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1 Wave models

We can characterize terms of lower order in wave equations. Let us begin with the classical
wave equation

utt −∆u = 0.

This equation describes the propagation of waves. It appears in numerous models as for
the vibrating string or membrane, the propagation of sound, the longitudinal vibrations of
an elastic rod or beam, surface water waves, the propagation of electric signals or for the
description of electric or magnetic fields.

Klein (1927) and Gordon (1926) derived the following Klein-Gordon equation describing a
charged particle in an electro-magnetic field:

utt −∆u + m2u = 0.

The term m2u is called mass or potential.

A well-known equation is the telegraph equation

utt − uxx + aut + bu = 0,

where a and b are constants. This equation arises in the study of propagation of electric
signals in a cable of transmission line, in the propagation of pressure waves in the study of
pulsatile blood flow in arteries and in one-dimensional random motion of bugs along a hedge.
Here bu is a mass term, and aut is a damping term or dissipation term. A higher-dimensional
generalization is

utt −∆u + aut + bu = 0.

Finally, we mention wave equations with a convection term or a transport term∑n
k=1 ak(t, x)∂xk

u, that is,

utt −∆u +
n∑

k=1

ak(t, x)∂xk
u = 0.
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2 Basics of Fourier transformation

The Fourier transformation is a special integral transformation. Usually it is defined by
(classical definition)

F (f)(ξ) :=
1√
2π

n

∫

Rn

e−ix·ξf(x)dx

with x · ξ =
n∑

l=1

xlξl. The inverse Fourier transformation is defined by

F−1(g)(x) :=
1√
2π

n

∫

Rn

eix·ξg(ξ)dξ.

2.1 Application to spaces of infinitely differentiable functions

Let us choose the function space C∞(Rn). Functions f from this space could be unbounded
for |x| → ∞, for example, f(x) = e|x|

4
. Such an unbounded behavior does in general not

imply the convergence of the above integrals for F (f) or for F−1(g). Let us choose the space
C∞

0 (Rn). Then elements f have compact support. Consequently, the above integrals for
F (f) or for F−1(g) exist. We can not expect that F (f) or F−1(g) belong to C∞

0 (Rn) if f
or g belong to. Why? But there exists a kind of intermediate space between C∞(Rn) and
C∞

0 (Rn) which has the property that f and g from this space imply F (f) and F−1(g) from
the same space. This is the so-called Schwartz space S(Rn), the space of fast decreasing
functions.

Definition 2.1. By S(Rn) we denote the subspace of C∞(Rn) consisting of all functions f
which satisfy the conditions

pα,β(f) = sup
x∈Rn

∣∣xβ∂α
x f(x)

∣∣ < ∞

for all multi-indices α and β. The topology in S(Rn) is generated by the family of semi-norms
{pα,β(f)}α,β.

The Schwartz space is the largest subspace of L1(Rn) which is invariant with respect to the
operations differentiation ∂α

x and multiplication by xβ.

Theorem 2.1. The Fourier transformation and the inverse Fourier transformation are map-
ping continuously the Schwartz space into itself. The Fourier transform of ∂xk

f is iξkF (f)
and the Fourier transform of xkf is i∂ξk

F (f). In this way, a differentiation in the physical
space, that is the space Rn

x, corresponds to a multiplication by the phase space variable in the
phase space, that is the space Rn

ξ , and conversely.
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Proof. We restrict ourselves to show that for a given f from S(Rn) the image F (f) belongs
to S(Rn), too. Straight-forward calculations imply

ξβ∂α
ξ F (f)(ξ) =

1

(2π)n/2

∫

Rn

e−ixξξβ(−ix)αf(x)dx

=
1

(2π)n/2

∫

Rn

i|β|∂β
x (e−ixξ)(−ix)αf(x)dx =

1

(2π)n/2

∫

Rn

e−ixξ(−i)|β|∂β
x ((−ix)αf(x))dx

=
1

(2π)n/2

∫

Rn

e−ixξ(1 + |x|2)−n+1
2 (−i)|β|(1 + |x|2)n+1

2 ∂β
x ((−ix)αf(x))dx.

Here the assumption f ∈ S(Rn) yields, that during partial integration in the above integrals
boundary integrals are vanishing. Moreover, we have

sup
x∈Rn

∣∣(1 + |x|2)n+1
2 ∂β

x ((−ix)αf(x))
∣∣ < ∞.

Taking account of
∫
Rn(1 + |x|2)−n+1

2 dx < ∞ gives in the phase space

pα,β(F (f)) = sup
ξ∈Rn

∣∣ξβ∂α
ξ F (f)(ξ)

∣∣ < ∞

for all multi-indices α and β. In the same way we can show that pα,β(fk−f) → 0 for k →∞
implies pα,β(F (fk)− F (f)) → 0 for all multi-indices α and β. Consequently, F : f → F (f)
maps the space S(Rn) continuously into itself. The rules are proved as above.

Intuitively, we expect the following Fourier inversion formula:

F−1(F (f))(x) = f(x).

This inversion formula holds for all functions f ∈ S(Rn). For proving this statement we
need so-called regularization. For a given function g ∈ C∞

0 (Rn), g(x) ≥ 0,
∫
Rn g(x)dx = 1,

we define the function gε = ε−ng
(

x
ε

)
. Let f ∈ Lp(Rn), p ∈ [1,∞). Then we define the

regularization Jε(f) of f by the aid of the convolution integral Jε(f) := gε ∗ f :=
∫
Rn gε(x−

y)f(y)dy. For every ε > 0 the regularization Jε(f) belongs to C∞(Rn). Such a regularization
satisfies the following remarkable property:

lim
ε→0

‖Jε(f)− f‖Lp(Rn) = lim
ε→0

‖gε ∗ f − f‖Lp(Rn) = 0.

Remark 2.1. The assumption g ∈ C∞
0 (Rn) gives Jε(f) ∈ C∞(Rn). But Jε(g) ∈ C∞(Rn)

holds for all functions g ∈ L1(Rn).

3



By Remark 2.1 we are able to prove the Fourier inversion formula for all functions f ∈ S(Rn).

We introduce a function χ ∈ C∞
0 (Rn) with χ(η) =

{
1 |η| ≤ 1,
0 |η| ≥ 2.

Then we have

F−1(F (f))(x) =

∫

Rn

∫

Rn

1

(2π)n
ei(x−y)·ξf(y)dydξ = lim

ε→0

∫

Rn

∫

Rn

1

(2π)n
ei(x−y)·ξf(y)χ(εξ)dydξ

= lim
ε→0

∫

Rn

f(y)ε−n

∫

Rn

1

(2π)n
ei x−y

ε
·ηχ(η)dηdy = lim

ε→0
f ∗ gε(x),

with the function g = g(x) = 1
(2π)n

∫
Rn eixηχ(η)dη ∈ L1(Rn). By Remark 2.1 we conclude the

Fourier inversion formula F−1(F (f))(x) = f(x).

Example 2.1. Important for Lp − Lq estimates

In applications there appear Fourier transforms for Gauß’ functions. Let (Ax, x) =∑
k,l=1

aklxkxl be a positive definite quadratic form. Then we have

F (e−(Ax,x)) =
1√

2
n√

det A
e−

1
4
(ξ,A−1ξ).

Special case: Let us choose A = 1
2
I. Then

F
(
e−

|x|2
2

)
=

1√
2

n
(1

2
)n/2

e−
|ξ|2
2 = e−

|ξ|2
2 .

2.2 Application to Lp spaces

Let us devote to the Fourier transformation

F (f)(ξ) :=
1

(2π)
n
2

∫

Rn

e−ix·ξf(x)dx.

Let f ∈ L1(Rn). Then F (f) belongs to L∞(Rn). Moreover, F (f) is continuous on Rn and
lim
ξ→∞

F (f)(ξ) = 0.

It holds the following convolution theorem: F (f ∗ g)(ξ) = (2π)
n
2 F (f)(ξ)F (g)(ξ). Here we

use the property of L1(Rn) to be a Banach algebra with the operation of convolution.

Let f ∈ L2(Rn). Then the classical definition for F (f) is not applicable. Let us explain a
suitable definition for F (f) if f belongs to L2(Rn). Let us choose f, g ∈ S(Rn). Then the
classical definitions F−1(f) = (2π)−

n
2

∫
Rn eix·ξf(x)dx and F (f) = (2π)−

n
2

∫
Rn e−ix·ξf(x)dx

are applicable. We obtain the relations∫

Rn

F−1(f)(x)g(x)dx =

∫

Rn

f(ξ)F (g)(ξ)dξ;
∫

Rn

F (f)(x)g(x)dx =

∫

Rn

f(ξ)F−1(g)(ξ)dξ.
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The first relation follows from
∫

Rn

F−1(f)(x)g(x)dx =

∫

Rn

1

(2π)
n
2

(∫

Rn

eix·ξf(ξ)dξ

)
g(x)dx

=

∫

Rn

f(ξ)
1

(2π)
n
2

(∫

Rn

eixξg(x)dx

)
dξ =

∫

Rn

f(ξ)
1

(2π)
n
2

∫

Rn

e−ixξg(x)dxdξ

=

∫

Rn

f(ξ)F (g)(ξ)dξ

if we use the classical definition for F−1(f)(x). This relation can be written as (F−1(f), g) =
(f, F (g)) for all f, g ∈ S(Rn). Let us choose now f ∈ L2(Rn). Then the scalar product
(f, F (g)) is defined for all g ∈ S(Rn). Taking account of the density of C∞

0 (Rn) ⊂ S(Rn) in
L2(Rn) the identity (w, g) = (f, F (g)) defines a functional on L2(Rn). There exists a unique
w ∈ L2(Rn) such that the last relation is fulfilled for all f ∈ L2(Rn) and g ∈ S(Rn). We
define this function w as the inverse Fourier transform of f ∈ L2(Rn). Using the second
relation by a similar reasoning we are able to define the Fourier transform F (f) ∈ L2(Rn)
for a given function f ∈ L2(Rn). Summarizing we explained F (f) and F−1(f) for a given
function f ∈ L2(Rn) by the aid of the relations

(F−1(f), g)L2 = (f, F (g))L2 for all g ∈ S(Rn),

(F (f), g)L2 = (f, F−1(g))L2 for all g ∈ S(Rn).

Theorem 2.2. The Fourier transformation is a unitary operator on L2(Rn).

Proof. By the above relations and the Fourier inversion formula for g ∈ S(Rn) it holds

(F−1(F (f)), g)L2 = (F (f), F (g))L2 = (f, F−1(F (g)))L2 = (f, g)L2 .

The density of S(Rn) in L2(Rn) implies immediately the Fourier inversion formula for f ∈
L2(Rn) because F−1(F (f)) = f from the above identity for functionals. Consequently, F
maps L2(Rn) onto itself. Moreover, F is isometric. Here we use the above relation with
g = F (h). It follows

(F (f), F (h))L2 = (f, h)L2

for all f ∈ L2(Rn) and all h ∈ S(Rn). Applying again the density argument gives the relation
for all f, h ∈ L2(Rn).

Remark 2.2. The formula

(F (f), F (h))L2 = (f, h)L2 for f, h ∈ L2(Rn)

is called formula of Parseval-Plancherel. We obtain ‖F (f)‖2
L2 = ‖f‖2

L2 in the special case
f = h.
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An argument from interpolation theory:
We know the following properties of Fourier transformation: f ∈ L2(Rn) ⇒ F (f) ∈ L2(Rn),
and f ∈ L1(Rn) ⇒ F (f) ∈ L∞(Rn). By interpolation we conclude f ∈ Lp(Rn) ⇒ F (f) ∈
Lq(Rn) for 1 < p < 2 and 1

p
+ 1

q
= 1.

Remark 2.3. The statement f ∈ Lp(Rn) ⇒ F (f) ∈ Lq(Rn) for p > 2 and 1
p

+ 1
q

= 1 is
false!

2.2.1 Fourier inversion formulas

Up to now we learned the Fourier inversion formula for functions belonging to S(Rn) and
L2(Rn). In the following we present Fourier inversion formulas for other function spaces.

• Let f ∈ L1(R) be of bounded variation on every compact interval [a, b] and continuous.
Then it holds

f(x) =
1√
2π

HW

∫

R
eixξF (f)(ξ)dξ.

Without assuming the continuity we have

f(x + 0) + f(x− 0)

2
=

1√
2π

HW

∫

R
eixξF (f)(ξ)dξ.

• Let f ∈ Lp(R), p ∈ [1, 2]. Then it holds

f(x) =
1√
2π

lim
ε→0

∫

R
eixξF (f)(ξ)χ(εξ)dξ

with a function χ ∈ C∞
0 (Rn), where χ(η) =

{
1 |η| ≤ 1,
0 |η| ≥ 2.

• Let f ∈ Lp(R), p ∈ (1, 2]. Then

f(x) =
1√
2π

HW

∫

R
eixξF (f)(ξ)dξ.

2.3 Application to tempered distributions

The dual space to S(Rn) is denoted by S ′(Rn). Functionals from S ′(Rn) are called tempered
distributions. We already applied the theory of functionals for defining the Fourier transform
and inverse Fourier transform of a function from L2(Rn). In S ′(Rn) we have no scalar
product. But we can use the representation of functionals f(g) for f ∈ S ′(Rn) and arbitrary
g ∈ S(Rn) for defining the Fourier transform and inverse Fourier transform of a tempered
distribution. We define

F (f)(g) = f(F−1(g)), and F−1(f)(g) = f(F (g)).
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For tempered distributions the Fourier inversion formulas

F−1(F (f))(g) = F (f)(F (g)) = f(F−1(F (g))) = f(g), and F−1(F (f)) = f

are valid. The convolution theorem holds for tempered distributions G ∈ S ′(Rn), T ∈
E ′(Rn): F (G ∗ T ) =

√
2π

n
F (G) F (T ). Here we denote by E ′(Rn) the subspace of

tempered distributions having compact support.

Example 2.2. Fourier transform of Dirac’s distribution δ0

Dirac’s distribution δ0 has compact support {0}, so it belongs to E ′(Rn). Actions of δ0 to
arbitrary functions from S(Rn) are defined by δ0(f) = f(0) for all functions f ∈ S(Rn).
Consequently, δ0 generates a functional on S(Rn). To define the Fourier transform F (δ0)
we use for all functions f ∈ S(Rn) the relations

F (δ0)(f) = δ0(F
−1(f)) = F−1(f)(0) =

1√
2π

n

∫

Rn

f(x)dx =

∫

Rn

1√
2π

n · f(x)dx =
1√
2π

n (f).

Hence, we obtain F (δ0) = 1√
2π

n .

Exercise 1 Let us determine a fundamental solution to the operator −∆ in R3. Such a
fundamental solution is a distributional solution of −∆u = δ0. We apply the Fourier trans-
formation and get |ξ|2F (u) = 1√

2π
3 . This is our auxiliary problem in the phase space. It pos-

sesses the solution F (u) = 1

|ξ|2√2π
3 . The main difficulty consists in determine F−1( 1

|ξ|2√2π
3 ).

Longer calculations imply u(x) = 1
4π|x| .

2.4 Application to Hs spaces

Let us introduce the space Hm(Rn), m ∈ N. This is the set of functions

Hm(Rn) =
{

u ∈ S ′(Rn) : ‖u‖Hm(Rn) =
(∫

Rn

|F (u)(ξ)|2(1 + |ξ|2)mdξ
)1/2

< ∞
}

.

Let us explain this definition. We know that ∂α
x u ∈ L2(Rn) for all |α| ≤ m and arbitrary

u ∈ Hm(Rn), m ∈ N. Applying the formula of Parseval-Plancherel and due to the rules for
the Fourier transformation we have ‖F (∂α

x u)‖L2(Rn) = ‖ξαF (u)‖L2(Rn) for all |α| ≤ m. Such
functions u satisfy the relations

∫
Rn |F (u)(ξ)|2(1 + |ξ|2)mdξ < ∞ and conversely. If a given

function satisfies the last relation, then ∂α
x u ∈ L2(Rn) for all |α| ≤ m. The definition of Hm

by using the behavior of the Fourier transform has an advantage. It can be generalized to
all real s ∈ R.

Definition 2.2. By Hs(Rn), s ∈ R, we define the set of tempered distributions

Hs(Rn) =
{

u ∈ S ′(Rn) : ‖u‖Hs(Rn) =
( ∫

Rn

|F (u)(ξ)|2(1 + |ξ|2)sdξ
)1/2

< ∞
}

.
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Applying Sobolev’s imbedding theorem the space Hs(Rn) is imbedded in the space C2
B(Rn)

if s > n
2

+ 2. Here C2
B(Rn) denotes the spaces of twice continuously differentiable functions

with bounded derivatives. For s ≥ 0 all elements from Hs(Rn) belong to L2(Rn). For s < 0
we have spaces of distributions. To which space Hs does Dirac’s distribution δ0 belong to?

3 Representation of solutions to wave models - appli-

cation of partial Fourier transformation

3.1 Classical wave equation

We are interested again in the Cauchy problem

utt −∆u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x), x ∈ Rn, n ≥ 1.

After application of partial Fourier transformation
(
v(t, ξ) = Fx→ξ(u(t, x))

)
we get the aux-

iliary Cauchy problem

vtt + |ξ|2v = 0, v(0, ξ) = F (ϕ)(ξ), vt(0, ξ) = F (ψ)(ξ)

for an ordinary differential equation depending on the parameter ξ ∈ Rn. For ξ 6= 0 we have
the general solution

v(t, ξ) = c1(ξ)e
−i|ξ|t + c2(ξ)e

i|ξ|t.

The Cauchy conditions imply

c1(ξ) + c2(ξ) = F (ϕ)(ξ), −i|ξ|c1(ξ) + i|ξ|c2(ξ) = F (ψ)(ξ).

It follows

c1(ξ) =
1

2
F (ϕ)(ξ)− 1

2i|ξ| F (ψ)(ξ), c2(ξ) =
1

2
F (ϕ)(ξ) +

1

2i|ξ| F (ψ)(ξ).

Setting these coefficients into the general solution gives

v(t, ξ) = cos(|ξ|t)F (ϕ)(ξ) +
sin(|ξ|t)
|ξ| F (ψ)(ξ).

Supposing for a moment the validity of the Fourier inversion formula u(t, x) =
F−1

ξ→x

(
Fx→ξ(u(t, x))

)
(this relation must be checked at the end of our considerations) we

arrive at the following representation for u:

u(t, x) = F−1
ξ→x

(
cos(|ξ|t)F (ϕ)(ξ)

)
+ F−1

ξ→x

(
sin(|ξ|t)
|ξ| F (ψ)(ξ)

)
.
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One can also use the equivalent representation

u(t, x) = F−1
ξ→x

(
e−i|ξ|t 1

2
F (ϕ)(ξ)

)
− F−1

ξ→x

(
e−i|ξ|t 1

2i|ξ| F (ψ)(ξ)

)

+ F−1
ξ→x

(
ei|ξ|t 1

2
F (ϕ)(ξ)

)
+ F−1

ξ→x

(
ei|ξ|t 1

2i|ξ| F (ψ)(ξ)

)
.

This representation consists of so-called Fourier multipliers

F−1
ξ→x

(
eiφ(t,ξ)a(t, ξ) F (u0)(ξ)

)
.

Here φ = φ(t, ξ) is the so-called phase function and a = a(t, ξ) is the so-called amplitude
function.

For given data we assume ϕ ∈ Hs(Rn) and ψ ∈ Hs−1(Rn) with s ∈ R.

Exercise 2 Recall the notation C
(
[0, T ], H1(Rn)

) ∩ C1
(
[0, T ], L2(Rn)

)
.

Theorem 3.1. Let ϕ ∈ Hs(Rn) and ψ ∈ Hs−1(Rn), n ≥ 1 in the Cauchy problem

utt −∆u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x).

Then there exists a unique solution u ∈ C
(
[0, T ], Hs(Rn)

) ∩ C1
(
[0, T ], Hs−1(Rn)

)
.

Proof. The solution is given in the form

u(t, x) = F−1
ξ→x

(
cos(|ξ|t)F (ϕ)(ξ)

)
+ F−1

ξ→x

(
sin(|ξ|t)
|ξ| F (ψ)(ξ)

)

if this solution satisfies the desired regularity. Let us transfer the assumptions for the data
into the Fourier image. Then we have

F (ϕ)(ξ) ∈ L2,s, that is, 〈ξ〉sF (ϕ)(ξ) ∈ L2, 〈ξ〉 = (1 + |ξ|2)1/2,

F (ψ)(ξ) ∈ L2,s−1, that is, 〈ξ〉s−1F (ψ)(ξ) ∈ L2.

We use the following estimates:

• | cos(|ξ|t)| ≤ 1,

• | sin(|ξ|t)| ≤ |ξ|t ≤ |ξ|T, for |ξ| ≤ ε and t ∈ [0, T ],

• | sin(|ξ|t)| ≤ 1 for |ξ| ≥ ε and t ∈ [0, T ].

9



Thus we can conclude

|v(t, ξ)| ≤ |F (ϕ)(ξ)|+ C(ε, T ) |F (ψ)(ξ)|
〈ξ〉 ,

〈ξ〉s|v(t, ξ)| ≤ 〈ξ〉s|F (ϕ)(ξ)|+ C(ε, T )〈ξ〉s−1|F (ψ)(ξ)|.
This leads to v ∈ L∞([0, T ], L2,s). In the same way we derive ∂tv ∈ L∞([0, T ], L2,s−1). It
remains to prove v ∈ C([0, T ], L2,s) ∩ C1([0, T ], L2,s−1). The property v ∈ C([0, T ], L2,s)
follows from lim

t1→t2
||v(t1, ·)− v(t2, ·)||L2,s = 0.

Using the explicit representation of solution we conclude as follows:

lim
t1→t2

∫

Rn

|v(t1, ξ)− v(t2, ξ)|2〈ξ〉2sdξ

≤ lim
t1→t2

∫

Rn

∣∣∣ sin
( |ξ|(t1 + t2)

2

)
sin

( |ξ|(t1 − t2)

2

)∣∣∣
2

|F (ϕ)(ξ)|2〈ξ〉2sdξ

+ lim
t1→t2

∫

Rn

∣∣∣ cos
( |ξ|(t1 + t2)

2

)
sin

( |ξ|(t1 − t2)

2

)∣∣∣
2 1

|ξ|2 |F (ψ)(ξ)|2〈ξ〉2sdξ.

Let KR(0) ⊂ Rn be a sufficiently large ball around the origin with radius R. We divide the
integral

∫
Rn

in two integrals
∫

KR(0)

+
∫

Rn\KR(0)

. Using the above estimates it holds

∫

Rn

∣∣∣ sin
( |ξ|(t1 + t2)

2

)
sin

( |ξ|(t1 − t2)

2

)∣∣∣
2

|F (ϕ)(ξ)|2〈ξ〉2sdξ

=

∫

KR(0)

∣∣∣ sin
( |ξ|(t1 + t2)

2

)
sin

( |ξ|(t1 − t2)

2

)∣∣∣
2

|F (ϕ)(ξ)|2〈ξ〉2sdξ

+

∫

Rn\KR(0)

∣∣∣ sin
( |ξ|(t1 + t2)

2

)
sin

( |ξ|(t1 − t2)

2

)∣∣∣
2

|F (ϕ)(ξ)|2〈ξ〉2sdξ

≤
∫

KR(0)

|ξ|2(t1 − t2)

4

2

|F (ϕ)(ξ)|2〈ξ〉2sdξ +

∫

Rn\KR(0)

|F (ϕ)(ξ)|2〈ξ〉2sdξ

for |t1 − t2| < ε(R). The first integral at the right-hand side is estimated by CR(t1 −
t2)

2‖F (ϕ)‖2
L2,s . Using the continuity of the Lebesgue measure the second integral is estimated

by ε̃(R) → 0. Summarizing we obtain

lim
t1→t2

∫

Rn

∣∣∣ sin
( |ξ|(t1 + t2)

2

)
sin

( |ξ|(t1 − t2)

2

)∣∣∣
2

|F (ϕ)(ξ)|2〈ξ〉2sdξ

≤ lim
t1→t2

CR(t1 − t2)
2||F (ϕ)||2L2,s + ε̃(R) = ε̃(R).
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Taking account of ε̃(R) → 0 for R →∞ we conclude

lim
t1→t2

∫

Rn

∣∣∣ sin
( |ξ|(t1 + t2)

2

)
sin

( |ξ|(t1 − t2)

2

)∣∣∣
2

|F (ϕ)(ξ)|2〈ξ〉2sdξ = 0.

Repeating this approach yields

lim
t1→t2

∫

Rn

∣∣∣ cos
( |ξ|(t1 + t2)

2

)
sin

( |ξ|(t1 − t2)

2

)∣∣∣
2 |F (ψ)(ξ)|2

|ξ|2 〈ξ〉2sdξ = 0,

where we now divide
∫
Rn

into
∫

Kε(0)

+
∫

KR(0)\Kε(0)

+
∫

Rn\KR(0)

.

Summarizing we have shown v ∈ C
(
[0, T ], L2,s

)
. The validity of the Fourier inversion formula

u = F−1
ξ→x

(
Fx→ξ(u(t, x))

)
implies u ∈ C

(
[0, T ], Hs

)
. An analogous reasoning brings v ∈

C1
(
[0, T ], L2,s−1

)
, u ∈ C1

(
[0, T ], Hs−1

)
, respectively. Here we have again to use the inversion

formula ∂tu = F−1
ξ→x

(
Fx→ξ(∂tu(t, x))

)
.

Exercise 3 Carry out the step of the proof

lim
t1→t2

∫

Rn

∣∣∣ cos
( |ξ|(t1 + t2)

2

)
sin

( |ξ|(t1 − t2)

2

)∣∣∣
2 |F (ψ)(ξ)|2

|ξ|2 〈ξ〉2sdξ = 0.

The considerations of this section show that the Cauchy problem is Hs well-posed.

Corollary 3.1. The Cauchy problem

utt −∆u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x), x ∈ Rn, n ≥ 1

is Hs well-posed, that is, to given data ϕ ∈ Hs(Rn), ψ ∈ Hs−1(Rn) there exists a uniquely
determined solution u ∈ C

(
[0, T ], Hs(Rn)

) ∩ C1
(
[0, T ], Hs−1(Rn)

)
. The solution depends

continuously on the data, that is, to each ε > 0 there exists a δ(ε) such that ‖ϕ1 − ϕ2‖Hs +
‖ψ1 − ψ2‖Hs−1 < δ implies ‖u1 − u2‖C([0,T ],Hs)∩C1([0,T ],Hs−1) < ε.

There exist two different ways to represent solutions of wave equations. On the one hand we
know the representations from Theorems 5.1 to 5.5. On the other hand we are acquainted
with representations consisting of Fourier multipliers. Is it possible to transfer one represen-
tation into another one?

Exercise 4 In the 1− d case we have the representation

u(t, x) = F−1
ξ→x

((
eiξt + e−iξt

)1

2
F (ϕ)(ξ)

)
+ F−1

ξ→x

((
eiξt − e−iξt

) 1

2iξ
F (ψ)(ξ)

)
.

How can we get from this representation the d’Alembert’s representation formula from Sec-
tion 5.1.1?

11



From the representation

v(t, ξ) = cos(|ξ|t)F (ϕ)(ξ) +
sin(|ξ|t)
|ξ| F (ψ)(ξ) = ∂t

(sin(|ξ|t)
|ξ| F (ϕ)(ξ)

)
+

sin(|ξ|t)
|ξ| F (ψ)(ξ)

it follows

u(t, x) = ∂tF
−1
ξ→x

(sin(|ξ|t)
|ξ| F (ϕ)(ξ)

)
+ F−1

ξ→x

(sin(|ξ|t)
|ξ| F (ψ)(ξ)

)
.

Therefore we only have to understand

F−1
ξ→x

(sin(|ξ|t)
|ξ| F (ψ)(ξ)

)
.

Exercise 5 What is the main difficulty in the discussion of the last Fourier multiplier?
Which methods do we find in the literature to overcome these difficulties?

Question: What are the advantages or disadvantages of the application of the method of
Fourier transformation to study wave equations?

Answer:

advantages: Choosing data from Sobolev spaces we have no loss of regularity (see Theorem
3.1). The approach is independent of the spatial dimension n.

disadvantages: Special qualitative properties of solutions of the wave equation as existence
of forward or backward wave front, or finite propagation speed of perturbations or domain
of dependence are difficult to understand by using Fourier multipliers in the representation
of solution.

3.2 Klein-Gordon equation

The Cauchy problem for the Klein-Gordon equation is

utt −∆u + m2u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x)

with a constant m2 > 0.

How can we define the total energy of a solution?

The mass term or potential forces to include into the total energy besides the elastic and the
kinetic energy a third component, it is the potential energy. Thus we define the total energy

EKG(u)(t) :=
1

2

∫

Rn

(
|∇xu(t, ·)|2 + |ut(t, ·)|2 + m2|u(t, x)|2

)
dx.

12



3.2.1 Energy estimates

Repeating the proof to Theorem 6.2 one can show the following result:

Theorem 3.2. (conservation of energy)
Let u ∈ C

(
[0, T ], H1(Rn)

) ∩ C1
(
[0, T ], L2(Rn)

)
be a Sobolev solution of

utt −∆u + m2u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x),

with data ϕ ∈ H1(Rn) and ψ ∈ L2(Rn). Then the conservation of the total energy holds,

EKG(u)(t) = EKG(u)(0) =
1

2

(
‖ψ‖2

L2 + ‖∇ϕ‖2
L2 + m2‖ϕ‖2

L2

)
for all t ≥ 0.

Exercise 6 Prove the statement of Theorem 3.2.

Another way to show the conservation of energy is to use the partial Fourier transforma-
tion. The Fourier transform v(t, ξ) = Fx→ξ(u(t, x))(t, ξ) satisfies the ordinary differential
equation with parameter ξ, vtt + |ξ|2v + m2v = vtt + 〈ξ〉2mv = 0 with 〈ξ〉2m = |ξ|2 + m2.
Taking into consideration the explicit representations of solutions for v(t, ·) and vt(t, ·), the
assumption (ϕ,∇xϕ, ψ) ∈ L2 × L2 × L2 and Parseval’s formula from the theory of Fourier
transformation, then we conclude as follows (the third equality should be proved in detail):

EKG(u)(t) =
1

2

(‖∇xu(t, ·)‖2
L2 + ‖ut(t, ·)‖2

L2 + m2‖u(t, ·)‖2
L2

)

=
1

2

(‖ |ξ| v(t, ·)‖2
L2 + ‖vt(t, ·)‖2

L2 + m2‖v(t, ·)‖2
L2

)

=
1

2

(‖〈ξ〉mv(t, ·)‖2
L2 + ‖vt(t, ·)‖2

L2

)

=
1

2

(‖〈ξ〉mv0(ξ)‖2
L2 + ‖v1(ξ)‖2

L2

)

=
1

2

∫

Rn

(|∇xϕ(x)|2 + |ψ(x)|2 + m2|ϕ(x)|2) dx = EKG(u)(0).

Question: Do we have a similar statement to Theorem 6.1 if we are not interested in the
total energy?

Answer: Let K ⊂ Rn be the closure of a domain. We define the local energy

EKG(u,K)(t) :=
1

2

∫

K

(
|ut(t, x)|2 + |∇xu(t, x)|2 + m2|u(t, x)|2

)
dx.

The following remarkable result holds by using the same notations as in Section 6.1.

Theorem 3.3. (domain of dependence inequality)
Let (t0, x0) ∈ Rn+1 with t0 > 0. We denote by Ω the conical domain bounded by the backward
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characteristic cone with apex at (t0, x0) and by the plane t = 0. Let u ∈ C2(Ω) be a classical
solution of the Klein-Gordon equation utt − ∆u + m2u = 0. Then the following inequality
holds:

EKG(u,K(x0, t0 − t)) ≤ EKG(u,K(x0, t0)) for t ∈ [0, t0].

The domain of dependence property helps to get a uniqueness result.

Corollary 3.2. The Cauchy problem

utt −∆u + m2u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x)

possesses at most one classical solution u ∈ C2([0,∞) × Rn) if the data are supposed to be
sufficiently smooth.

Exercise 7 Prove the statement of Theorem 3.3.

3.2.2 Representation of solutions by using Fourier multipliers

We will study the Cauchy problem

utt −∆u + m2u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x), x ∈ Rn, n ≥ 1.

Applying the partial Fourier transformation (v(t, ξ) = Fx→ξ(u(t, x))) we obtain the auxiliary
Cauchy problem

vtt + 〈ξ〉2mv = 0, v(0, ξ) = F (ϕ)(ξ), vt(0, ξ) = F (ψ)(ξ).

Analogous to the approach from Section 3.1 we have

v(t, ξ) = cos(〈ξ〉mt)F (ϕ)(ξ) +
sin(〈ξ〉mt)

〈ξ〉m F (ψ)(ξ).

Supposing for the moment the validity of Fourier’s inversion formula
u(t, x) = F−1

ξ→x

(
Fx→ξ(u(t, x))

)
(this we have to check at the end) brings

u(t, x) = F−1
ξ→x

(
cos(〈ξ〉mt)F (ϕ)(ξ)

)
+ F−1

ξ→x

(sin(〈ξ〉mt)

〈ξ〉m F (ψ)(ξ)
)
.

This is the desired representation of solutions. Let us given data ϕ ∈ Hs(Rn) and ψ ∈
Hs−1(Rn) with s ≥ 1. From Theorem 3.2 it follows that the solution has a total energy for
all t ≥ 0. Analogous to the proof of Theorem 3.1 one can show the following statement:

Theorem 3.4. Under the assumptions ϕ ∈ Hs(Rn) and ψ ∈ Hs−1(Rn), s ≥ 1, n ≥ 1 the
Cauchy problem

utt −∆u + m2u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x)

has a unique energy solution u ∈ C
(
[0, T ], Hs(Rn)

) ∩ C1
(
[0, T ], Hs−1(Rn)

)
. The solution

depends continuously on the data.
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Remark 3.1. The statements of Theorem 3.1 and Theorem 3.4 coincide. The mass term
or potential has no important influence on the regularity of solutions. But mass terms have
an influence on energy estimates as one can see in Theorems 3.2 and 3.3.

3.3 Damped wave equation

Exercise 8 Refresh your knowledge about the damped harmonic oscillator from the course
“Ordinary differential equations”.

Let us devote to the Cauchy problem

utt −∆u + ut = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x).

As for the classical wave equation we introduce the total energy

EW (u)(t) =
1

2

∫

Rn

(
|∇xu(t, x)|2 + |ut(t, x)|2

)
dx.

3.3.1 Energy estimates

First of all we are interested in energy estimates following from differentiation of the energy
EW (u)(t) with respect to t and partial integration. It holds

E ′
W (u)(t) =

1

2

∫

Rn

(
2∇xu · ∇xut + 2ututt

)
dx

=

∫

Rn

(∇xu · ∇xut + ut(∆u− ut)
)
dx =

∫

Rn

−ut(t, x)2dx ≤ 0.

Thus the energy is decreasing for increasing t. This seems to be no surprise because of the
damping term. It arises the question for the behavior of the energy for t → ∞. Of special
interest is the question if the energy EW (u)(t) tends to 0 for t → ∞. Such a behavior is
called decay. This issue is discussed in Section 4.

3.3.2 Representation of solutions by using Fourier multipliers

We will deal with the Cauchy problem

utt −∆u + ut = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x).

Step 1 Transformation of the dissipation into a mass or a potential

We introduce the function w = w(t, x) as w(t, x) := e
1
2
tu(t, x). Then w satisfies the partial

differential equation

wtt −∆w − 1

4
w = 0, w(0, x) = ϕ(x), wt(0, x) =

1

2
ϕ(x) + ψ(x).
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In opposite to the Klein-Gordon equation it appears a negative mass term. This negative
mass needs some special considerations.

Step 2 Application of partial Fourier transformation

The application of partial Fourier transformation gives an ordinary differential equation for
v = v(t, ξ) = Fx→ξ(w)(t, ξ):

vtt +
(
|ξ|2 − 1

4

)
v = 0, v(0, ξ) = v0(ξ) = F (ϕ)(ξ), vt(0, ξ) = v1(ξ) =

1

2
F (ϕ)(ξ) + F (ψ)(ξ).

We carry out a distinction of cases for {ξ ∈ Rn : |ξ| < 1
2
}, the mass term |ξ|2− 1

4
is negative,

and for {ξ ∈ Rn : |ξ| > 1
2
}, the mass term |ξ|2 − 1

4
is positive.

Case 1 {ξ : |ξ| > 1
2
}

Using |ξ|2 > 1
4

we can define a new positive variable |η| satisfying |η|2 := |ξ|2 − 1
4

> 0. So
we get the ordinary differential equation vtt + |η|2v = 0. Taking account of the results from
Section 3.1 we obtain immediately the following representation of solution v(t, ξ):

v(t, ξ) = cos
(√

|ξ|2 − 1

4
t
)

v0(ξ) +
sin

(√
|ξ|2 − 1

4
t
)

√
|ξ|2 − 1

4

v1(ξ).

Case 2 {ξ : |ξ| < 1
2
}

The solution for the transformed differential equation is

v(t, ξ) =

(
v0(ξ)

2
− v1(ξ)√

1− 4|ξ|2

)
e−

1
2

√
1−4|ξ|2t +

(
v0(ξ)

2
+

v1(ξ)√
1− 4|ξ|2

)
e

1
2

√
1−4|ξ|2t

= v0(ξ) cosh
(1

2

√
1− 4|ξ|2t

)
+

2v1(ξ)√
1− 4|ξ|2 sinh

(1

2

√
1− 4|ξ|2t

)
.

If we consider the Cauchy problem

utt −∆u + ut = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x)

with data ϕ ∈ Hs and ψ ∈ Hs−1, then we conclude from the above representations of solu-
tions the next result (pay attention that only the behavior for large frequencies is important
for the regularity of solutions, the continuity with respect to t is proved as in Theorem 3.1):

Theorem 3.5. Let the data ϕ ∈ Hs(Rn) and ψ ∈ Hs−1(Rn), s ≥ 1, n ≥ 1 be given for the
Cauchy problem

utt −∆u + ut = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x).

Then there exists a uniquely determined energy solution
u ∈ C

(
[0, T ], Hs(Rn)

)∩C1
(
[0, T ], Hs−1(Rn)

)
. The solution depends continuously on the data.
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Remark 3.2. The statements of Theorem 3.1 and Theorem 3.5 coincide. The dissipation
term has no important influence on the regularity of solutions. Dissipation terms have an
essential influence on energy estimates, they can produce a decay of the energy. This will be
explained in the next section.

Exercise 9 Let us consider the Cauchy problem for a very large damped membrane

utt − c2∆u + kut = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x), x ∈ R2.

Solve this Cauchy problem by the aid of the following transformations:

u(t, x) = exp(−kt/2)w(t, x), v(t, x1, x2, x3) = w(t, x1, x2) exp(kx3/(2c)).

Exercise 10 We are interested in the Cauchy problem

utt − uxx + εut = 0, u(0, x, ε) = ϕ(x), ut(0, x, ε) = ψ(x), x ∈ R1,

with sufficiently smooth data ϕ and ψ. Let u = u(t, x, ε) be the unique solution of this
Cauchy problem. Show that we have for every fixed (t, x) the relation limε→0 u(t, x, ε) =
w(t, x), where w = w(t, x) solves the Cauchy problem

wtt − wxx = 0, w(0, x) = ϕ(x), wt(0, x) = ψ(x), x ∈ R1.

4 Decay behavior and decay rate for classical damped

waves

The application of the partial Fourier transformation and a very precise WKB analysis, the
abbreviation is due to the physicists Wentzel, Kramer and Broullion (this is a precise analysis
to study the Fourier multipliers appearing in the representation of solutions) allows us to
estimate in a better way than it is done in Section 3.3.1 the energy of solutions to the damped
wave equation. We are able to derive an optimal decay behavior with an optimal decay rate.

Theorem 4.1. The solution to the Cauchy problem

utt −∆u + ut = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x)

with data ϕ ∈ H1 and ψ ∈ L2 satisfies the following estimates:

‖∇xu(t, ·)‖L2 ≤ C(1 + t)−
1
2

(‖ψ‖L2 + ‖ϕ‖H1

)
,

‖ut(t, ·)‖L2 ≤ C(1 + t)−1
(‖ψ‖L2 + ‖ϕ‖H1

)
,

and consequently, the energy satisfies

EW (u)(t) ≤ C(1 + t)−1
(‖ψ‖2

L2 + ‖ϕ‖2
H1

)
.
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Proof. Step 1 Transformation of energy into the phase space

Let û the Fourier transform of u, that is, û(t, ξ) = Fx→ξ(u)(t, ξ). As in Section 3.2.1 we can
transfer the energy into the phase space as follows:

EW (u)(t) =
1

2

(
‖∇xu(t, ·)‖2

L2 + ‖ut(t, ·)‖2
L2

)
=

1

2

(
‖|ξ|û(t, ·)‖2

L2 + ‖ût(t, ·)‖2
L2

)
.

By u(t, x) = e−
1
2
tw(t, x) and v(t, ξ) = Fx→ξ(w)(t, ξ) it follows û(t, ξ) = e−

1
2
tv(t, ξ). For the

elastic energy we will use

|ξ|û(t, ξ) = e−
1
2
t |ξ|v(t, ξ),

for the kinetic energy we will use

ût(t, ξ) = e−
1
2
t
(
vt(t, ξ) − 1

2
v(t, ξ)

)
.

Step 2 Estimate of the elastic energy

We will distinguish several cases.

Case 1 {ξ : |ξ| > 1
2
}

First we notice |ξ|û(t, ξ) = e−
1
2
t
(

cos
(√|ξ|2 − 1

4
t
) |ξ|v0(ξ) + t

sin
(√

|ξ|2− 1
4
t
)

√
|ξ|2− 1

4
t

|ξ|v1(ξ)
)
. This

helps us to estimate the elastic energy ‖∇xu(t, ·)‖2
L2 . We have

‖|ξ|û(t, ξ)‖2
L2{|ξ|> 1

2
} =

∫

|ξ|> 1
2

|ξ|2|û(t, ξ)|2dξ ≤ 2
( ∫

|ξ|> 1
2

e−t|ξ|2|v0(ξ)|2dξ

+

∫
1
2
<|ξ|≤1

sin2
(√|ξ|2 − 1

4
t
)

√
|ξ|2 − 1

4

2

t2

︸ ︷︷ ︸
sin2 α

α2 ≤C

t2e−t|ξ|2|v1(ξ)|2dξ +

∫

|ξ|≥1

1

|ξ|2 − 1
4

|ξ|2
︸ ︷︷ ︸

≤C

e−t|v1(ξ)|2dξ
)

≤ 2e−t

∫

Rn

|ξ|2|v0(ξ)|2dξ + Ct2e−t

∫

Rn

|v1(ξ)|2dξ + Ce−t

∫

Rn

|v1(ξ)|2dξ.

Summarizing these terms decay exponentially. It holds

∫

|ξ|> 1
2

|ξ|2|û(t, ξ)|2dξ ≤ Ct2e−t

∫

Rn

(|ξ|2|v0(ξ)|2 + |v1(ξ)|2)dξ.

Case 2 {ξ : |ξ| < 1
2
}
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To estimate the elastic energy we use

|ξ|û(t, ξ) = |ξ|e− 1
2
t
((v0(ξ)

2
− v1(ξ)√

1− 4|ξ|2
)
e−

1
2

√
1−4|ξ|2t

+
(v0(ξ)

2
+

v1(ξ)√
1− 4|ξ|2

)
e

1
2

√
1−4|ξ|2t

)

= v0(ξ)|ξ| cosh
(1

2

√
1− 4|ξ|2t

)
e−

1
2
t +

2v1(ξ)|ξ|√
1− 4|ξ|2 sinh

(1

2

√
1− 4|ξ|2t

)
e−

1
2
t.

We divide the interval [0, 1
2
) in two subintervals.

a) {ξ : |ξ| ∈ [1
4
, 1

2
)}:

Here we estimate the elastic energy as follows:

|ξ||û(t, ξ)| =
∣∣∣ v0(ξ)|ξ| cosh

(1

2

√
1− 4|ξ|2t

)

︸ ︷︷ ︸
≤ cosh(

√
3

4
t)

e−
1
2
t +

sinh
(

1
2

√
1− 4|ξ|2t

)

1
2

√
1− 4|ξ|2t t

︸ ︷︷ ︸
≤Ct cosh(

√
3

4
t)

v1(ξ)|ξ|e− 1
2
t
∣∣∣

≤
∣∣∣ v0(ξ)|ξ| cosh

(√3

4
t
)
e−

1
2
t

︸ ︷︷ ︸
≤ e−δt, δ>0

+ C v1(ξ)|ξ|︸ ︷︷ ︸
≤ |v1(ξ)|

cosh
(√3

4
t
)

te−
1
2
t

︸ ︷︷ ︸
≤ e−δt, δ>0

∣∣∣,

and obtain
∫

1
4
≤|ξ|< 1

2

|ξ|2|û(t, ξ)|2dξ ≤ Ce−δt

∫

Rn

(|ξ|2|v0(ξ)|2 + |v1(ξ)|2)dξ.

b) {ξ : |ξ| ∈ [0, 1
4
)}:

Now we use for |ξ| < 1
2

the inequality −4|ξ|2 ≤ −1 +
√

1− 4|ξ|2 ≤ −2|ξ|2. With this
inequality we proceed as follows:

∫

|ξ|< 1
4

|ξ|2|û(t, ξ)|2dξ ≤
∫

|ξ|< 1
4

(|v1(ξ)|2|ξ|2 + |v0(ξ)|2|ξ|2)(e−t−
√

1−4|ξ|2t︸ ︷︷ ︸
≤ e−t

+ e−t+
√

1−4|ξ|2t︸ ︷︷ ︸
≤ e−2|ξ|2t

)dξ

≤ Ce−t

∫

|ξ|< 1
4

(|v1(ξ)|2|ξ|2 + |v0(ξ)|2|ξ|2)dξ

+ C

∫

|ξ|< 1
4

(|v1(ξ)|2 + |v0(ξ)|2)|ξ|2e−2|ξ|2tdξ.
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By using the norm inequality ‖ · ‖L2 ≤ ‖ · ‖L∞‖ · ‖L2 we get for the second term of the
right-hand side of the last inequality

C

∫

|ξ|< 1
4

(|v1(ξ)|2 + |v0(ξ)|2)|ξ|2e−2|ξ|2tdξ

≤ C sup
|ξ|< 1

4
, t≥1

t|ξ|2
t

e−2|ξ|2t

∫

Rn

(|v1(ξ)|2 + |v0(ξ)|2)dξ

≤ C
1

t
sup

|ξ|< 1
4
, t≥1

t|ξ|2e−2|ξ|2t

︸ ︷︷ ︸
≤C

∫

Rn

(|v1(ξ)|2 + |v0(ξ)|2)dξ.

Summarizing we have shown for small frequencies
∫

|ξ|< 1
4

|ξ|2|û(t, ξ)|2dξ ≤ C(1 + t)−1

∫

Rn

(|v0(ξ)|2 + |ξ|2|v0(ξ)|2 + |v1(ξ)|2)dξ.

Step 3 Estimate of the kinetic energy

Finally, we deal with the kinetic energy. We will use the identity ‖ut(t, ξ)‖2
L2 = ‖ût(t, ξ)‖2

L2

with ût(t, ξ) = e−
1
2
t
(
vt(t, ξ) − 1

2
v(t, ξ)

)
.

Case 1 {ξ : |ξ| > 1
2
}

We need

vt(t, ξ) = −
√
|ξ|2 − 1

4
sin

(√
|ξ|2 − 1

4
t
)
v0(ξ) + cos

(√
|ξ|2 − 1

4
t
)
v1(ξ).

By using the last equation we obtain

ût(t, ξ) = e−
1
2
t
(
v1(ξ)

(
cos(

√
|ξ|2 − 1

4
t) − 1

2

sin(
√
|ξ|2 − 1

4
t)

√
|ξ|2 − 1

4

)

− v0(ξ)
(1

2
cos(

√
|ξ|2 − 1

4
t) +

√
|ξ|2 − 1

4
sin(

√
|ξ|2 − 1

4
t)

))
.

Repeating the reasoning to estimate the elastic energy gives

‖ut(t, ·)‖2
L2{|ξ|> 1

2
} ≤ C

∫

|ξ|> 1
2

e−t|v1(ξ)|2
(

cos
(√|ξ|2 − 1

4
t
)− 1

2

sin
(√|ξ|2 − 1

4
t
)

√
|ξ|2 − 1

4

)2

︸ ︷︷ ︸
≤C t2

dξ

+ C

∫

|ξ|> 1
2

e−t|v0(ξ)|2
(√

|ξ|2 − 1

4
sin

(√|ξ|2 − 1

4
t
)

+
1

2
cos

(√|ξ|2 − 1

4
t
)

︸ ︷︷ ︸
≤C

)2

dξ.
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The inequality (|ξ|2 − 1
4
) sin2

(√|ξ|2 − 1
4

t
) ≤ |ξ|2 brings for {ξ : |ξ| > 1

2
}

∫

|ξ|> 1
2

|ξ|2|û(t, ξ)|2dξ ≤ Ct2e−t

∫

Rn

(|ξ|2|v0(ξ)|2 + |v1(ξ)|2)dξ.

Case 2: {ξ : |ξ| < 1
2
}

After the determination of vt(t, ξ) we get immediately

ût(t, ξ) =
1

2
e−

1
2
t
(√

1− 4|ξ|2 sinh
(1

2

√
1− 4|ξ|2t

)
− cosh

(1

2

√
1− 4|ξ|2t

))
v0(ξ)

+ e−
1
2
t
(

cosh
(1

2

√
1− 4|ξ|2t

)
− 1√

1− 4|ξ|2 sinh
(1

2

√
1− 4|ξ|2t

))
v1(ξ).

We divide again the interval [0, 1
2
).

a) {ξ : |ξ| ∈ [1
4
, 1

2
)}:

Here we can show the exponential decay of the energy. On the one hand we use

cosh
(1

2

√
1− 4|ξ|2t

)
+ sinh

(1

2

√
1− 4|ξ|2t

)
≤ 2 cosh

(√3

4
t
)
,

on the other hand we use
∣∣∣ 1√

1− 4|ξ|2 sinh
(1

2

√
1− 4|ξ|2t

)∣∣∣ ≤ Cεt for
1

2

√
1− 4|ξ|2t ≤ ε.

Both together gives

‖ût(t, ξ)‖2
L2{|ξ|∈[ 1

4
, 1

2
)} ≤ Ce−δt

∫

Rn

(|ξ|2|v0(ξ)|2 + |v1(ξ)|2)dξ

with a suitable positive δ.

b) {ξ : |ξ| < 1
4
}:

In this case we obtain

ût(t, ξ) =
(v0(ξ)

4
+

v1(ξ)

2
√

1− 4|ξ|2
)
(
√

1− 4|ξ|2 − 1)e−
1
2
t+ 1

2

√
1−4|ξ|2t

−
(v0(ξ)

4
− v1(ξ)

2
√

1− 4|ξ|2
)
(
√

1− 4|ξ|2 + 1)e−
1
2
t− 1

2

√
1−4|ξ|2t.

Hence, we can estimate as follows:

|ût(t, ξ)| ≤
∣∣∣∣
( v1(ξ)

2
√

1− 4|ξ|2 +
v0(ξ)

4

)( √
1− 4|ξ|2 − 1︸ ︷︷ ︸
≤−2|ξ|2

)
e−

1
2
t+ 1

2

√
1−4|ξ|2t︸ ︷︷ ︸

≤ e−|ξ|2t, |ξ|< 1
2

∣∣∣∣.
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Recalling the estimates for the elastic energy a similar approach leads to

‖ût(t, ξ)‖2
L2{|ξ|< 1

4
} ≤ C

∫

|ξ|< 1
4

(|v1(ξ)|2 + |v0(ξ)|2
) |ξ|4

(
e−t + e−2|ξ|2t

)
dξ

≤ Ce−t

∫

|ξ|< 1
4

(|v1(ξ)|2 + |v0(ξ)|2
)
dξ + C

∫

|ξ|< 1
4

(|v1(ξ)|2 + |v0(ξ)|2
) |ξ|4e−2|ξ|2tdξ

≤ Ce−t

∫

|ξ|< 1
4

(|v1(ξ)|2 + |v0(ξ)|2
)
dξ

+ C
1

t2
sup

|ξ|< 1
4
, t≥1

t2|ξ|4e−2|ξ|2t

︸ ︷︷ ︸
≤ c

∫

|ξ|< 1
4

(|v1(ξ)|2 + |v0(ξ)|2
)
dξ

≤ Ce−t

∫

|ξ|< 1
4

(|v1(ξ)|2 + |v0(ξ)|2
)
dξ +

C

(1 + t)2

∫

|ξ|< 1
4

(|v1(ξ)|2 + |v0(ξ)|2
)
dξ

≤ C

(1 + t)2

∫

Rn

(|v1(ξ)|2 + |v0(ξ)|2
)
dξ.

Thus all statements from the theorem are proved.

Question: Which part of the phase space does the decay behavior of the energy determine?

Answer: The decay behavior is determined by the small frequencies.

Question: Which property do the large frequencies influence?

5 Qualitative properties of wave models - 1

5.1 Classical wave equations

5.1.1 D’Alembert’s representation in R1

We devote to the Cauchy problem

utt − uxx = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x).

A change of variables ξ = x − t, η = x + t (motivated by the notion of characteristics)
leads to −4uξη = 0. The last partial differential equation has the general solution u =
u(ξ, η) = u1(ξ) + u2(η) with arbitrary functions u1 and u2. The backward transformation
gives u = u(t, x) = u1(x− t) + u2(x + t). The general solution u is a linear superposition of
two waves, the wave u1(x− t) is a perturbation moving with the velocity 1 to the right-hand
side. The wave u2(x + t) is moving with velocity 1 to the left-hand side. Both solutions (let
us suppose for the moment that u1 and u2 are twice differentiable in the classical sense) are
called traveling wave solutions. Using both Cauchy conditions we obtain

u(0, x) = ϕ(x) = u1(x) + u2(x), ut(0, x) = ψ(x) = −u′1(x) + u′2(x).
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Integration of the second equation yields −u1(x) + u2(x) =
∫ x

x0
ψ(r)dr, x0 is an arbitrary

constant. Hence,

u1(x) =
1

2
ϕ(x) +

1

2

∫ x

x0

ψ(r)dr, u2(x) =
1

2
ϕ(x)− 1

2

∫ x

x0

ψ(r)dr.

Summarizing we derived the so-called d’Alembert’s representation of solution

u(t, x) =
1

2

(
ϕ(x− t) + ϕ(x + t)

)
+

1

2

∫ x+t

x−t

ψ(r)dr.

5.1.2 What kind of properties do we conclude from d’Alembert’s representation
formula?

5.1.2.1 Regularity of solutions

Let us consider the Cauchy problem

utt − uxx = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x) with data ϕ ∈ Ck(R1) and ψ ∈ Ck−1(R1).

Theorem 5.1. The Cauchy problem possesses one and only one solution u ∈ Ck([0,∞) ×
R1). The solution depends continuously on the data, that is, if we change ϕ and ψ a bit
with respect to the topologies of Ck(R1) and Ck−1(R1), then the solution u changes a bit with
respect to the topology of Ck([0,∞)× R1).

Proof. The existence of a solution is given by d’Alembert’s representation formula. The
uniqueness follows from the fact that the general solution of utt − uxx = 0 is given by the
formula u(t, x) = u1(x− t) + u2(x + t). The continuous dependence of the solution from the
data is concluded from the representation formula.

Exercise 11 Explain the statement about the continuous dependence of the solution from
the data by formulas!

Exercise 12 Let us consider the Cauchy problem with data ϕ = ψ = 0 outside of
the interval [−l, l]. Show that to each x0 ∈ R1 there exist constants T (x0) and U with
u(x0, t) = U for t ≥ T (x0). Determine these constants.

5.1.2.2 Qualitative properties of solutions

From d’Alembert’s representation formula we conclude remarkable properties for the so-
lutions of wave equations which are typical of solutions of hyperbolic partial differential
equations. The wave equation is one representative of this class.

Finite speed of propagation of perturbations

Let us devote to the Cauchy problem with data ϕ ∈ C2(R1) and ψ ∈ C1(R1). We perturb
these data by the aid of data ϕs ∈ C2(R1) and ψs ∈ C1(R1) supported on the interval [a, b].
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We are interested in the propagation of these perturbations. For this reason we study the
Cauchy problem

utt − uxx = 0, u(0, x) = ϕs(x), ut(0, x) = ψs(x)

with ϕs = ψs = 0 outside of [a, b]. As the solution we get

us(t, x) =
1

2

(
ϕs(x− t) + ϕs(x + t)

)
+

1

2

∫ x+t

x−t

ψs(r)dr.

Question: When do we feel the perturbations in a point x0 ∈ R1 lying outside of [a, b]?
For small times t we have u(t, x0) = 0 in x0.

Answer: We feel the perturbations after finite time T = dist (x0, [a, b]). This property is
called finite propagation speed of perturbations or existence of a forward wave front.

Domain of dependence

Question: Which information about the data has an influence on the solution in a given
point (t0, x0)?

Answer: To determine the solution u(t0, x0) in the point (t0, x0) we need the datum ϕ in
the points x0− t0 and x0 + t0 and the datum ψ on the interval [x0− t0, x0 + t0]. The interval
[x0 − t0, x0 + t0] is called domain of dependence for the solution u in the point (t0, x0).

Huygens’ principle

The Huygens’ principle describes the existence of a backward wave front, that is, the property,
that in a point x0 ∈ R1 the solution vanishes after the time T (x0) if we are interested in the
propagation of perturbations located in an interval [a, b]. In general we cannot expect the
existence of a backward wave front having in mind that the domain of dependence for the
solution u in the point (t0, x0) is the interval [x0 − t0, x0 + t0]. If we choose ψ ≡ 0, then the
solution u in (t0, x0) is determined by the values of ϕ in (x0−t0) and (x0 +t0). Consequently,
after the time T = max(x0 − a, b − x0) we have u ≡ 0 in x0. Summarizing the Huygens’
principle holds under the assumption ψ ≡ 0. One can relax this condition to the condition∫ b

a
ψ(r)dr = 0.

Propagation of singularities

Let us recall d’Alembert’s representation of solution to the 1-d wave equation

u(t, x) =
1

2

(
ϕ(x− t) + ϕ(x + t)

)
+

1

2

∫ x+t

x−t

ψ(r)dr.

Let us assume that the data ϕ or ψ have a jump in x = x0. Then there will be still a jump in
the solution and the jump propagates along the characteristics x− x0 = t and x− x0 = −t.
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If there is only a jump in ψ, then we feel it in the first derivatives of the solution. This
observation can be generalized to higher-dimensional cases. Thus singularities in the data
propagate along the characteristics in the 1-d case or along the characteristic cone in the
higher dimensional case.
If we have an obstacle, then singularities from the data for solutions of the wave equation will
be reflected. There exist special situations where the study of propagation of singularities
for solutions of mixed problems, and thus the property of reflection of singularities, can
be understood from the study of the propagation of singularities for solutions to Cauchy
problems.

5.1.2.3 Wave models with sources or sinks

Let us consider the wave model

utt − uxx = F (t, x), u(0, x) = ϕ(x), ut(0, x) = ψ(x).

We suppose that the source F is integrable, let us say, F ∈ L1
loc([0,∞)×R1)). Thus we are

interested in non-classical solutions. For the solution u we choose the ansatz u = v + w,
where v and w are solutions to the Cauchy problems (here we take account of the linearity
of our model)

vtt − vxx = F (t, x), v(0, x) = 0, vt(0, x) = 0,

wtt − wxx = 0, w(0, x) = ϕ(x), wt(0, x) = ψ(x).

The Cauchy problem for w is studied in Section 5.1.1, thus let us devote to the Cauchy
problem for v.

Exercise 13 Derive the representation of solution

v(t, x) =
1

2

∫ t

0

∫ x+(t−t′)

x−(t−t′)
F (x′, t′)dx′dt′.

Which values of F determine the solution v in the point (t0, x0)? Find the domain of depen-
dence! Denoting the domain of dependence by Ω(t0, x0) we conclude Ω(t0, x0) = {(t, x) ∈
Rn+1 : (t, x) ∈ [0, t0)× {|x− x0| ≤ t0 − t}}.

5.1.3 Kirchhoff’s representation in R3

As before we are interested in the Cauchy problem

utt −∆u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x), x ∈ R3.

To find a solution is more complicate than in the 1-d case. A simple observation tells us the
following:
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Lemma 5.1. If up = up(t, x) solves the Cauchy problem

utt −∆u = 0, u(0, x) = 0, ut(0, x) = p(x),

p = p(x) is sufficiently smooth, then ∂tup =: v solves the Cauchy problem

vtt −∆v = 0, v(0, x) = p(x), vt(0, x) = 0.

Exercise 14 Prove the statement of this lemma!

Corollary 5.1. A solution u = u(t, x) of

utt −∆u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x)

is representable in the form u(t, x) = uψ(t, x) + ∂tuϕ(t, x), where the data ϕ and ψ are
supposed to be smooth.

Thus it is sufficient to derive a formula for up = up(t, x).

First we sketch how to guess such a formula, then we will prove that the formula really gives
a solution (see Theorem 5.2).

We consider the auxiliary Cauchy problem

utt −∆u = 0, u(0, x) = 0, ut(0, x) = δε(x), x ∈ R3,

where δε(x) = (4πε)−
3
2 exp(− |x|2

4ε
), ε > 0. It holds

∫
R3 δε(x)dx = 1 and lim

ε→0
δε(x) = 0 for all

x 6= 0.

The data depend on the polar distance, they are radially symmetric. Then we should expect
that the solution is radially symmetric, too, thus it depends only on r and t.

Exercise 15 Show that every radially symmetric solution u = u(t, r) of utt−∆u = 0, x ∈
R3, is representable in the following form:

u(t, r) =
u1(r + t)

r
+

u2(r − t)

r

with arbitrary given twice differentiable functions u1, u2 (transform the Laplace operator
into polar co-ordinates). Here u1 = u1(r + t) is called contracting wave and u2 = u2(r − t)
is called expanding wave.

Using the Cauchy conditions then one integration leads to

u2(r) =

∫

R
−r

2
(4πε)−

3
2 exp

(− r2

4ε

)
dr = ε (4πε)−

3
2 exp

(− r2

4ε

)
+ C.
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This gives the representation of solution

u(t, x) = Iε(r, t)− Jε(r, t) :=

1

4πr

1√
4πε

exp
(
− (r − t)2

4ε

)
− 1

4πr

1√
4πε

exp
(
− (r + t)2

4ε

)
.

The data p = p(y) is supposed to be continuous. Thus it is nearly constant in a small
cube ∆y. Consequently, the solution u = u(t, x) to the data p(y)δε(|x − y|)∆y (∆y means
localization near y!) is

u(t, x) = p(y)
(
Iε(|x− y|, t)− Jε(|x− y|, t)

)
∆y.

The superposition of all localized influences leads to

u(t, x) =

∫

R3

p(y)
(
Iε(|x− y|, t)− Jε(|x− y|, t)

)
dy.

The desired formula results from

u(t, x) = lim
ε→0

∫

R3

p(y)
(
Iε(|x− y|, t)− Jε(|x− y|, t)

)
dy = lim

ε→0

∫

R3

p(y)Iε(|x− y|, t)dy.

Introducing spherical harmonics we get with y = x + ρ ω, ω is a unit vector in R3,

u(t, x) = lim
ε→0

∫

R3

p(y)
1

4π|x− y|
1√
4πε

exp
(
− (|x− y| − t)2

4ε

)
dy

= lim
ε→0

1

4π

∫ ∞

0

exp
(
− (ρ− t)2

4ε

) 1√
4πε

(1

ρ

∫

|ω|=1

p(x + ρω)ρ2dσω

)
dρ.

Finally, setting ρ− t = 2
√

εz and changing the order of integration it follows

u(t, x) =
1

4π

∫

|ω|=1

lim
ε→0

∫ ∞

−t
2
√

ε

p(x + (t + 2
√

εz)ω)(t + 2
√

εz) exp(−z2)dz dσω

=
t

4π

∫

|ω|=1

p(x + tω)dσω.

The element of surface of a ball with radius t is dσy = t2dσω. Setting x + tω = y we arrive
at the equivalent representation

u(t, x) =
1

4πt

∫

St(x)

p(y)dσy,

where St(x) is the surface of a ball of radius t and center x.
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Remark 5.1. The above considerations serve to guess a representation of solutions to the
Cauchy problem utt −∆u = 0, u(0, x) = 0, ut(0, x) = p(x), x ∈ R3.

Theorem 5.2. Let p ∈ Ck(R3) with k ≥ 2. Then the solution of the above Cauchy problem
is given by the aid of Kirchhoff’s formula

up(t, x) =
1

4πt

∫

St(x)

p(y)dσy.

The solution belongs to Ck([0,∞)× R3).

Proof. We introduce y = x + tα, α = (α1, α2, α3), where α is a unit vector in the direction
y − x. Using dσt = t2dσ1 gives

up(t, x) =
t

4π

∫

S1(0)

p(x + tα)dσ1.

Thus we get lim
t→0

up(t, x) = 0. Differentiating with respect to t implies together with the

supposed regularity for p the relation

∂tup(t, x) =
1

4π

∫

S1(0)

p(x + tα)dσ1 +
t

4π

∫

S1(0)

∇p(x + tα) · α dσ1.

From this equation it follows lim
t→0

∂tup(t, x) = p(x). It remains to show, that up solves the

wave equation, that is, 2up(t, x) = 0. We use the representation

∂tup(t, x) =
1

t
up(t, x) +

1

4πt

∫

St(x)

∇p(y) · α dσt(y).

Now, using the fact that α is the exterior unit normal vector to St(x) and applying the
Divergence Theorem we obtain

∂tup(t, x) =
1

t
up(t, x) +

1

4πt

∫

B(x,t)

∆p(y)dy.

Here B(x, t) ⊂ R3 denotes the ball around the center x with radius t. Differentiation with
respect to t yields

∂2
t up(t, x) = − 1

t2
up(t, x) +

1

t
∂tup(t, x)− 1

4πt2

∫

B(x,t)

∆p(y)dy +
1

4πt

∂

∂t

∫

B(x,t)

∆p(y)dy.

Setting into this equation the above relation for ∂tup we obtain

∂2
t up(t, x) =

1

4πt
∂t

∫

B(x,t)

∆p(y)dy.
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Taking account of

∂t

∫

B(x,t)

∆p(y)dy = ∂t

∫ t

0

∫

Sr(x)

∆p(x + rα)dσr dr =

∫

St(x)

∆p(x + tα)dσt

we derive

∂2
t up(t, x) =

1

4πt

∫

St(x)

∆p(y)dσt =
t

4π

∫

S1(0)

∆p(x + αt)dσ1.

Finally, the relation

∆up(t, x) =
t

4π

∫

S1(0)

∆p(x + αt)dσ1

guarantees that up = up(t, x) is a solution of our Cauchy problem.

Corollary 5.2. The Cauchy problem

utt −∆u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x)

with data ϕ ∈ Ck(R3) and ψ ∈ Ck−1(R3) has one solution u ∈ Ck−1([0,∞) × R3). This
solution is representable in the form

u(t, x) =
1

4πt

∫

St(x)

ψ(y)dσy + ∂t

( 1

4πt

∫

St(x)

ϕ(y)dσy

)
.

Question: Do we see differences between the statements of Theorem 5.1 and Corollary 5.2?

Answer: We have no uniqueness in the formulation of Corollary 5.2. Moreover, the solution
from Corollary 5.2 belongs only to the space Ck−1([0,∞)× R3). Thus we lose one order of
regularity.

Exercise 16 (Duhamel’s principle) (compare with Exercise 13)
Show that the solution u of

utt −∆u = F (t, x), u(0, x) = ut(0, x) = 0, x ∈ R3,

is given by

u(t, x) =

∫ t

0

w(x, t, τ)dτ,

where w = w(x, t, τ) solves the following Cauchy problem:

wtt −∆w = 0, w(x, τ, τ) = 0, wt(x, τ, τ) = F (τ, x).

29



5.1.4 General dimension

5.1.4.1 Odd space dimension Let us devote to the Cauchy problem

utt −∆u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x), x ∈ R2n+1, n ≥ 1.

Theorem 5.3. To given data ϕ ∈ Ck(R2n+1) and ψ ∈ Ck−1(R2n+1) with k ≥ n + 2, n ≥ 1
there exists one solution u ∈ Ck−n([0,∞)× R2n+1). The solution has the representation

u(t, x) =
n−1∑
j=0

(
(j + 1)ajt

j∂j
t + ajt

j+1∂j+1
t

) 1

ω2n+1

∫

|y|=1

ϕ(x + ty)dσy

+
n−1∑
j=0

ajt
j+1∂j

t

1

ω2n+1

∫

|y|=1

ψ(x + ty)dσy,

where aj = aj(n) are constants with an−1 6= 0, and where ω2n+1 denotes the measure of the
unit sphere in R2n+1.

Question: What do we conclude from this representation of solution?

Answer: We obtain immediately the following properties:

• The loss of regularity is n.

• The properties of finite propagation speed of perturbations, of existence of a domain
of dependence and of existence of a forward and of a backward wave front are fulfilled.

Question: How can we prove the uniqueness of solutions? We give no answer in the moment!

Example: If n = 1, then a0 = 1, and we conclude Kirchhoff’s representation formula in
3-d case

u(t, x) = (1 + t ∂t)
1

4π

∫

|y|=1

ϕ(x + ty)dσy +
t

4π

∫

|y|=1

ψ(x + ty)dσy.

5.1.4.2 Even space dimension Let us devote to the Cauchy problem

utt −∆u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x), x ∈ R2n, n ≥ 1.

Theorem 5.4. To given data ϕ ∈ Ck(R2n) and ψ ∈ Ck−1(R2n) with k ≥ n+2, n ≥ 1 there
exists a solution u ∈ Ck−n([0,∞)× R2n) having the representation

u(t, x) =
n−1∑
j=0

(
(j + 1)bjt

j∂j
t + bjt

j+1∂j+1
t

) 2Γ(2n+1
2

)√
πΓ(n)t2n−1

×
∫ t

0

r2n−1

ω2n(t2 − r2)1/2

∫

|y|=1

ϕ(x + ry)dσydr

+
n−1∑
j=0

bjt
j+1∂j

t

2Γ(2n+1
2

)√
πΓ(n)t2n−1

∫ t

0

r2n−1

ω2n(t2 − r2)1/2

∫

|y|=1

ψ(x + ry)dσydr,
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where bj = bj(n) are constants with bn−1 6= 0, and where ω2n denotes the measure of the unit
sphere in R2n.

Question: What do we conclude from this representation of solution?

Answer: We obtain immediately the following properties:

• The loss of regularity is n.

• The properties of finite propagation speed of perturbations, of existence of a domain
of dependence and of existence of a forward wave front are fulfilled.

Example: For n = 1 we get Kirchhoff’s representation formula in 2-d case

u(t, x) = (b0 + b0t ∂t)
2Γ(3

2
)√

πΓ(1)t

∫ t

0

r

ω2(t2 − r2)1/2

∫

|y|=1

ϕ(x + ry)dσydr

+b0

2Γ(3
2
)√

πΓ(1)

∫ t

0

r

ω2(t2 − r2)1/2

∫

|y|=1

ψ(x + ry)dσydr

= b0

2Γ(3
2
)√

πΓ(1)

(
∂t

∫

Kt(x)

ϕ(y)√
t2 − |y − x|2dy +

∫

Kt(x)

ψ(y)√
t2 − |y − x|2dy

)

after a suitable choice of the constant b0 6= 0.

Exercise 17 One can derive Kirchhoff’s representation formula in 2-d case from the
Kirchhoff’s formula in 3-d case. Therefore one has to apply the method of descent. Study in
the literature the method of descent!

Let us explain the method of descent. We devote to the 2-d case. The data ϕ(x) = ϕ(x1, x2)
and ψ(x) = ψ(x1, x2) are considered as data in R3 which are independent of x3. The
application of Theorem 5.2 gives

up(t, x) =
1

4πt

∫

S(x1,x2,0,t)

p(y)dσt(y) =
1

2π

∫

B(x1,x2,t)

p(y)√
t2 − |y − x|2dy.

To derive the last relation we have to transfer the surface integral to an integral over the
domain {y = (y1, y2) : |y − x|2 ≤ t2}, x = (x1, x2). Therefore we choose the parameter
representation of the upper or lower half sphere in the following way:

Φ1(y1, y2) = y1, Φ2(y1, y2) = y2, y3 = Φ3(y1, y2) = ±(t2 − |y − x|2)1/2.

For transferring the surface element we calculate the Gauß fundamentals and obtain√
EG− F 2 =

√
1 + (∂y1y3)2 + (∂y2y3)2, and finally,

dσt(y) =
2tdy√

t2 − |y − x|2 .

Following the same ideas as in Corollary 5.2 we have the following result:
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Theorem 5.5. Under the assumptions ϕ ∈ C3(R2) and ψ ∈ C2(R2) there exists a solution
u = u(t, x) ∈ C2(R2 × [0,∞)) having the representation

u(t, x) =
1

2π

∫

B(x,t)

ψ(y)√
t2 − |y − x|2dy +

∂

∂t

( 1

2π

∫

B(x,t)

ϕ(y)√
t2 − |y − x|2dx

)
.

Applying the energy method (see Section 6.1) this classical solution is the unique one in the
set of classical solutions.

Applying the method of descent one can derive d’Alembert’s representation formula for the
1-d case. Therefore we write

1

2π

∫

B(x1,0,t)

p(y1)√
t2 − (y1 − x1)2 − y2

2

d(y1, y2)

=
1

2π

∫ x1+t

x1−t

p(y1)
( ∫ √

t2−(y1−x1)2

−
√

t2−(y1−x1)2

1√
t2 − (y1 − x1)2 − y2

2

dy2

)
dy1 =

1

2

∫ x1+t

x1−t

p(y1)dy1

by using
∫ a

−a

1√
a2 − y2

2

dy2 = π for all a > 0.

6 Qualitative properties of wave models - 2

6.1 Energy method

The notion of energy of solution of a wave equation is a basic tool to derive uniqueness
results for the wave models are discussed in Theorems 5.2 to 5.5. Let u be a given function
from C([0, T ], H1(Rn)) ∩ C1([0, T ], L2(Rn)).

Then we denote by

EW (u)(t) :=
1

2

∫

Rn

(
|ut(t, x)|2 + |∇xu(t, x)|2

)
dx =

1

2
‖ut(t, ·)‖2

L2 +
1

2
‖∇xu(t, ·)‖2

L2

the energy or total energy, which depends only on the time variable t. Here 1
2
‖ut(t, ·)‖2

L2

denotes the kinetic energy and 1
2
‖∇xu(t, ·)‖2

L2 denotes the elastic energy.
If we are not so interested in the total energy, then we can define to a given set K ⊂ Rn (K
is a closure of a domain) the local energy

EW (u,K)(t) :=
1

2

∫

K

(
|ut(t, x)|2 + |∇xu(t, x)|2

)
dx.

Let (t0, x0), t0 > 0, be a fixed point in Rn+1. Then the set {(t, x) : |x − x0| = |t − t0|}
describes the lateral surface of a double cone with apex at (t0, x0). The forward (backward)
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characteristic cone is for t ≥ t0 (t ≤ t0) the upper (lower) cone with apex at (t0, x0). Let
T ≤ t0. The part of the plane t = T lying inside the backward characteristic cone will be
denoted by K(x0, t0 − T ). This part is a closed ball around the center x = x0 with radius
t0 − T . The following remarkable statement holds:

Theorem 6.1. (domain of dependence inequality)
Let (t0, x0) ∈ Rn+1 with t0 > 0. We denote by Ω the conical domain bounded by the backward
characteristic cone with apex at (t0, x0) and by the plane t = 0. Let u ∈ C2(Ω) be a classical
solution of the wave equation utt −∆u = 0. Then the following inequality holds:

EW (u,K(x0, t0 − t)) ≤ EW (u,K(x0, t0)) for t ∈ [0, t0].

Proof. Let ΩT be the part of Ω below the plane t = T and let CT be the lateral surface of
ΩT . The energy method is basing on the identity

2ut2u = −∇x · (2ut∇xu) + (|∇xu|2 + u2
t )t = 0.

It holds

0 =

∫

ΩT

(∇x · (2ut∇xu)− (|∇xu|2 + u2
t )t

)
d(x, t).

The integrand is equal to the divergence of the vector field (2ut∇xu,−(|∇xu|2 + u2
t )). Ap-

plying the Divergence Theorem we obtain

0 =

∫

∂ΩT

(
2ut ∇xu,−(|∇xu|2 + u2

t )
) · ~n dσ,

where ~n is the exterior unit normal vector to ∂ΩT . The surface ∂ΩT consists of three parts.
We study how the above integral can be written on each of the three parts.

a) Top ball K(x0, t0 − T ) : ~n = (0, · · · , 0, 1). The above integral reduces to
− ∫

K(x0,t0−T )
(|∇xu|2 + u2

t )dx.

b) Bottom ball K(x0, t0) : ~n = (0, 0, · · · , 0,−1). The above integral reduces to∫
K(x0,t0)

(|∇xu|2 + u2
t )dx.

c) Lateral surface CT : The above integral reduces to∫
CT

(2ut ∇xu,−(|∇xu|2 + u2
t )) · ~η dσ

=
√

2
∫

CT

(
2utux1ηn+1η1 + · · ·+ 2utuxnηn+1ηn − (u2

x1
+ · · ·+ u2

xn
+ u2

t )η
2
n+1

)
dσ

= −√2
∫

CT

(
ux1ηn+1 − utη1)

2 + · · ·+ (uxnηn+1 − utηn)2
)
dσ ≤ 0.

Here we used η2
n+1 = η2

1 + · · ·+ η2
n.
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Summarizing we have shown

∫

K(x0,t0−T )

(∣∣∇xu(·, t)∣∣2 + ut(·, t)2
)∣∣∣

t=T
dx ≤

∫

K(x0,t0)

(|∇xu(·, 0)|2 + ut(·, 0)2)dx.

Hence, the statement is proved.

Summarizing the statements from Theorems 5.2 to 5.5 and 6.1 we conclude the next result.

Corollary 6.1. The Cauchy problem

utt −∆u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x)

has a unique classical solution u ∈ Ck−n([0,∞)×R2n+1), u ∈ Ck−n([0,∞)×R2n), respectively,
for k ≥ n + 2 and n ≥ 1.

Exercise 19 Use Duhamel’s principle and Kirchhoff’s representation of solution to derive
a solution to the Cauchy problem

utt −∆u = F (t, x), u(0, x) = ut(0, x) = 0, x ∈ R3.

We assume F ∈ C2([0, T ], C2(R3)). Why?

Exercise 20 Find the solution of the Cauchy problem

utt −∆u = 0, u(0, x) = 1, ut(0, x) =
1

1 + |x|2 , x ∈ R3.

Try to find two different ways to derive the representation of the solution.

Theorem 6.2. (conservation of energy)
Let u ∈ C

(
[0, T ], H1(Rn)

) ∩ C1
(
[0, T ], L2(Rn)

)
be a Sobolev solution of

utt −∆u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x),

with data ϕ ∈ H1(Rn) and ψ ∈ L2(Rn). Then it holds

EW (u)(t) = EW (u)(0) =
1

2

(‖ψ‖2
L2 + ‖∇ϕ‖2

L2

)
for all t ≥ 0.

Proof. Using the density of the function space C∞
0 (Rn) in H1(Rn) ⊂ L2(Rn) we are able to

approximate the given data ϕ ∈ H1(Rn) and ψ ∈ L2(Rn) by sequences of data {ϕk}, {ψk}
with ϕk, ψk ∈ C∞

0 (Rn). We consider the family of auxiliary problems

utt −∆u = 0, u(0, x) = ϕk(x), ut(0, x) = ψk(x).
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From the Theorems 5.1 to 5.5 we obtain a unique solution uk ∈ C∞([0, T ], C∞
0 (Rn)). Differ-

entiating EW (uk)(t) gives

E ′
W (uk)(t) =

∫

Rn

(
∂tuk(t, x)∂2

t uk(t, x) +∇xuk(t, x) · ∇x∂tuk(t, x)
)
dx.

For each t ∈ [0, T ] the function uk(t, ·) belongs to C∞
0 (Rn). After partial integration (all

boundary integrals are vanishing) we obtain immediately from the wave equation

E ′
W (uk)(t) =

∫

Rn

(
∂tuk(t, x)∆uk(t, x)−∆uk(t, x)∂tuk(t, x)

)
dx = 0.

Hence, EW (uk)(t) = EW (uk)(0) = 1
2

(
‖ψk‖2

L2 + ‖∇ϕk‖2
L2

)
. Together with the assumption we

have lim
k→∞

EW (uk)(0) = EW (u)(0).

From the well-posedness of the Cauchy problem in Sobolev spaces (see Theorem 3.1) it
follows lim

k→∞
EW (uk)(t) = EW (u)(t). This completes the proof.

Remark 6.1. We proved the energy conservation for the whole space Rn. But the energy
conservation remains true for bounded domains G ⊂ Rn and classical solutions of the wave
equation satisfying a homogeneous boundary condition of Dirichlet- or Neumann type. The
energy conservation holds also for unbounded domains G, for example for exterior domains,
if the initial data have a compact support and if classical solutions to the wave equation
satisfy a homogeneous boundary condition of Dirichlet- or Neumann type. In the proof we
use that the initial data influence due to the finite propagation speed the solution only in the
set {x ∈ G : |x| ≤ R + t , t ≥ 0}. Here R denotes the radius of a ball around the origin
containing the support of the data.
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