < �3� = 3 = �3� < E

+(3) = 4.

Theorem 4.1. Let g : [0, T ] × R → R be an L
∞
-Carathéodory function, locally Lipschitz continuous in its second variable.

Assume further that:

• there exist δ > 0 and a continuous function f :]0, δ] → R such that

g(t, x) ≤ f (x), for a.e. t ∈ [0, T ], and every x ∈ ]0, δ],
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and

lim
x→0+

f (x) = −∞,

� δ

0
f (x) dx = −∞,

• there exists a ∈ L
∞(0, T ) such that

– uniformly for almost every t ∈ [0, T ],

lim
x→+∞

g(t, x)

x
= a(t);

– there exist two strictly positive constants a−, a+ such that

a− ≤ a(t) ≤ a+,

for almost every t ∈ [0, T ];
– the problem

�
x
�� + a(t)x = w(t)
x(0) = x(T ), x

�(0) = x
�(T ),

has a unique solution x̂(t), and x̂(t) > 0 for every t ∈ [0, T ].
Then, there exists s

∗ > 0 such that, for every s ≥ s
∗
, problem (1.4) has at least

2
�

E
−

�
T
√
a−

π

�
− E

+
�
T
√
a+

2π

��
+ 3 (4.1)

solutions.

The expression in (4.1) highlights the fact that the elements of both ΣD and the spectrum of the T -periodic problem,
namely

ΣP =
��

2kπ
T

�2

| k = 0, 1, 2, . . .

�

,

act as natural comparison quantities in the estimates of the rotation numbers of ‘‘small’’ and ‘‘large’’ solutions (around x̂s(t)),
respectively. When (1.6) is fulfilled, i.e.

�
mπ

T

�2

< a− ≤ a+ <

�
(m + 1)π

T

�2

,

so that a(t) is far away from both the spectra ΣD and ΣP , it turns out that

E
−

�
T
√
a−

π

�
=

�
T
√
a−

π

�
, E

+
�
T
√
a+

2π

�
=

�
T
√
a+

2π

�
,

and Theorem 4.1 simply reduces to Theorem 1.1.
The possible interest of Theorem 4.1 lies in the fact that a(t) is allowed to interact with both ΣD and ΣP . Indeed, as it is

quite commonwhen trying to apply the Poincaré–Birkhoff theorem, the estimates of the rotation numbers can be performed
independently of any nonresonance condition, up to ‘‘correcting’’ the number of solutions produced (when a(t) interacts
with some eigenvalues). In the statement of Theorem 4.1, such a correction is made effective by means of the functions
E

−, E
+.

In particular, concerning the interaction with ΣD, no assumptions at all are made. On the other hand, with respect to the
T -periodic problem, we are implicitly assuming that

�
x
�� + a(t)x = 0
x(0) = x(T ), x

�(0) = x
�(T ),

�⇒ x(t) ≡ 0.

This property is only needed to find the first solution x̂s(t) via topological degree arguments (see Lemma 3.2) and can hold
true even in some cases when a(t) jumps an arbitrarily large number of T -periodic eigenvalues.

As a consequence of Theorem 4.1, we observe that Corollary 1.1 holds also when β ∈ ΣD, provided that β �∈ ΣP . In this
case, Nβ will be replaced by the corrected number of solutions

2
�
T
√

β

π
−

�
T
√

β

2π

��
− 1.
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