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1. INTRODUCTION

Consider the equation

Lu= Nu, (L.1)

where L is a densely defined unbounded linear operator on a Hilbert space
H, and N is nonlinear. The aim of this paper is to extend the already
well-known existence results for the case where L is self-adjoint, to a
general situation, where no symmetry at all is required on L.

Throughout this paper, we will assume L to be closed with a compact
resolvent and N to grow at most linearly at infinity. We are interested in
problems at resonance, i.e., with ker L # {0}. It is well known, in the self-
adjoint case, that Eq. (1.1) has a solution whenever N asymptotically lies
between O (which is an eigenvalue of L) and the first positive eigenvalue 2,,
with no interference with those values, a condition which can be expressed
by asking that, for some constants ue [0, 4,/2[ and v=0,

A
HNu——lu L pllul + v, forall weH. (1.2)

2

Some interference can even be allowed at one or both sides provided that
some extra conditions are added (e.g., Landesman-Lazer type conditions;
cf. [LL], [AM], [BN], [FF,]).

When the operator L is no longer self-adjoint, possible interference of the
nonlinearity with complex eigenvalues of L should be taken into account.
However, as explained below, more fundamental modifications are then
required concerning the conditions imposed on the nonlinearity.
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If L is normal, the situation does not depart much from the self-adjoint

case. Indeed, we can then always find a sufficiently small p >0 so that
Eq. (1.1) has a solution if there exist ue [0, p/2[ and v =0 such that

“Nu—gu

|
1<y|1u||+\', forall ueH. (1.3)

This follows from the fact that, in this case,

~

P
23 lull (1.4)

dp > 0 such that, Yuedom L, 1 Lu— 3 u

The existence proof for the nonlinear equation is an easy application of
Leray—Schauder theory. Actually, condition (1.4) does not really require L
to be normal; it is sufficient that

ker L = ker L¥*, (1.5)

L* being the adjoint of L (see [BN], [OZ], [AOZ]).

We will show that the assumption (1.5) is crucial for obtaining (1.4).
Moreover, we will provide situations where (1.5} is not satisfied and show
that no solutions of (1.1) exist under assumption (1.3) alone, no matter
how small p is taken. Such a phenomenon has been already observed by
Gaudenzi and Zanolin [GZ] for nth order boundary value problems.

At this point, the question arises of finding how to modify condition
(1.3) in order to adapt it to the case where ker L #ker L*. A fairly natural
idea is to introduce a continuous linear operator J which maps ker L into
ker L*. With such an operator, we will show that (1.4) generalizes to

3p >0 such that, Vuedom L, HLu—EJulzgllJull. (1.6)

27

The associated condition for N becomes

< pllJull + v, (1.7)

|
h Nu— g Ju

1

with pe [0, p/2[, v=0. We will prove, under the provision that J is an
isomorphism between ker L and ker L*, that (1.1) is solvable under condi-
tion (1.7) (assuming, of course, that p comes from (1.6)). Once the role of
the operator J is understood, it is an easy matter to treat various existence
problems, letting, for instance, N interfere with the eigenvalue 0, while
satisfying a generalized Landesman-Lazer type condition.

The operator J will not in general be unique, and it may be difficult to
identify a convenient one, when dealing with applications to differential
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equations. However, we will provide some examples where J can be
canonically defined in a simple way.

The paper is organized as follows. In Section 2, we define the linear
setting and introduce the operator J, which will play a crucial role
throughout the paper. In relation with (1.6), we define the set

B

we will show that .o/, is a closed interval whose interior contains 0, when
J is an isomorphism between ker L and ker L*.

In Section 3, we prove two existence results, the first one being
established under condition (1.7). For the second result, condition {1.7)
is somehow relaxed, allowing N to interfere with the eigenvalue 0; a
generalized Landesman-Lazer type condition (see [Ce], [Fi], [Ne],
[Ma,]) appears in that theorem.

In Section 4, we prove two non-existence results, showing that the use of
the operator J is really necessary in concrete examples. We thus generalize
a result of Gaudenzi and Zanolin [GZ].

In Section 5, we develop our results in a semi-abstract setting. In
particular, in Theorem 5.4, we present a Landesman-Lazer type condition
for non-selfadjoint problems, which was already considered, e.g., by Shaw
[Sh] for bounded nonlinearities.

In Section 6, we illustrate our approach by two applications to boundary
value problems. We first consider a scalar problem, and generalize a result
of Ahmad [Ah]. Second, we consider the periodic boundary value problem
for a system of differential equations. Both applications are rather simple,
and we did not search for greater generality. An example of a boundary
value problem for an eighth order ordinary differential equation is also
included, for which the authors are indebted to M. Gaudenzi.

e@-{peRquedomL JLu~—Ju"

2. THE LINEAR SETTING

We will study problem (1.1} in a Hilbert space H equipped with the
scalar product (-,-> and norm ||-|. A more general setting could be
considered, as in [AOZ] for instance, but we prefer keeping things simple
at this stage.

Let L:dom Lc H— H be a densely defined Fredholm operator with
zero index and nontrivial kernel, and consider projections P, Q: H — H
such that

Im P=ker L, kerQ=1Im L
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(see [Ma, ] for the terminology). To P and Q, we associate the right inverse
of L, defined by Kp o= (L|gom s nkerp) | (I—Q): H— H; we assume that
K, , 1s a compact operator.
Let J: H— H be a continuous linear operator, and define the set
ILu—gJul

l
>34}
We denote by L* and J* the adjoint operators of L and J, respectively.

2
Recall that ker L* = (Im L)*. The following lemma describes the properties
of the set .o7,. Notice that .7, could have been defined equivalently by

kc/J:{peRquedom L,

o, ={peR|Vuedom L, || Lul|* = p{Lu, Ju)}.

LEMMA 2.1. The set «f, is a closed interval containing 0. If
J(ker L)< ker L*, then O is an interior point of f,. Otherwise, of,= {0},

Proof. 1t is easy to see that .o/, is an interval containing 0 and that
inf &/, and sup .«,, when finite, belong to .«/,. Assume that J(ker L)<
ker L*=(Im L)*. By the continuity of K, ,, there exists 4 >0 such that
l({ = P) u|| < é|Lu| for every uedom L. Then, for every uedom L,

[{Lu, Jup| =|{Lu, J(I = P)uj|
SO i I L1,

where ||, denotes the operator norm on the space ¥(H) of linear
continuous operators from H into H. Setting p= (3lJ]| ;1)) "~ !, one sees
that [ —p, p] < .o/, so that 0 is an interior point of .<&/,.

Assume now that there exists we J(ker L)\(Im L)*. Let veker L be
such that Juv=u, and wedom L such that {Lw,u)#0. Arguing by
contradiction, let p € .o/,"{0}. Then, for any ne Z, we have

[Lwil? = | LOv + nv)ll* = p{ L{w + nv), J(w + nv) )
=pl{Lw, Jw) + pndLw, u),
which clearly is impossible. J
In the following lemma, we present a possible way of determining the

set .o/;.

PROPOSITION 2.2, Assume that J(dom L)cdom L* and J{ker L)<
ker L*. Then, sup ./, (resp. inf .o/)) is the least positive (resp. greatest
negative) eigenvalue A of

2L*¥Ly=A(J*Lu+ L*Ju)

2.1n
uedom L nker P.
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Remark. 1If (2.1) has no positive (resp. negative) eigenvalue, then
sup .o/, = + o (resp. inf &/, = — ¢ ).

Proof. The set dom Lnker P, equipped with the scalar product
a(u, v) :=<Lu, Lv), is a Hilbert space. Let us introduce the symmetric
bilinear form

blu, v)=3({Lu, Jv> + {Lv, Ju)).

Set

sup b(u, u) sup {Lu, Ju)
o= = —
uedomLmkerPa(u’u) uedom L mker P ”Lqu

[}

if <0, it is easily seen that sup .o/, = + oc, whereas, if 2 >0, we will have
sup.o/,=a~'. We will relate « to the eigenvalues of the problem

b(u, v) = pa(u, v), VYvedom L nker P. (2.2)

The spectral theorem we use [ Wi, p. 91] requires the bilinear form b to be
weakly continuous for the topology induced by a. Let us show that this is
the case. Let (u,), (v,) be weakly convergent sequences in dom L nker P,
ie., for every welm L,

{Luy, w) = {Lu, w), {Lvg, w) — (Lo, w),
for some u, vedom L nker P. Then, writing
bluy, vy) = %(<Luk’ JKp o Loy d + (Lo, JKp g Luy ),

we see that b(u,, v,) converges towards b(u, v), since K, ,, is compact. The
spectral theorem then tells us that, for o <0, the problem (2.2) has no
positive eigenvalue, whereas, for x> 0, the number o = (sup .o/,) ' is the
greatest eigenvalue.

To conclude, it remains to relate the eigenvalues of the problems (2.1)
and (2.2). Let us first observe that if « is an eigenvalue for the problem
(2.2), « "' is an eigenvalue for

2{Lu, Lv> = A({Lu, Jv> + {Lv, Ju)), Yvedom Lnker P, (2.3)

and conversely. Since J(dom L)<=dom L*, the eigenvalue problem (2.3)
can also be written as

2{Lu, Lv)y = A(J*Lu, v> + (v, L*Ju)), Vvedom L nker P. (2.4)

Any solution u of the above equation must clearly be such that
Lue dom L*. Hence the eigenvalue problem (2.4) is equivalent to (2.1). We
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1

conclude that if x # 0 is an cigenvalue of (2.2), « ' is an eigenvalue of (2.1)

(and conversely). |}

We now turn our attention to an injectivity result which will be used in
the sequel.

ProprosITION 2.3.  Assume that J(ker L)cker L*. Let pe [0, sup .o/,[.
If B: H— H is a continuous linear operator such that

|

Jfor every ue dom L, then the only solutions of

Bu—%).]u}

sg 2], (2.5)

Lu= Bu (2.6)
are in ker L nker B.

Proof. Let u be a solution of (2.6). Take p’ e Jp, sup &/,[. Then,
2 2 ) 5
| Lul|* = | Bull” < p< Bu, Juy = p{ Lu, Ju S# Il L,

and the result foliows. J

The reader is invited to sketch a geometrical proof of Proposition 2.3,
using the uniform convexity of H.

3. THE SEMILINEAR EQUATION

In this section, we consider the semilinear equation
Lu= Nu, (3.1)

where N: H— H is a continuous, not necessarily linear, operator which
transforms bounded sets into bounded sets. The linear operator L satisfies
the assumptions of the previous section. We introduce a linear continuous
operator J: H — H and assume that

Jxer 1. ker L — ker L* is an isomorphism.

The first theorem we present i1s a “non-resonance” result, in the sense that
if N verifies the conditions of Theorem 3.1, so does N+ h, for any he H.
The result provides thus surjectivity conditions for L — N.
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THEOREM 3.1. In the above defined setting, choose pe 10, sup o[ and
assume that

| |
“Nu—gjuh < plJull +v (3.2)

Jor some pe [0, p/2[, v=0, and for all ue H. Then, Eq. (3.1) has a solution.

Although a direct proof of Theorem 3.1 can easily be written, using
Schauder’s fixed point theorem, it is worth showing that it can be obtained
as a corollary of Theorem 3.2, which also permits us to deal with resonance
sttuations. By this, we refer to problems for which the conditions of the
theorem are verified by the function N, but may not be verified by N + A,
for some he H.

THEOREM 3.2. In the above setting, assume

(1) there exist pe [0, sup ./, [ and ae [0, 1[ such that

+0(lu) ),

S“gJu

for ue H, |jul| - x

(i1) for any sequence (u,)=dom L such that |u,)| — o0 and
| Lu, | = O(llu,l|*) for n — oc, one has, for n sufficiently large,

<Nuns JPun>20'

Then, Eq. (3.1) has a solution.

Proof. Let us consider, for 1€ [0, 1[, the equation
. P .
Lu=(l—A)5Ju+ANu. (3.3)

Notice first that, for 4=0, Proposition 2.3 together with the fact that
ker(J ., ,)= 10} yields that (3.3) only has the trivial solution. By the
theory of the coincidence degree (cf. [Ma,]), the theorem will be proven
if we are able to show that the solutions of (3.3) are a priori bounded in
H, for 4e€]0, 1{. Assume, by contradiction, that there exist sequences
(4,)= 10, 1[ and (u,) =dom L, solutions of (3.3). Take p’e Jp, sup «7,[.
Since p'e .o/, it is easily shown, using the definition of «/,, that for all
uedom L,

Lu——J”’>(1——>|Lm|+H§

409-180.1-14
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But, u, being a solution of (3.3) for A= 4,, we have

|

from which we deduce, using (i), that ||Lu,| = O(u,||*) for n — oc and,
since a <1, ||Lu,| = o(]|lu,)) for n— co. Using the continuity of K, , and
J, and the fact that J,. ., is an isomorphism, we then see that
| J(I— P)u,| =o(|JPu,|) for n— co. On the other hand, multiplying (3.3)
by JPu, and using the equality {(Lu,, JPu,> =0 (since J(ker L)=1Im L),
we obtain

Nu, — P Ju,

Lu,~2 Ju, .

=4,
2

s

<Nun9JPun> _(l —Zn)p<']uanPun>

[JPu, 24, | JPu,|I?
< _a —ft,.)ﬂ[l _IlJ(I—P)unH]
2, I Pu,|

But, for n large, the second hand member in the above relation will be
negative. This contradicts (ii). |

Proof of Theorem 3.1. Let us prove that assumptions (i) and (ii) of
Theorem 3.2 are satisfied. Squaring both sides of (3.2), one easily obtains
(i) with @ = 1/2. In order to show that (ii) holds, let («,) = dom L be such
that ||ju,|| = o and ||Lu, || = O(jju,|?) for n— o. A constant ¢ >0 can be
found such that [[(/— P)u,| < clu,|'? Take e€ JO, 1/p[. We then have

(Nu,, JPu,> = (Nu,, Ju,> — {Nu,, J(I— P)u,>
= {Nu,, Ju,> —cllJ[ [Nu,l (1,2

2 J 2
> (N, Tty = Nty = D2 .
4¢
Using (3.2), one finally gets
1
<NU,,,JPun>>; I N\ + nllJu, i =1, (3.4)

for some positive constants n, n". Since (I — P)u,, = o(lju,|) for n— oo and
since J)y ., is an isomorphism, it is clear that |Ju,| — oo for n— co.
Hence, relation (3.4) implies that (ii) holds, and the conclusion then
follows from Theorem 3.2. §
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4. THE Case o, = {0}

In the previous section, the assumptions made on the operator J were
such to guarantee that the set .o, would not reduce to {0}. Let us now
examine this degeneracy situation. Having in mind Theorems 3.1 and 3.2,
we raise the following two questions.

Question 1. If of,={0}, does there exist a positive p such that,
whenever N satisfies (3.2) for some ue [0, p/2[ and v=0, Eq. (3.1) has a
solution ?

Question 2. If o/,= {0}, N has a bounded range, and satisfies condition
(i1) of Theorem 3.2 with x =0, does Eq. (3.1) always have a solution?

We will answer negatively to both questions, exhibiting situations, with
J =1, where the equations fail to have a solution. For that purpose, assume
2 = R" is a bounded domain. We will take H = L*(22; R), and consider an
operator L:dom L < H— H, which is densely defined, closed, has a
compact resolvent, and a one-dimensional kernel. Let ker L=R¢p and
ker L* = Ry ; we assume that the functions ¢,  are continuous on £ and
that the sets {xeQ|o(x)¥(x)>0} and {xeQ]p(x)yY(x)<0} both have
positive measure. In that case, taking J =/, it is clear that J does not map
ker L into ker L*; hence, by Lemma 2.1, .o/, = {0}. The following proposi-
tion will allow us to give a negative answer to Question 1. We will denote
by €(£2; R) the space of continuous real-valued functions defined on Q.

PrOPOSITION 4.1. In the setting defined above, for every p>0, there
exists pe €(82; R) such that, for almost every x e £,

O<p(x)<p
and the equation
Lu=p(x)u

has a nontrivial solution.

Proof. 'The assumptions on ¢ and ¢ yield the possibility of constructing
two positive functions p,, p, e €(£2; R) such that

L p|w¢<0<Jo P29y (4.1)

The proof will be complete once the following result has been established.

Cilaim. There exists é > 0 such that, for every se ]0, [, we can find a
A€ [0, 1] for which the equation

Lu=s[ip,(x)+ (1 —=4) py(x)]u (4.2)
has a nontrivial solution.
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To prove the claim, assume by contradiction that there is a positive
sequence (s, ) converging to 0, such that, for every A€ [0, 1], Eq. (4.2) with
s =25, only has the trivial solution. Taking, if necessary, » sufficiently large,
we can assume that the operator (L—s,{Ap, + {1 —4) p,]{) still has a
compact resolvent (see [Ka, Theorem 3.17, p.214]), and since we are
assuming that 0 is not an eigenvalue, it is invertible. In particular, the
equation

Lu—s,[Ap,+(1=4) pu=s,y (4.3)

has a solution u=u, ;. Without loss of generality, we may assume that
lell = {y¢ll = 1. Multiplying both sides of (4.3) by i and integrating, we get

| Uit =0 p =1, (44)

so that, for some n >0, we have that ||lu, ;|| =# for every n and Ze [0, 1].
Set v, s =u, /llu, |. Since u, ; is a solution of (4.3), we can write

Lvn,i — Sy [/ﬁ“pl + (1 - ;t) Pz] Up s = snd’/“un.i“'

From this, we deduce that

lim Ly, ,=0, uniformly in 1€ [0, 17].

n— %L
and, consequently,

lim (/- P)v, , =0, uniformly in A€ [0, 1]

', 4
n— o

(recall that P is a projection on ker L and that the right inverse of L is
continuous). Then, for any Ae [0, 1], the sequence (v, ;) must contain a
subsequence which converges to some element of ker L; since v, ; is of
norm 1, the limit must be either ¢ or —¢. But, by (4.4), we have

[, Lipi+(1=2) p2) v, <0,

It then results from (4.1) that v, , converges to —¢ and v, | converges to
¢ for n— oo, Define the number r, ; by Pv, ;=r, ;@; if /i is taken large
enough, the following relations will clearly hold:

II—=P)v,,l<1/2 (4€[0,1]),

roo< —1/2, raa=1/2.
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Since u,, ; depends continuously on A€ [0, 1] (see [Ka, p. 417]),s0do v, ;
and r, ;. Consequently, there must exist a e ]O, I[ such that re;=0.
Then

L=, I=1-P)v, ;I <1/2
a contradiction. |

We are now able to answer Question 1. For any p > 0, consider a func-
tion p given by Proposition 4.1 (i.e., such that 0 < p(x) <p for a.e. xe Q);
we can assume p to be small enough so that the operator L — pI has
compact resolvent. Take he L*(Q:;R) and let Nu=pu+h, J=1I Then,
condition (3.2) is satisfied for some pe [0, p/2[ and v =0, but (3.1) has no
solution, unless 4 € ker(L — pI)*.

In order to answer Question 2, consider the same setting as above with
n=1, and let (Nu)(x)=arctan u(x)+ h{x), J=1. We will show that a func-
tion Ae L*(Q; R) can be found such that condition (ii) of Theorem 3.2 is
satisfied, whereas Eq. (3.1) has no solution. Because of the assumption on
@ and ¥, it is possible to construct a function he L*(€2; R) such that

(jg h(p)#/;"(J"g |<p|>e 1~m/2, n/2[ (4.5)

and

() ([, w)et-m2 m22 (46)

Let us prove that condition i) of Theorem 3.2 holds with a=0. By
contradiction, if not,

f (arctan u, (x) + A(x)) Pu,(x) dx <0, 4.7)
luall ‘2

for some sequence (u,)cdom L such that |u,|| —oc for n— oc and
(1= P)u,ll) is bounded. Assuming || =1, this implies that (u,/|u,l|)
converges either to ¢ or to —¢. Let us consider the second case, for
example. By Fatou’s lemma, we deduce from (4.7) that

J hp = | liminf (artan u,(x) M) dx.
o @ n—x ol

Then, computing the limit, we get

szh¢>J¢>(1§w+fw<o —g¢=§fnf<ﬂ|,
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in contradiction with (4.5). An analogous contradiction is reached when
(u,/|lu, ||} converges to ¢, so that condition (ii} of Theorem 3.1 holds with
«=0. Let us now prove that (3.1) has no solutions. For, if u were a
solution of (3.1), we would have

J‘ (arctan u(x)+ A(x)) Y(x) dx =0,
2

from which it follows that
n . n
-= < <z ,
S i) m<3|

in contradiction with (4.6).

5. SEMI-ABSTRACT EXISTENCE RESULTS

Let Qe R” be a bounded domain, and take H = L*(2; R™). As above,
the linear operator L:dom L < H — H is assumed to be densely defined,
closed, with a compact resolvent and a nontrivial kernel.

The linear operator J: H— H will be taken of the form

(Ju)(x) =y, (x) Fulx),

where # is an m xm matrix, and y,e L™(£2; R) is such that, for some
positive constants a, b,

a<y,(x)<h, (5.1)

for every ue H and ae. xeQ. We will assume that J maps ker L
isomorphically onto ker L*. Consequently, by Lemma 2.1, we will have
sup &/, > 0. Although the hypotheses on J are a serious restriction, we will
show cases below where such a J can be found. The following result is an
immediate consequence of Proposition 2.3. The norm in R™ is denoted by
|1, the scalar product by (-,-).

PrOPOSITION 5.1. Let Me L™(Q;R™*™) be such that, for a given
v € ]0, a sup o[,

a1

\M(x) —'Efu

<%|jul (5.2)

for every ue R"\{0} and a.e. x € Q. Then, the equation
Lu=M(x)u (5.3)

has only the trivial solution.
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Proof. Rewrite (5.2) as

i
(M(x)u, fu)>; [M(x)ul’,
and set B: H— H: (Bu)(x)= M{x) u(x). We then have, using (5.1),
CBu, Juy= [ (M(x) u(x), 1,(x) Fu(x) dx

a a ,
> M0 ux)1 = 1 Bull®,
Ve v

By Proposition 2.3, it follows that, if « is a solution of (5.3), then
ue ker L nker B. Hence, for such a function w, M(x) u(x)=0 for a.e. xe Q,
which, by (5.2), implies Ju=0 and, consequently, v =0, since J is one-to-
one on ker L. |

COROLLARY 52. Let ve]0,asup o/,[. Then, for any function
ge L™ (Q; R) such that 0 < g(x) <y for ae. x€8, the equation

Lu=g(x) fu

only has the trivial solution.

Proof. Tt suffices to take M{x)=gq(x)_# and to apply Proposi-
tion 5.1. |

Let g: 2 x R™ — R” be a L*-Carathéodory function, by which we mean
that
(1) for each ue R™, g is measurable in x;
(i1) for almost every x e £2, g is continuous in u;
(iii) for every R>0, there exists a function A€ L*(2; R) such that
|g(x, u)| <hgp(x) for a.e. xe and for all ue R™ with |u| <R

The hypotheses on g made in the sequel will imply that g is growing at
most linearly in w. In that case, the Nemitzkii operator N: H— H:u>
g(-, u(-)) is well defined. Using Theorem 3.1, we are able to prove the
following existence result for the equation

Lu=g(x, u). (54)
THEOREM 5.3. Let y€ ]0, asup «,[ and assume that

Syl ful+v, (5.5)

]M&m—%/u
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Sfor some e [0, 7/2[, v=0, for every ue R™ and a.e. xe Q. Then, Eq. (5.4)
has a solution.
Proof.  Squaring both sides of (5.5), we get
wglx, u), Fu)=|glx, u)l? + ¢ ful* — ¢,

for some ¢ e )0, y%/4[ and ¢’ >0. Set p =+/a. Then, for some constant ¢”,

pANU Ty = p | (gl ulx)). 7,(x) fulx)) d

>p [ 2 gt uo)) + el fulx) - ¢ ds

Y2

>J I: X, u(? + el Fu(x) |1—p—(«"—b]dx

)

2 C 2 P
Z | Null” +13 [Jull” = c".

From this, we deduce that
2

JtNu—gJu =||Nu||2—p<Nu,Ju>+pzW““z

p> _
< - T3 - >
<4 b“> I Jull < + ¢

and, consequently,

H Nu—BJu

T\ 12 .
: s(%——;) 1 Jull + /<"

The conclusion then follows from Theorem 3.1. |

We now consider the scalar case, i.e., m=1. Without loss of generality,
we may take # =1. By the hypotheses made on J, to each gpeker L is
associated a i e ker L*, such that /(x) =y, (x} ¢(x). Moreover, because of
the hypotheses made on y,, ¢(x) and ¥(x) will have the same sign.

THEOREM 5.4. Let g be a L*-Carathéodory function such that, for some
7€ [0, asup [,

glx, u)
17

0 <lim inf &% ¥

ful — =« u

< lim sup

[te] — >

<y

Let us assume that there exists he L*(2; R) such that

sgn ug(x, u) = h(x)
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for every ue R and almost every x € Q. For every € ker L*, assume that

f (lim sup g(x, u)) yr(x) dx
¥ <0

u— .

+ J (lim inf g(x, 1)) Y(x) dx > 0.

w =) H— + X
Then, Eq. (5.4) has a solution.

Proof. We will apply Theorem 3.2. It can be shown (see, e.g, [FF,1)
that, under the above assumption, we can write

glx, 1) = q(x, u) u+r(x, u), (5.6)

where 0<g(x, u) <y <asup .o/, the function r being bounded by a
L*-function. It is not difficult to check that assumption (i) of Theorem 3.2
1s satisfied for p=9'/a and «=1,2. In order to verify condition (ii) of
Theorem 3.2, we assume, by contradiction, that there exists a sequence
(u,) = dom L such that |ju,| — o, |iLu,|} = O(|lu,||"*), and

lim inf J (%, 1 (X)) 1 pu (X) Pt (x) dx < 0, (5.7)
k— x HllkH 0
In order to apply Fatou’s lemma, we must prove the existence of a function

ne L'(Q2:R) such that

glu, u, (X)) 1 p, (X) Pup(x) 2 1(x) (5.8)
fleag l

for a.e. xeQ. Referring to the function ¢ in (5.6), we have, using the
inequality (5.1),

q(x, w (X)) Ui (X) 1 po (X) Puy(x)
[l

L U= P) ()Y
A

But, by hypothesis, || Lu,| = O(llu,|'?) for k - o and, as L has a compact
resolvent, ((/— P)u,/llu l|"?) will converge in L*(2:R); hence, that
sequence is bounded by a L>-function. We conclude from this that (5.8)
holds when g{x, u) is replaced by ¢(x, ) u. On the other hand, concerning
the term r in the decomposition (5.6), we recall that it is bounded by a
L’-function. Hence we can assume, by passing if necessary to a
subsequence, that

1
( r(xs uk(x)) XPuk (x) Puk(x)>
flaacl
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is bounded below by a L,-function. Therefore, it is legitimate to apply
Fatou’s lemma in (5.7). Since (Pu, /||lu,||) converges to a function ¢ e ker L
and since J maps ker L onto ker L*, we have that (yp,, (x) Pu, (x)/Nu.l)
converges to a function € ker L*. According to a remark made above,
@{x) and ¥ (x) have the same sign; consequently, #,(x) has the same sign
as Y(x) for k& sufficiently large. It is then seen that the application of
Fatou’s lemma to (5.7) leads to a contradiction with respect to the
hypotheses of the theorem. |

6. APPLICATIONS TO DIFFERENTIAL EQUATIONS

We first consider a scalar boundary value problem on a smooth bounded
domain in R":
Pu=g(x, u) in Q

. (P)
Bu=0 in 092.

We take H=L*£;R) and assume that 2, # are linear operators, to
which we associate the linear operator L:dom Lc H— H, where
dom L= {uedom @|Au=0}. Again, we assume that L is densely defined,
closed, and has a compact resolvent. Moreover, we will assume that the
kernel is one-dimensional, so that for some functions ¢, ¥ € L3(2; R), we

have ker L = R¢ and ker L* = Ry. We then suppose that positive constants
a, b exist, such that

as——x<bh (6.1)

for ae. xe€2. In that case, there is a natural choice for the operator
J. H— H, namely

Y(x)
o(x)

(Julx)= u(x). (6.2)
Clearly, J is continuous and maps ker L isomorphically onto ker L*.
Consequently, Theorem 5.4 can be applied. Notice that the last assumption
of the theorem can now be made more explicit, taking advantage of the fact
that dim ker L* = 1. Indeed, setting

g, (x)=liminf g(x, u), g (x)=limsup g(x, u),

U 4 u— -

the condition becomes

L(Ug+t//+L>Ug t//<0<L<ng ¢+J 2. .

¢ >0



SEMILINEAR EQUATIONS AT RESONANCE 205

Remark. The hypotheses on ker L, ker L*, and condition (6.1) are
verified, e.g., for Dirichlet boundary conditions, if & is an elliptic partial
differential operator having 0 as its first nonnegative eigenvalue. In that
case, both ¢ and ¥ can be taken to be positive in Q and, on 012, one has
(Op/0v) <0, (0y, 0v) <0, where v is the outward unit normal to Q. This
situation has been considered by Ahmad [Ah]. Other examples can be
found. For instance, the conditions are fulfilled, if n=1, Q2= ]a, b[,
Gu=u® — i, u with the boundary conditions

ula)=u"(a)=u*(a)=u""(a)=0,
u(b)=u"(by=u"(b)=u"(b)=0,
4, being the first positive eigenvalue of the operator ur» u'®, subject to
the above boundary conditions. It is interesting to notice that, for this

problem, (6.1) is verified, although ¢ and y change sign in Ja, #[. But the
problem is not self-adjoint, nor is ker L equal to ker L*.

As a second application of our general theory, we consider a periodic
problem for a system of differential equations

u' + Au=g(1, u)
u(0)=u(T).

(P)

Here, 4 is a mxm matrix. We will show that an operator J, with the
desired properties, can be found which is a matrix operator. More
precisely, there is an invertible m x m matrix # such that the operator J,
defined by (Ju)(t) = #u(r), maps ker L isomorphically onto ker L*. In fact,
the elements of ker L are of the form

4 2nk ., 2nk;
dap+ (a-cos( "t)+b-sin( ’t)),
o+ x s\ b7

and those of ker L* of the form

ol 2nk; - 2nk;
do+ Y. <d-cos< ’t>+b~sin( ’t)),
0 Py’ J T J T

where a, and d, may be (simultancously) zero vectors, while a,, a,, ..., a,,
by, .., b, (resp. 4y, d,, .., d,, [;|, 77,,) are linearly independent (g, and &,
are of course to be dropped from the lists when they are zero vectors). It
is clear that an invertible matrix # can be found which transforms g, into
a,and b, into b,. The matrix ¢ has the required properties and we can then
apply Theorem 5.3 with a=1 to get an existence result for problem (P’).
Actually, we have written a computer program which computes a matrix ¢

from the matrix A of the system.
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