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Synopsis
Some known results for different kinds of boundary value problems for second order ordinary

differential equations are generalised. Different approaches are compared with one another, using
topological and variational methods and the theory of weighted eigenvalue problems.

1. Introduction

This paper is devoted to the study of various auxiliary tools employed when
dealing with boundary value problems associated with second order differential
equations of the form

X"+ f(t x)=0. (1.1)

Many existence conditions for equation (1.1) deal with the relation between the
asymptotic behaviour of the non-linearity f and the spectrum of the differential
operator. In particular, Mawhin and Ward (cf. [13, 15, 16]) have introduced and
used some quadratic forms associated with the eigenvalues and eigenfunctions of
—x". In this way they were able to treat many cases where f(t, x)/x stays
asymptotically between two consecutive eigenvalues or to the left of the
spectrum.

On the other hand, Lasota and Opial [11] introduced a method of study of
some boundary value problems for equation (1.1) which gives the existence of
solutions in particular when £(r, x)/x behaves asymptotically as a function p(r),
such that the equation

x"(t) + p()x(t) =0, 1.2)
with the corresponding boundary conditions, has only the trivial solution. This

approach was recently extended by Habets and Metzen [10] to the case of a
jumping non-linearity.
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It is natural to study the relations between the two approaches. The aim of this
paper is to provide a complete comparison as well as some abstract theorems
generalising the above mentioned results.

Section 2 emphasises the fact that many known existence results for some
boundary value problems associated with equation (1.1), when f(¢, x)/x stays
asymptotically at the left of the spectrum of —x", or between two consecutive
eigenvalues, still hold when we only assume that some quadratic forms, naturally
associated with the asymptotic behaviour of f(¢, x)/x, are positive definite. This
observation, combined with topological or variational approaches, provides some
general existence theorems.

In Section 3 we prove the equivalence of the approach based on the quadratic
forms, and that based on the above property of the associated linear problem
(1.2), in the case of the Dirichlet or Neumann conditions. This is done in a
straightforward way by using the weighted regular Sturm-Liouville theory as
developed in [1-3]. The extension of this linear theory to the periodic case would
make it possible to prove the analogues of Theorems 3.1 and 3.2 under periodic
boundary conditions.

2. Existence results by the use of quadratic forms
We consider the following second order differential equation:
x"+f(t,x)=0,

where f:IXR—>R (I=[0,T]) is a Carathéodory function, i.e. f(:,x) is
measurable for every x€e R and f(¢, -) is continuous for almost every tel
Moreover, we assume the following condition.

ConprrioN 2.1. For every R >0 there is a kg € L'(I) such that
|f (2, x)| = kr(2),

for all [x| =R and almost every ¢t € I.

Associated with equation (1.1) we consider one of the following boundary
conditions: :

the Dirichlet conditions x(0) = x(T') = 0;
the Neumann conditions x'(0) =x'(T) =0;
the periodic conditions x(0) =~ x(T) =x'(0) — x'(T) =0.

- We will look for C!-functions x with absolutely continuous derivatives (i.e.
x € W2I(I)) verifying equation (1.1) almost everywhere and one of the above
boundary conditions. Such a function x will be called a solution of the considered
boundary value problem.

According to which of the boundary conditions is considered, we will denote by
HL and W, the following sets:
Dirichlet problem:

H = {x e H'()) | x(0) = x(T) =0},
W, = {x e W*'(I) | x(0) =x(T) =0);
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Neumann problem:
H, =H'(I),
W, = {x e W>(I) | x'(0) =x'(T) = 0};
periodic problem:
H, = {x e H'(I) | x(0) =x(T)},
W, = {x e W>'(I) | x(0) = x(T) = x'(0) ~ x'(T) = 0}.
Our first existence result is the following generalisation of a result in [13].
THEOREM 2.2. Let b € L'(I) be such that:
- (A1) for every £ >0 there exist B,, y. € L\(I) such that
f(& x)x = (1) + e)x* + B (1) |x] + v.(e);

(B1) for any x € H\\{0} one has [;((x")*—bx?)>0. Then (1.1) has a solution
inW,.

To prove Theorem 2.2 we need the following lemma, which is essentially
proved in [13].

LemMa 2.3. Condition (B1) is equivalent to
(B2) there exists & >0 such that for any x € H. one has

f] (")~ bx?) Z £ x|

Proof. 1f (B2) is false, we can find a sequence (x,) in H2 such that Xl =1
and [, ((x;)? — bx})— 0. Taking a subsequence, we can assume x,—x in HY\(I).
Then (x,) converges uniformly, and the weak lower semicontinuity of the
L?-norm of x,, implies [, ((x')*~ bx*)=0. By (B1), x =0, and the above implies
that (x,) converges uniformly towards zero. Since [, ((x,)> — bx2)— 0, it follows
that ||x, || — 0, which is impossible.

Proof of Theorem 2.2. Let us define the following operators:

dom (&) =W,
Z:dom (£)— LY(I), x—x",
N:CD— LD, x—fC, x()).
It is well known (cf. [7, 12]) that N is £-completely continuous, and the result will
be proved if we find an a priori bound for the solutions in W, of the equations
x"+Af(t, x)+(1—-A)b({H)x=0 2.1)

for every A € [0, 1]. With this aim, fix € <&, multiply equations (2.1) by —x and
integrate, to obtain

0= f (x')2 = Af(t, x)x — (1 = A)b(£)x?

= fl (') = M(b(r) + £)x + (1) Ix] + ve(6)] — (1 — A)b(e)x?

Z (8= &) llxlzn — ClIBell Nxllen — 17ell .
The a priori bound follows.
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Let us define the function F by

F(t,x)= f f@t, s)ds
0
Then we have a result which is the analogue of Theorem 2.2 and extends [14,
Theorem 1.1].

THEOREM 2.4. Let b € L'(I) be such that
(A2) for every £ >0 there exist B., Y. € L'(I) such that

2F (1, x) = (b(0) + )x> + Be (1) x| + 7.(1),
and suppose (B1) holds. Then equation (1.1) has a solution in W,.
Proof. We consider the functional associated with our problem, defined on
HL:
p()= | () ~2F (e x()] e @2)

One can easily see that p is weakly lower semicontinuous. Moreover, fix ¢ <&.
By Lemma 2.3,

()2 f (@) = [(BE) + )+ Bu(0) Ix] + 7. (O]}

Z (& - &) lIxllz — c NBellr llxlles = Hvell o

Hence p is coercive, and then it has a minimum, giving the solution we are
looking for.

Remarks 2.5. (1) Theorems 2.2 and 2.4 can be extended in a straightforward
way to the vector case. In Theorem 2.2 the products must be replaced by scalar
products in R" and for Theorem 2.4 the system must be supposed to be in
variational form, i.e. f = D, F for some F: I X R"—R.

(2) Using Condition 2.1 it is easy to show that assumption (Al) is verified
if, for some b € L'(I), the following holds uniformly for almost every ¢ € I.

lim sup (¢, x)/x = b(¢).
x>

Analogously, assumption (A2)v is verified if, uniformly for almost every t € ],

lim sup 2F (¢, x)/x* = b(¢).

Jxj—>ee

(3) Sufficient conditions for (B1) to hold can be found in [4,8, 9, 13, 15, 16].

We will now introduce a condition (B3) which generalises (B1) and prove
analogous existence results.

We begin with the following lemma, which is an immediate consequence of
Condition 2.1.

PROPOSITION 2.6. Assume a, b € L'(I) are such that

(A3) a(t) =liminff(s, x)/x =limsup f (¢, x)/x = b(¢).
|x|—>00 |xj—>00
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Then the following holds : .
(A4) for every £ >0 there existg,, h,: [ x R—> R, h. € L'(I) such that

f(t x)=g.(t, x)x + h(t, x)
a(t)—e=g.(t, x)=Sb(t) + ¢
lhe(t, x)| = A (o).
The following theorem is a generalisation of a result in [13].

THEOREM 2.7. Let a, b € L'(I) satisfy (A4) and
(B3) LAI)=H @ H*, where H™ is finite dimensional and contained in H.,
and for every x =% + ¥ e H\\{0}, withxc H" and % € H?*, one has

B, ,(x):= f ()2 = bi?) - [ (@) — ai?) >o.

Then (1.1) has a solution in W,.

To prove Theorem 2.7 we need the following lemma, which is essentially
proved in [13].

LemMa 2.8. If (B3) holds, then there exists & >0 such that, for every x e H,
(B4) B, s(x)Z & |Ix| 3.

Proof. If the conclusion is false, one can find a sequence (x,) in H. such that
llxaller=1 and B, ,(x,)— 0. Taking a subsequence, we can suppose x,—x in
H'(I). Then %,— % in H'(I), all norms being equivalent in a finite dimensional
space, and also X, — ¥ uniformly. So,

| @ | o2+ @y-am)

and by the weak lower semicontinuity of the L?-norm of ¥/, we obtain B, s(x)=0.
Then, by (B3), x =0. It then follows from the above that X1l 11— 0, which is a
contradiction. 0O

Proof of Theorem 2.7. Fix ¢ <& By the arguments in the proof of Theorem
2.2, the proof will be complete if we find an a priori bound for the solutions of
equations (2.1) in W, for every Ae[0,1]. By multiplying by (¥ —%) and
integrating, we obtain »

0= [ 1V = G+ Agule, ) = £ + M, 6, 1) = 5) + (1= A (O(E* — )

é[ [(B')— (®')*+ (a(t) — €)%* — (b(®) + €)F* + Ah, (¢, x)(x - X))
1

Z (&= &) Il —c el I,
and the a priori bound follows. O

A similar result can be obtained by a variational method if assumption (A4) is
replaced by an analogous one concerning the primitive of f. In this case we have
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to consider the functional p defined as in equations (2.1), whose critical points are
precisely the solutions of the boundary value problem associated with equation
(1.1). Let us recall the definition of the Palais—Smale condition (PS).

DerintTiON 2.9. The functional p satisfies (PS) if any sequence (x,,) in H. such
that p(x,) is bounded and p’(x,)— 0 has a convergent subsequence.

ProposiTION 2.10. Assume a, b € L'(I) are such that
(AS) a(r) = h;c? _:gf 2F(t, x)/x*= ligl Iﬁgp 2F(t, x)/x* = b(¢).
Then the following holds:
(A6) for every € >0 there exist G,, H.: I xR—>R, ¥, € L'(I) such that
2F(t, x) = G.(t, x)x* + H,(t, x)
a(t)—e=G,(t, x)=Sb(t)+¢
|H, (2, x)| = Z.(¢).

THEOREM 2.11. Let a, b e L'(I) satisfy (B3) and (A6). If, moreover, the
functional p satisfies (PS), then equation (1.1) has a solution in W,.

Proof. Take in (A6) £ = &/2, with & as in Lemma 2.8. If x € H™, one has, by
(A6) and (B4),

p(%) = j (& (1)) = Gu(t, £(0))2 — H,(t, £(1))] dr

= [ (67 - @O - 2+ 12l
=—B,,(¥) +e|lZ||lz-+ C
=-(E/2) %7+ C,
where C = || #,|| ... Analogously, if X € H*, one proves that
p(¥) = (8/2) I%|I7 — C.

The above implies that we are in the geometrical setting of the Saddle point
theorem of Rabinowitz (cf. [17]), and since p satisfies (PS), the result follows. O

Remark 2.12. Conditions which imply (B3) are given in [4, 8, 9, 13, 15, 16].
Some sufficient conditions for (PS) to hold can be found in [14, 17].

3. A coercive quadratic form for some classes of non-coercive linear problems

In this section we will restrict ourself to Dirichlet or Neumann boundary
conditions.

THeoreM 3.1. Given b € L'(I), the following assertions are equivalent:
(i) assumption (B1) holds;
(ii) for each p € L'(I) such that p(t) = b(t) for almost every t € I, the equation

x"+pHx=0 3.1)
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has only the trivial solution in W,;
(iii) for every A =0 the equation
X"+ b@O+A)x=0 3.2)
has only the trivial solution in W,.

Proof. To show that (i) implies (ii), take p as in (ii) and let x be a solution of
equation (3.1) in W,. Multiply equation (3.1) by (—x) and integrate, to obtain

0=[@r-prz [ h-ba),

It then follows from (B1) that x = 0.

It is clear that (ii) implies (iii). Let us then show that (iii) implies (i). By the
theory of linear second order differential operators (see [1-3]), the eigenvalues of
equation (3.2) with Dirichlet or Neumann boundary conditions form a sequence
Ay <A,<--- which tends to +o, and the corresponding eigenfunctions ¢,,
@2, . .. are an orthonormal base of L*(I). Hence, given any x € H., we can write

x(t)= ; cipi(t),

and

[ @y-bx= 3 ot «o2-b9)

= 2 C?AJI o7

i=1

=i J’ x%
4
By (iii), 4, >0, and (B1) follows. [ '

An analogous result holds when (B3) is considered. Given a, b € L'(I) as in
(B3), we can suppose without restriction that a(f) < b(¢) for almost every ¢ € I. In
fact, by Lemma 2.8, if a, b verify condition (B3), this is also true for a — £/4,
b +&/4.

THEOREM 3.2. Given a, b € L'(I) such that a(t) < b(t) for almost every t € I, the
following assertions are equivalent: "
(i) assumption (B3) holds;
(ii) taking p e L'(I) such that a(t)=p(t)=b(t) for almost every tel, the
equation
x"+p()x=0 (3.3)

has only the trivial solution in W,;
(iii) for every u €0, 1], the problem

x"+[(1 - p)a(®) + ub(t)x =0 (3.4)

has only the trivial solution in W,
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Proof. Assume (B3) holds. By multiplying equation (3.3) by (¥ —X) and
integrating, one has

0= f ()= &) + p(@® = ) Z B, o).

Hence x =0, so that (i) implies (ii).
It is clear that (ii). implies (iii). Let us show that (iii) implies (i). Notice that
equation (3.3) can be written as

x"+ax+ ub—a)x=0. 3.9)

The theory developed in [1-3] can be applied: the eigenvalues of equation (3.5)
with Dirichlet or Neumann boundary conditions form a sequence u; <pu,<...
which tends to +o. The corresponding eigenfunctions ,, ¥,,... are an
orthonormal base in the space L?_,(I) of measurable functions u such that

f (b(t) — a(@®))u(t)* dt < +,

with scalar product given by

] v)= | 6O - s d.
Hence, for i #j, one has
| @ -aww=0

and, as one can easily verify,

f, Wiy — app) = [ (W] — by =O. (3.6)

Given x € H),, we can write x(t) = L,z c;y;(¢). By (iii), there are no eigenvalues
U, in the interval [0, 1]. So, either u;>1, or there exists an n =1 such that
Un<0<1<p,,y. If py;>1, define H ={0} and H*=L}_,(I). Then, by
equation (3.6) one has:

Boo(x) = [y

=>c , (v1)*— by?d)

i1

=S - 1) [ (b - a)y?

> ( — 1) ] (b - a)x?),

and (B3) follows. On the other hand, if p,<0<1l<py,,,, set H =
span {Y, ..., ¥,} and H* =span {Y,+1, Yp+2, - -.}. With analogous calcul-
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ations, one has

| @y-e 2= @ -0,

[@r-atzif @-am,

and (B3) follows in this case, as well.
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