1 Fourier transform

Definition 1.1 (Fourier transform). For f € L'(R",C) we call its Fourier transform the
function defined by the following formula

7(6) = (2m)° 8 / T f(a)da (1.1)

We use also the notation Ff(£) = F(€).
Ezxample 1.2. We have for any € > 0

_ele? —n —igw o
e 2 = (2me) 2 e T 2 dx. (1.2)

We set also
FAHE) = (2m) 8 / ¢ (1) da. (1.3)
We have what follows.
Theorem 1.3. The following facts hold.
(1) We have |f(§)| < (27‘(’)_%Hf||L1(Rn7(C). So in particular we have

IF fll oo n,c) < (27) 72 | fll £ (e 0)- (1.4)

~

(2) (Riemann— Lebesgue Lemma) We have 5lim f(&) =o.
— 00

(3) The bounded linear operator F : L}(R™,C) — L™ (R",C) has values in the following
space Co(R™,C) C L>*(R",C)

Co(R",C) = {g € C'(R",C) : lim g(x) = 0}. (1.5)

(4) F defines an isomorphism of the space of Schwartz functions S(R™, C) into itself.
(5) F defines an isomorphism of the space of tempered distributions S'(R™, C) into itself.

(6) For f,g € L'(R",C) we have

Theorem 1.4 (Fourier transform in L?). The following facts hold.



(1) For a function f € Co(R™,C) we have that f € L*(R™,C) and ||f||z2 = ||f|;2. An

operator
F:L*R",C) — L*(R",C) (1.6)
remains defined. For f € L2(R", C) for any function ¢ € C.(R",C) with ¢ = 1 near
0 set
F() = lim 2m) [ e f@)po/N)da
)\/‘OO n
(1.7)
= lim (27 —Z/ e % f(x)dx.
U

Then (1.7) defines an isometric isomorphism inside L*(R",C), so in particular we
have

IFflle2®n o) = I fll2mn c)- (1.8)

(2) The inverse map is defined by

Ff(a) = lim (2m)F [ € p(ple/ N

n

(1.9)

.t H i¢e
/\11/‘120(271-) /IES/\e f(&)de.

(3) For f € LY(R",C) the two definitions (1.1) and (1.7) of F coincide (by dominated
convergence). Similarly, for f € L*(R™,C) the two definitions (1.3) and (1.9) of F*
coincide.

Theorem 1.5 (Hausdorff-Young). For p € [1,2] and f € LP(R",C) then (1.7) defines a

function Ff € LP (R",C) where p/ = z% and an operator remains defined which satisfies

1
o

P >HfHLP(]R“,(C)- (1.10)

[N

IF o < 27) "

We know already cases p = 2 and p = 1. This implies that Theorem 1.5 is a consequence
of the Marcel Riesz interpolation Theorem, which we discuss now.

Theorem 1.6 (Riesz—Thorin). Let T be a linear map from LP°(R™)NLPY(R™) to LD (R™)N
LB (R™) satisfying
1T fllpss < Mj||fllzes for i =0,1.

Then fort € (0,1) and for p; and g defined by
1 11—t t 1 1—t t
= f— +

)

bt Pbo b1 qt q0 q1

we have

ITfllzee < (Mo)' = (M) || fllzoe for f € LP°(R™) N LP(R™).



Proof. First of all notice that if f € L* N L with a < b then f € L° for any ¢ € (a,b).
Indeed, set 1 = £ 4+ 1=t for t € (0,1). Then |f| = |f[*|f|'~* and by an extension of Holder’s
inequality we have

1A e < WAL MA o, = 1A Zall A1
Here we were alluding to the fact that % = % + % implies

19l < [Ifllzrllgllza-

For p; = pp = p1 = oo (in fact we can repeat a similar argument for p, = pg = p; = oo any
fixed value in [1, o0]), by the above use of Holder’s inequality we have

ITFlpoe < IT Nz 1T f Nl < (Mo)' ™" (M1)"| £l

So let us suppose p; < co. Then by density, it is not restrictive to pick f to be a simple
function. It is enough to prove

| [ Tgdal < (0o) O8]

We already restricted to simple functions f = 27:1 ajxg; where the Ej; are finite measure
sets mutually disjoint. But we will assume that we can reduce to simple functions g =
Zszl bixF, where the F} are finite measure sets mutually disjoint. This is certainly the
case if ¢; < 0o, by density. The case g, = co reduces to the case p; = oo by duality. In fact,
see Remark 16 p. 44 [1]

HT”E(LW,L‘“) = ||T*H£(LQQ7LP2)'

Notice that if both pg < co and p; < oo and since we are treating gy = ¢q; = 1 then

T zezri )y = HT*||£(LOO A < M; and so one reduces to the case p; = oo. If, say,

po = 00, then [Tl gepr 11y = T, < M since p1 < oo, but [T zzro,r1y =

Leo, L1
IT* || £(zo0 (L)) < Mo, so in other words, W)e don’t get a Lebesgue space. However, the
issue is to bound for f € LPPNL>® a T*f € L' N (L*>®)" = L' where |T* fllpoey = 1T fll 1,
so that one can still apply the above argument used for p; = oc.
For a; = €'%|a;| and by = €!¥*|by| the polar representations, set

DL e 1—z =z
f. = a;le® elerE. with a(z) := + —
? ;‘ i g (=) Po p1
N
1-p(z) . 1-—
g = Z b | T7F@ ¥k y g with B(2) 1= . ° 4 qi
0 1

k=1

Notice that if ¢; = 1, then (¢) = 1 in which case g, makes no sense. In this particular case
we set g, = g instead. We consider now the function

F(z)= /szgzdx.
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Our goal is to prove |F(t)| < My~ ‘M.
F(z) is holomorphic in 0 < Re z < 1, continuous and bounded in 0 < Re z < 1. Boundedness
follows from estimates like

R z
l|a; | Co) | = |aj| *@  which is bounded for 0 < Rez < 1.

We have F(t) = [T fgdz. Then (by the 3 lines lemma, see below, which yields |F(z)| <
M& Re z M Rez ) our Theorem is a consequence of the following two inequalities

|F(2)] < My for Rez =0
|F(2)] < M for Rez=1.

For z = iy we have

-
| figl? = ZH@ |55 [Py, —ZH%\ o Pxg

m

Pt
Z 1ypt )|aj|Po |poXEj — Z|aj|thEj = |£]P*.
j=1 =
Similarly, using 1 — 5(z) = 1(172 + 2
0 1

N /

qt S =Ly 7 a1 S q, q
|gig| =Y [|be] 50 [T x s, = Zubu W o] |xm, =Y Bkl % = [g]%

Then

qt

[EGy)| < T figllao |9y llgy < Moll fiyllpollgiyllqy = Mollfl!p0 gl = Mo.

By a similar argument
| fraiy [Pt = | fIP*
\91+iy\qi = ’9’%-

Indeed by a(l +1iy) = 1;:% - 1%

U a(1+iy) S
il =D llag| =0 Prxs, = Z||a]| Pt P Xk,
j=1

m pe m
= lajl7 "' xe, = Y la;P'xe, ="
j=1 i=1



andbyl—ﬁ(l—l—iy):%—;—z

, N 1-8(14iy) N L L N / /
gl =Y Mol TEO B =Y bkl % bl T = Y bkl s = 19l
k=1 k=1 Jj=1

Finally

/
q

b4
FQUA )] < 1T Freiglla lreinlly < Ml Frsiylo lgveislly, = Ml F1E gl = My

Here we have used the following lemma.

Lemma 1.7 (Three Lines Lemma). Let F(z) be holomorphic in the strip 0 < Rez < 1,
continuous and bounded in 0 < Rez <1 and such that

|F(2)] < My for Rez =10 ;
|F(2)] < Mj for Rez=1.

Then we have |F(z)| < Mg R¢*MPe? for all 0 < Rez < 1.

Proof. Let us start with the special case My = M; = 1 and set B := ||F||p~. Set he(z) :=
(1 + €2)~! with € > 0. Since Re(1 + €z) = 1+ ex > 1 it follows |he(2)| < 1 in the strip.
Furthermore Im(1 + €z) = ey implies also |he(2)| < |ey|~!. Consider now the two vertical
lines y = +£B/e and let R be the rectangle 0 < z <1 and |y| < B/e. In |y| > B/e we have

B B

On the other hand by the maximum modulus principle

sup | F(2)h(2)| = sup | F(2)he(2)] < 1,
R OR

where on the horizontal sides the last inequality follows from the previous inequality and
on the vertical sides follows from |F(z)| <1 for Rez = 0,1 and from |h.(z)| < 1.

Hence in the whole strip 0 < z < 1 we have |F(z)h(z)| < 1 for any € > 0. This implies
|F(z)] <1 in the whole strip 0 < z < 1.

In the general case (M, M) # (1,1) set g(z) := My~ *M7. Notice that

g(2) = =) 0B Mog= o8 Ms  g(2)| = A" MY =

min(Mo, M) < |g(z)| < max(My, My).
So F(2)g~1(z) satisfies the hypotheses of the case My = M; = 1 and so |F(2)| < |g(2)| =
M&*ReZMFez

O
Another example of application of M. Riesz’s Theorem is the following useful tool.



Lemma 1.8 (Young’s Inequality). Let

Tf(x) = A K(z,y)f(y)dy
where
Sup/ |K(x,y)|dy < C, sup/ |K (z,y)|dz < C. (1.11)
J?ER” n yeRn n
Then

ITfllLr@ny < CllfllLe@ny for all p € [1,00]

Proof. The case p = 1,00 follow immediately from (1.11). The intermediate cases from

Riesz’s Theorem. O
2
We consider now for A := 3}, % and for f € 8'(R™,C) the heat equation
i

u—Au=0, u0,x)=f(x).

By applying F we transform the above problem into

o~

U+ €T =0, a(0,§) = f(¢).
This yields 4(t, &) = e ¥” f(¢). Notice that since f € &'(R™,C) and e~I* € S(R™,C) for
any t > 0, the last product is well defined. Furthermore, we have (¢, -) € C°([0, +o0), S’(R",C))
and, as a consequence, since F is an isomorphism of §'(R", C) also u(t, -) € C°([0, +0), S’ (R", C)).

o~ n z|? n
We have et” = G(t, €) with G(t,2) = (2¢) 33 . Then u(t,z) = (27)"3G(t, ) * f(x).
In particular, for f € LP(R™,C), we have

u(t.o) = (art)F [ fay,

Notice that by (1.2) we have
2|2
(47rt)_g/ e dr = 1.

Theorem 1.9. p € LY(R") be s.t. [p(z)dz = 1. Set p.(z) = e "p(x/e). Consider
Ce(R™,C) and for each p € [1,00] let X, be the closure of C.(R™,C) in LP(R™,C), so that
X, = LP(R",C) for p < 0o and Xoo = Co(R™,C) G L®(R",C). Then for any f € X, we

have ' .
2{1%/)6 x f=f in LP(R",C). (1.12)
In particular we have

2
}%(4ﬂt)_%e_% « f = f in L(R",C). (1.13)



n =?

Proof. Clearly, (1.13) is a special case of (1.12) setting € = v/t and p(z) = (47) 2e 4 .
To prove (1.12) we start with f € C.(R",C). In this case

pox $(0) = @) = [ (o =) = FlaDplu)dy

so that, by Minkowski inequality and for A(y) := ||f(- —y) — f(:)||zr, we have

e * F(@) — F(@)l|e < / (W) Ae y)dy.

Now we have lim,_,0 A(y) = 0 and A(y) < 2| f||r. So, by dominated convergence we get

sy | )  F(a) e =ty [ 1p(0)|ACe )y =0,

So this proves (1.12) for f € C.(R™,C). The general case is proved by a density argument.
O

2 Maximally dissipative operators

Sections 2-8 are taken from [2].

Definition 2.1 (Operator). An (unbounded) operator on a Banach space X is a pair (4, D)
with D a vector subspace of X and A: D — X a linear map. We write also D(A) = D and
call D(A) the domain of A. The graph G(A) and the range R(A) of A are

G(A) ={(z,Az) e X x X :z € D(A)}

R(A)={Ax € X :z € D(A)}.
Definition 2.2 (Dissipative operator). An operator A in X is dissipative if |[NAzx—z|| > ||z]|
for all w € D(A) and all A > 0.

Lemma 2.3. Let A be a dissipative operator in X, y € X and XA > 0. The there exists at
most one x € D(A) s.t. x — ANz =y

Proof. Indeed if z — AAz = 2’ — AAx’ then for z = x — 2/ we have z — AAz = 0 and the fact
that A is dissipative gives 0 = ||AAz — z|| > |[|#]|. O

Definition 2.4 (m—Dissipative operator). An operator A in X is maximally dissipative (or
m~— dissipative from now on) if it is dissipative and if for any y € X and any A > 0 there is
r € X st. x— Nz =y.

Definition 2.5. For a given m— dissipative operator A, for any y € X and for any A > 0
set Jyy = = where z — AMAz = y. We also write (1 — AA)~! = J,.

Lemma 2.6. J) € L(X) with ||Jy]| < 1.



Proof. Indeed ||Jy\y|| = ||z|| < [Nz — z|| = ||ly|| by Def. 2.2.

Notice that AJyz = JyAzx for all z € D(A). Indeed
Az =A"TAA -1+ Iz =A"(Jy - Dz =LA 114+ A — 1Dz = J\Ax.
Lemma 2.7. Let an operator A in X be dissipative. The following are equivalent.
(1) A is m— dissipative.
(2) There exists a \g > 0 s.t. for anyy € X there isx € X s.t. x — NgAz = y.

Proof. 1t is enough to focus on (2) = (1). The equation u — AAu = f is equivalent to

B Ao o Ao Ao
u—)\Au—f@Tu—/\oAU—Tf@u )\oAu—)\f—i-(l A)u

o u= F(u) with F(u) = Jy, </\)\0f + <1 _ A;) u> .

Now we have

1F (1) — F(v)| < klju — v|| for k := ‘1 _ 2o

For)\z)\gwehavek:%—1<1. For A < Ag

Ao Ao
E=20 11620 9
NS NS

So we have k € [0,1) if and only if A € (A\¢/2,00). If k € [0,1) then v = F(u) has exactly
one solution.

Suppose now by induction that, for A > 2=(n=D Ny =: A\,_1, Jy exists. Let N > \p_q >
271N\ Then, repeating the above argument, i.e. setting \g = X/, it follows that Jy,_, exists.
But then J exists for A > 271\,_; = 27"). So J) exist for any A s.t. A > 27"\ for some
n, that is for any A > 0. O

Ezample 2.8. For Q C R™ we 2Will check later the fact that the Dirichlet Laplacian in
L*(2,C), defined by A := Y, &5 and with
J
D(A) = {u e HY(Q,C) : Au € L*(Q,C)}

is m— dissipative. Notice that D(A) D H(Q,C)N H?(2,C). A case when equality holds is
when 99 is bounded and is a C? manifold.

Lemma 2.9. Given A m—dissipative in X, then )1\1{% |Jaz —z|| =0V z € D(A).

Proof. Since ||J) — 1|| < 2, by density we can assume = € D(A). Then
I —x=Ja— J\(1—AA)z = AJ)\Ax.
So ||Jaz — z|| = A||JnAz|| < A||Az|| — 0 for A N\, 0.



2.1 Some other examples of m—dissipative operators

2.1.1 4 in LP(R,C)

We refer to [4] p. 485. In LP(R, C) Withp € [1, 00] we consider the operator - (with -L f the
distributional derivative of f) with D( —) the subset of f € LP(R,C) Whose distributional
derivative is in LP(R, C), that is to say Wl’p(]R, C). We check that this -2 7= is m-dissipative.
The case p = 2 is easy. First of all for A >0

1f = AP e = 1+ M) Fllze = (112 = [1£]1 22

solves (1 — %)u = f, so it is m-dissipative.

so it is dissipative. Furthermore u=JF"

1+1§
(Notice that also —d— with D(—7 ) WL2(R,C) = HY(R, C) is m-dissipative in L?(R, C).)
Let us now turn to generic p. Con51der the equation v —Au' = f or v/ —A"lu = —A"1f. We
rewrite it, at least formally, in the form (ue_/\flx)’ = A leATle f and, solving formally

using the "boundary condition” li/rn e_A71$u($) = 0, write
x o

u(z) = A_1/ e ) f(y)dy = A‘l/ e Uyp (y — @) f(y)dy. (2.1)

T R

We take this as definition of u. Then the function u belongs to LP(R) since

lello@) < A7 e “xmy Nl @)1 Lo = 1£]lo@)- (2.2)

Finally, we claim that u — Au/ = f is true in a distributional sense. Testing with a test
function ¢ € C°(R,C)

[ w0 @) + otz = [ (A—l / N e-“@-@f(y)dy) O () + 6la))da

, (2.3)
- / dyf(y) / X0 (¢ (1) + A (a))da = / dyf (1) (y).
R —00 R

Notice that the commutation in the order of integration follows because

xe, (v = 2)e VI f) (M () + 6(2)) € LH(R?).
The last equality in (2.3) follows from the integration by parts
Y _ Y _
/ e l(m_y)qb'(x)dx + )\_1/ e l(x_y)gi)(x)dx = ¢(y).
(2.3) proves u — Au’ = f in a distributional sense. Since by (2.2) we have
[ull Loy <l — M| o ()

% is dissipative if we can prove that (2.1) is the only solution of uw — Au/ = f with u €

WLP(R,C). This is a consequence of the fact that the only solution u — Au/ = 0 with



u € WHP(R,C) is u = 0. It is easy see that we must have for a constant c that u = cer e
and for this to belong to LP(R) we need ¢ = 0. So we have shown that % is m—dissipative.

Notice that D(%) = WP(R,C) is dense in LP(R,C) only for p € [1,00) and not for
p = oco. We will see later that this is important for the group (et%)teR.

For p = oo we have WH*(R,C) ¢ C(R,C) N L*(R,C) = C(R,C)NL®(R,C) &
L>*(R,C).

Notice that % with D(%) = Co(R,C)NWH*(R, C) has dense domain in Cy(R, C) and
is m—dissipative in Cy(R, C).

Notice that also —% is m—dissipative. We know this already for L?(R,C). The case
p # 2 is m-dissipative by a similar argument, redefining (2.1).

2.1.2 4 in LP(R,,C)

In LP(R4,C) with p € [1,00] we consider the operator % with D(%) = WLP(R,,C). We
do not assume a boundary condition. We show now that % is an m-dissipative operator.
We will show also that —% is not m-dissipative.

The fact that % is m-dissipative can be proved as in Subsect. 2.1.1. We define u as in

(2.1) setting

u() = Xjoroe) ()M / e F(y)dy = Xjo.00) (DDA /R 0D (- @) (y)dy.

(2.4)
By (2.1)—(2.2) and by (2.4) we conclude that u belongs to LP(R}) with

lullzr @,y < 1fllr@)- (2.5)

The fact that u — A/ = f in a distributional sense is consequence of (2.3) when testing is
done w.r.t. ¢ € C*(R4,C). Finally the fact that d/dz is dissipative follows from (2.5) and
the fact that formula (2.4) provides the unique solution of u—Au' = f with u € WHP(R ., C).
In fact any distributional solution of u — A/ = 0 satisfies like in Sect. 2.1.1 u = ce* '@ so
that uw € LP(Ry) implies ¢ = 0.

We can ask now wh —% with D(—%) = WHP(R,,C) is not dissipative (and so a
fortiori not m-—dissipative). Consider the equation u + Au/ = f. Here we can assume
f € Ce(Ry,C) so that the distributional solutions are classical solutions. Then we get
(ue/\flx)’ = A1) '@ f and the generic classical solution of this equation will satisfy

T

u(z) = e_’\ila”u(O) + )\_1/

e N @ f )y = e Tu(0) + e AT / Y f(y)dy.
0 0

(2.6)
Since f has compact support, we see that for any u(0) formula (2.6) yields u € W1P(R, C).
So for f € C.(R4,C) the equation u + A\’ = f has infinitely many solutions u € D(—%)

and not just at most one as would be the case if —% was dissipative.
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2.1.3 & in LP(Ry,C) with Dirichlet condition at 0

In LP(R4,C) with p € [1, o0] the operator % with Dirichlet condition at 0, that is
D(d/dz) = {f € W'P(R,,C) : £(0) =0}, (2.7

We show now that —% is an m-dissipative operator while % is not m-dissipative. The fact
that % is not m-dissipative follows readily from the fact that a solution to u — Au/ = f has
to satisfy (2.4) which, for any f € C.(R;) nonzero and with f > 0 is s.t. u(0) # 0. We
turn now to the proof that —% is m-dissipative.

Like before, consider the equation by (2.6) and using the boundary condition u(0) = 0 write

u(x) = A" /O e e ) dy = A /R e N yg, (- y)xr. (W) f(W)dy.  (2.8)

We take this as definition of u. Notice that u € Cy(]0,00),C) with u(0) = 0. Notice that
(2.8) defines u(x) also for x < 0 as u(x) = 0.

Then this function u defined in R belongs to LP(R), and so in particular its restriction
on Ry belongs to LP(R ) since, extending in an obvious way xr, (z)f(z) on x < 0, we get

1y ala
lull ogry < A7 le™ “xmy o) lIxes Flley = 1oy (2.9)

The claim that u + A/ = f in a distributional sense can be proved like before testing by
means of ¢ € C°(R4,C) and integrating by parts

[ a6 -2 @yds = [ a7t [Fe ey o() - A () da

R, Ry 0
= [ aurt) [0 - g @) = [ dyswot)
R+ y R

This proves u + Au’ = f in a distributional sense. From (2.9)

Jull Lo,y < llu—+ M| por,y-

and so —% is dissipative. By providing a solution v € LP(Ry) of u + Au/ = f for any

f € LP(Ry) we have shown that —% is m—dissipative.
D(—%) is dense in LP(R, C) only for p € [1,00) and not for p = co. We will see later

that this is important for the group (e_t%)te]g.
For p = 0o D(—4) is dense in

Co(Ry,C) = {f € €((0,00),C) : s flz) = lim, f(z) =0} (2.10)

which is a closed subspace of L*(R,,C) and where it is an m—dissipative operator.
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2.1.4 Laplacian
Consider the operator A := ). 86722 in LP(R",C) and let us set (for Af defined in a
i

distributional sense)
D(A) == {f € L?(R",C) : Af € LP(R",C)}.

Notice that always W2*P(R",C) C D(A). It turns out that for p € (1,00) we have
W2P(R",C) = D(A) while for p = 1,00 this is false.
Let us consider the case p = 2. If u € D(A) then f := (1 — A)u is in L?(R",C). Using
the Fourier transform we see that
f
arE

(2.11)

The latter defines a bounded operator from L?(R", C) to H?(R",C). Indeed

~

S
L+ ¢

for any multi-index || < 2. This implies that D(A) = H?(R",C). The operator in
(2.11), which we denote by (1 — A)~!, extends into a bounded operator from LP(R",C) to
W?2P(R™ C) for any p € (1,00) and (1 — A)(1 — A)~t =TI . This because it can be proved,
using the Calderon Zygmund theory, that

10%ull L2 = [1€° ez < 1l = 112

~

f

- -1 - *reoe S
1% = 2)7 fller = I71E° 372

e < Cpll fllze

for || < 2. But this is false for p = 1, cc.

Having established that for p € (1,00) we have D(A) = W2P(R" C) we discuss the
fact that A is m— dissipative. It is enough to show that it is dissipative.

The case p = 2 is easy: for u € H?(R",C) and A > 0

lu = XAul g2 = [I(1+ XEP)allze > [[allzz = [lull 2.

Notice that D(A) = H2(R",C) is dense in L?(R", C). Furthermore, given f,g € D(A) we
have
(Af.g)ee = (6P F. )12 = (F1E1°G)1= = (£, Lo)ra
where
()= | S@gla)ds.

We will see that these facts imply that A is self-adjoint in L?(R"™, C).

The case p € (1,00)\{2} will be discussed later using the heat kernel and the Hille-Yosida-
Phillips Theorem which tells us that the gemerator of a contraction semigroup is an m-—
dissipative operator.
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3 m—dissipative operators in Hilbert spaces

Definition 3.1 (Closure). An operator A on a Banach space X is closed if its graph G(A)
is a closed subspace of X x X.

Definition 3.2 (Extension). Let S and T' be operators on a Banach space X. S is an
extension of T'if D(T) C D(S) and T = S in D(T). Equivalently, S is an extension of T if
G(T) C G(5).

Definition 3.3. An operator A is closable if it has a closed extension. The ”smallest”
closest extension is the closure of A.

Ezample 3.4. Consider L?(R,R) > f(x) A zf(x) where D(A) = {f € L*(R,R) : =f €
L2(R,R)}. Then A is closed. Indeed, let (fn, Afn) "=° (f,g) in L2(R,R) x L%(R,R). We
know that this implies that there exists X C R with R\X of 0 measure s.t. for all x € X

we have

Jim fo(2) = f(z) and lim zf,(z) = g(z).
Obviously this implies that g(z) = xf(x) for all z € X. So f € D(A). Hence A is closed.
Ezample 3.5. Consider L2(R,R) 5 f(z) 2 e=2° £(0) where D(A) = C+(R,R). Then notice
that for any f € L*(R,R) and any z € R there exists a sequence f,. € C.(R,R) s.t.
Jn,z "0 fin L*(R,R) and f,.(0) = z for all n. This means that A is not closable,
because if B was such a closure, then for (fy ., Bfnz) = (fuz Afnz) — (f, ze"), we
would have Bf = ze=%" for any z € R. Absurd.

Definition 3.6 (Adjoint Operator). Let A be an operator with D(A) = X on a Hilbert
space X (which we can always assume on R) with inner product (, ). Set

DA")={re X :3ye X s.t. (Av,x) = (v,y)Vv e D(A)}. (3.1)

(Notice that for z € D(A*) the corresponding y is unique). Then the adjoint A* of A is
defined by
A*: D(A*) = X with A"z = y. (3.2)

A is symmetric if A* is an extension of A. This can be equivalently stated by G(A) C G(A*).
A is self-adjoint if A* = A. This can be equivalently stated by G(A) = G(A*).
A is skew-adjoint if A* = —A.

The graph G(A*) is always closed. Indeed, if (z,, A*z,) — (Z,y) we have
(Av, ) = lim(Av, z,) = lim(v, A*x,,) = (v,y) Vv € D(A)

and so ¥ € D(A*) with y = A*Z. On the other hand, the following example shows that
D(A*) not necessarily dense in X.
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Ezample 3.7. Let f € L°(R,R) with f ¢ L*(R,R) and 9y € L*(R,R). Set

D(A) = {¢ € LR, R) : ¥ f € L'(R)}
Ay = (f.4)vo

Notice that D(A) 2 CY(R,R) is dense in L*(R,R).
Suppose ¢ € D(A*). Then for all p € D(A)

(¥, A%¢) = (AY, ¢) = ((f, V)b, &) = (f,¥) (Yo, ¢) = (o, ) f, ¥).

So A*¢ = (19, ¢) f and this has to belong to L?(R,R). Since f ¢ L?(R,R) this can happen
only if (109, ) = 0. In fact D(A*) = {to}* where A*¢ = (19, ) f = 0.

Ezample 3.8. The operator Af(x) = xzf(z) in Example 3.4 is self-adjoint. First of all it is
symmetric. Indeed if g € D(A) then

(9, Af) = (g,xf) = (g, f) for all f € D(A).
Then g € D(A) implies g € D(A*) with A*g = Ag. So A* is an extension of A. On the
other hand, let g € D(A*). Then there exists h € L?(R,R) s.t.

(9, Af) = {g,2f) = (h, ) for all f € D(A).

Testing with respect of f € C°(R,R) C D(A) implies that zg(x) = h(xz) a.e. and so
ge D(A) .
In a similar fashion, given any ¢ € L7° (R™ R), the operator Af(xz) = ¢(x)f(x) where

loc

D(A) ={f € L*(R",C) : o(-)f(:) € L*(R",C)} is self-adjoint.
Ezample 3.9. Using the last sentence we conclude that the operator A in L?(R", C) with
D(A) = H*(R",C) is self-adjoint in L?(R",C).

Lemma 3.10. Consider a Hilbert space X. An operator A is dissipative in X if and only
if (Au,u) <0 for allu € D(A).

Proof. 1f (Au,u) <0 for all u € D(A) then for any A > 0 and v € D(A)
lu = XAwl[* = Jfull* + X[|Aul|* = 2A(Au, u) > [ul* + N*[|Aul® > u]]*.
Viceversa, if A is dissipative for any A > 0 and u € D(A)
—2(Au,u) + A Aul|* = A7 (Jlu — Mul]* — [[u]*) >0
So —(Au,u) + 271\||Aul|? > 0 for any A > 0 and u € D(A), which implies (Au,u) < 0 for

any u € D(A).
O

Theorem 3.11. Let A be a dissipative linear operator with dense domain in a Hilbert space
X. Then A is m—dissipative if and only if A* is dissipative and G(A) is closed.
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Corollary 3.12. Let A be a densely defined operator in X s.t. G(A) C G(A*) (that is, A
is symmetric) and with (Au,u) <0 for allu € D(A). Then A is m—dissipative if and only
if it is self-adjoint.

Proof. First of all by Lemma 3.10 we know that A is dissipative.

We assume that A is self-adjoint. By A* = A, A* is dissipative. Since G(A*) is always
closed, then G(A) is closed. So A is a densely defined operator which is dissipative, with
G(A) closed and A* dissipative. By Theorem 3.11 we conclude that A is m—dissipative
We assume now that A is m—dissipative. By Theorem 3.11 we have that A* is dissipative.
Let (u, A*u) € G(A*) and set g = u — A*u. Since A is m—dissipative, there exists v € D(A)
s.t. g =v— Av. Since G(A) C G(A*) we have (v, Av) € G(A*) and (u—v) — A*(u—v) = 0.
But since A* is dissipative we have u = v. So G(4) = G(A*) and so A = A*. D

Ezample 3.13. For Q C R” the Dirichlet Laplacian in L*(Q, C) is defined by A := 3. 2

and

]8:1:

D(A) = {u € H}(Q,C) : Au € L*(Q,C)}.

We show that the Dirichlet Laplacian is self-adjoint and m—dissipative.
First of all it is dissipative. For u € D(A) and any ¢ € HZ () we claim that we have

/ o(z)Au(z)dr = —/ Vo(x) - Vu(z)de. (3.4)
Q Q

(3.4) is true for ¢ € C(Q) and extends to all ¢ € H(Q) by the density of C2°() in
H}(Q) and by the continuity of both sides of (3.4) with respect to ¢ € H ().

(3.4) implies that (u, Au) < 0Vwu e D(A). This in turn is equivalent to A being dissipative
by Lemma 3.10.

Next we show that A is symmetric. Indeed, (u, Av) = (Au,v) for all u,v € D(A) from
(3.4).

Now we show that A is m—dissipative. Let f € L*(Q). Since H}(f2) is a Hilbert space with
inner product (a, b>H1( (a b)r2(a) + 2-;(9;a,0;b) 2(q), by the Frigyes Riesz representa-
tion Theorem 3 u € H(Q) s.

Q) —
ol
(fye)r2i) = <u,cp)H1(Q) for all ¢ € HY ().
(

Restricting to ¢ € C°(2) and by the definition of 82u in the sense of distributions we
obtain

@ pacm = U @)z = /Q upds +3 /Q Oudjodz = {u — Au, @) pr(cr) (@)
j=1

where at the extremes we have the pairing between distributions and test functions
(, )p@),cx@ : D(Q) x C2(Q) = R.

But then in D’(Q2) we have v — Au = f. This implies that Au € L?(Q2) and since by
definition we have u € H{ () we conclude that u € D(A). So A is m—dissipative. By
Corollary 3.14 we conclude that A is also self-adjoint.
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Corollary 3.14. Let A be skew—adjoint. Then £A are m—dissipative.

Proof. We have (Au,u) = (A*u,u) = —(Au,u) and so (Au,u) =0 for all u € D(A). So +A
is dissipative by Lemma 3.10. Since A* = —A then also A* is dissipative. We know that
G(A*) is closed, so G(—A) = G(A*) is closed and we conclude that —A is m—dissipative
by Theorem 3.11. Finally, the map (z,y) — (z,—y) is an isomorphism inside X x X
which sends G(A) in G(—A). This means that G(A) is closed and so A is m—dissipative by
Theorem 3.11.
O

Proof of Theorem 3.11. Let A be m—dissipative with dense domain. We first prove that
G(A) is closed.
First of all, G(A) is closed iff G(1 — A) is closed. This follows from the fact that (u,v) —
(u,u — v) is an isomorphism in X X X, which preserves closed subspaces of X x X and
which maps G(A) in G(1 — A).
G(1 — A) is closed iff G((1 — A)™1) is closed since they are sent one on the other by the
isomorphism (u,v) — (v,u) in X x X. Finally, G((1 — A)~!) = G(J;1) is closed because
J1 € L(X,X). This completes the proof that G(A) is closed.
We now show that A* is dissipative. For v € D(A*) we have

eD(A)
(A, Do )= (v, A(L — AA) ") =
1
V]

)\_1<v, ANM-1+4+1)1- )\A)_1v> = )\_1<v, < - 1> v) = AL ((v, Jy\v) — ||’U”2) <0

where the last inequality follows from ||J,|| < 1.
Taking the limit A N\, 0 and by Jyv — v we get (A*v,v) < 0 and so A* is dissipative by
Lemma 3.10.

Let us now suppose that A and A* are dissipative, that G(A) is closed and D(A) dense.
We have to show that A is m—dissipative. As we argued above G(A) closed is equivalent to
G(1— A) is closed.
Since G(1 — A) is closed and A is dissipative we conclude that R(1 — A) is closed. Indeed,
if {(1 — A)z,} is a Cauchy sequence in R(1 — A) then {x,} is a Cauchy sequence D(A).
This follows by the fact that A is dissipative which yields |[(1 — A)(zp — Zm)|| = |20 — Zm]|-
Then (z,, (1 — A)z,) is a Cauchy sequence in G(1 — A) which hence converges in G(1 — A).
So {(1 — A)z,} converges in R(1 — A).
Since we know now that R(1 — A) = R(1 — A) we need to show that R(1 — A) = X. If
R(1 — A) G X then there is a non zero v € R(1 — A)*. Then

(v,u) = (v, Au) for every u € D(A).
But this implies that v € D(A*) with A*v = v. Then (1 — A*)v = 0. But since A* is

dissipative this implies v = 0 and we get a contradiction. So R(1 — A) = X and so 4 is
m—dissipative. ]
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Ezample 3.15. Let X = L%([0,1]) and let A = L with
D(A) = {uec H'((0,1)) : u(1) = 0}.

For u,v € H'((0,1)) we have

see [1] p.215. Notice that for u = v € D(A) we have

1
/0 o (z)u(x)dz = —27Hu(0))? < 0.

So A is dissipative.

(3.5)

Let now v € D(A*). First of all, for v € C§°((0,1)) from (v/,v) = (u, A*v) it follows that
in the sense of distributions v’ = —A*v € L2([0,1]). Hence for all v € D(A*) we have
v € HY((0,1)) and A*v = —v'. From (3.5) we obtain u(0)v(0) = 0 for all u € D(A). This
implies v(0) = 0. Viceversa, given any v € H'((0,1)) with v(0) = 0 then from (3.5) we

obtain v € D(A™*).

So A* = —4 with

D(A*) = {v e H*((0,1)) : v(0) = 0}.

From (3.5) we can see that for u = v € D(A*) we have

1
/0 (=0 (z))v(x)dz = =27 Hu(1)]? < 0.

So A* is dissipative.

It is easy to understand that A is the adjoint of A*. Hence G(A) is closed. So A is

m—dissipative.

4 Extrapolation

Proposition 4.1. Let A be an m-dissipative operator on a Banach space X with dense
domain D(A). There exists a Banach space X and an m—dissipative operator A on X s.t.

(1) X < X with dense image;

(2) For all v € X we have ||u|+ = ||Jiul|x;

(3) D(A) = X and the norms | |y = ||+ |g + |4 ¢ and || ||x are equivalent;

(4) Au= Au for any u € D(A).

The pair (X, A) is unique up to isomorphism.
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Ezample 4.2. Take A = A in X = L*(R",C) with D(A) = H?(R",C). Set
X ={ueS'R"C): F*[(1+¢*)u(¢)] € L*(R",C)} with [lullg = |F* [(1+ [¢[*)~"a(€)] lx

Notice that for u € X we have F* [(1 4 [¢]*)~'u(¢)] = Jiu and that X = H~%(R",C) where
for any s € R

HY(R",C) = {f € S'(R",C) : (1+|¢*)*/a(¢) € L*(R",C)}. (4.1)
L?*(R",C) is dense in H2(R", C).
For any u € L(R",C) the distribution Au belongs to H~2(R",C). So let us define A = A
with D(A) = L?(R",C). For u € D(A)
lull iy == Il + Aullg = 1L+ €7 T allze + 11+ €)M elPall 2 < 2lfallzz = 2|ful] 2

and _
lull pay == llullx + [Aullg = 11+ €)1l 2 + [[(1+ [€1%) 7 el 2

> 11+ €)Ml p2er<a) + 1L+ 117 THEPTN 21
_ 1 2y—112y3 1 2\y—1)¢1275(2\ 2
(/MK ) ) +</|§|21|< L) el PalR)

> 971 / P + 27y / APt > 272 .
|€]<1 [€]>1

Proof of Prop. 4.1. For u € X we consider |||u||| := ||Jiu|/x. This is a norm on X. We
denote by X the completion of X by this norm, which is unique up to isomorphism and is
s.t. (1) holds. Set || ||+ = ||| |||- We have

JAu=(1-A)" N1+ (A-Dju=Jiu—u Yuc D(A).
Then for u € D(A)
[Aulx = [[1Aulx < [[J1ulx + [Jullx = 2[|ullx.

So A can be extended into an operator A € £(X,X), in a unique way since D(A) is dense
in X. We set A= A with D(A) = X.
Turning to claim (3), for u € D(A) we have

lull py = llullx + Aullx < llullx + 2llulx < 3fullx-

Notice that since for any u € X exists D(A) > u, — u in X and since A € £(X, X) then
lull pay < 3llullx remains true for all u € X.
For u € D(A) by the triangular inequality we have

lull py = llulls + [[Aullg = [ J1ullx + [ Aul x = [[J1ullx + 1w = ullx = [Jullx

and by continuity ||“||D(Z) > |lul|x remains true for all u € X.
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Claim (4), that is Au = Au for any u € D(A), holds by construction.
We now check that A is m-dissipative. Let A > 0. For u € D(A) and v = Jyu we have

v— ANv = (Jl — )\AJl)u = (Jl — )\JlA)u = Jl(l — )\A)u
Since A is dissipative V u € D(A)
[u=AAullx = [[1(1=-AA)ullx = [[o=AAv]lx > |[v]x = [[ullx = |lullx = [u=AAulx > [[ull%-

For u € X\D(A) let (uy), be a sequence in D(A) with u, — u in X. Then by A = A in
D(A) _ ~

= Al > Naulle = 1u = Al > fulg
where we used A € £(X,X). This implies ||u — Mu||% > ||lu|lx for any u € D(A) and so A
is dissipative. B
We next show that for any f € X there exists u € X s.t. f = u — Au. We consider a
sequence (f,) in X s.t. f, — f in X. Consider the sequence (u,) in D(A) defined by
Up = J1fn. Since |[up — umlx = ||fn — fmllx and since (f,) is Cauchy in X then (u,) is
Cauchy in X. Then u, converges in X to an u € X. Then by A € £(X, X)

fa=0—-Aup=01-Au, Yn=f=01-Au=(1-Au.

Corollary 4.3. Ifz € X is s.t. Az € X then x € D(A) and Az = Ax.

Proof. Let f = x:ﬂaz € X. Since A is m-dissipative there exists u € D(A) s.t. [ =u—Au.
Hence (x —u) — A(z —u) = 0. Since A is dissipative this implies z = u. O

5 Contraction semigroups

Let A be m—dissipative in X with D(A) = X. Let Ay := JyA. Notice that Ay = A71(Jy\—1)
since

AL =D =2 (1= =1 =241 -24)71)
= A 1 -1 -2) 1 -2t =A1-2A)"t = A,

Then ||Ay|| < 2A~! and we can set Ty (t) = e*4* where , as for any bounded operator,

o
1Ay _ N A"
e = Z n!
n=0
Theorem 5.1. For any x € X we have that )1\1{‘1% T)\(t)x converges uniformly on compact
sets to a function u(t) € C([0,00),X). We set T(t)z := u(t). Then

T(t) € L(X) with | T(t)]| <1 forallt>1
TO)=1 (5.1)
T(t+s)=T(t)T(s) for allt,s.
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If x € D(A) then u(t) = T(t)x is the unique solution of the following problem:

u € C([0,00), D(A)) N C((0,00), X)
u'(t) = Au(t) for all t >0 (5.2)
u(0) =z,

where we endow D(A) with the norm ||z| pcay = |||l + || Az]|.
For all x € D(A) we have T'(t)A = AT (t)x.

Proof. There are 5 steps in the proof.

Step 1. We claim that if we set uy(t) := T\ (t)z, we have always ||ux(t)|| < ||z||. Notice that
later, when we prove that limy\ o ux(t) = u(t), this implies immediately that ||u(t)| < ||z||.
By Ay = AL(Jy — 1) we have Ty(t) = et = A (a=1) = oA ae=A71 and | Ty (1) <
e HIAe=t AT < 1 by ||y ]| < 1.

Step 2. Let x € D(A). We claim that the family of functions (u(¢)) x>0, which is contained
in C([0,00),X), for A N\, 0 converges uniformly on compact sets to a function u(t) €
C(]0,00), X). We set T'(t)x = u(t). It is elementary to then show that T'(¢) : D(A) — X is
a linear operator such that ||T'(¢)z||x < ||z|/x. that can be extended in a unique way to an
operator T'(t) € L(X) s.t.||T(t)]| < 1.

To prove the claim, we make another claim. This 2nd claim states that Ay and A, commute
for any pair in A, 4 € R4.. One expresses this writing [Ay, A,] = 0, where [T, S] := TS —ST.
We will prove [Ay, A,] = 0 in a moment. Recall that if 7" and S are two bounded operators
with [T, S] = 0 then e7+5 = e¢Te%. Then [A), A,] = 0 implies

4 stArt(t=st) Ay _ T (st)Tpu(t — st)(Ax — Ay)z

4 T(st)Ty(t — st))x = 7

ds (
This implies

lux(t) = uu ()] = [TA@)z — Ty (t)z|| = H/ (Tr(st)Tu(t — st))z|

1
< t/ [T (st) T (t — st)(Ax — Ap)a|| < t[(Ax — Ap)zl| = ¢l (Jx — Ju) Az].
0
This means that since Jy Az /\>'>0 Az, our claim stated at the beginning of this step is true.
Turning to [Ay, A,] = 0, this follows from
AyA, = A(1 - M)TTAQ —pA) P =N —p) A ((1 S V) I - ,uA)*l) = A, A\
where we used

A=A =1 =pA) = (1= 2T = pA) (1= pA) T = (1= AA) T = AA) (1 - pA)
= (A= p)(1=24)7T A1 - pa)~
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Step 3. Since m = X, step 2 implies a unique extension T'(t) : X — X and we have
1T < 1.

We check now that for any x € X we have limy\ o 7 (t)x = T'(t)x uniformly on compact
sets in C([0,00),X). We know already that this is true for x € D(A) and by a density
argument we claim it holds also for z ¢ D(A). Since D(A) = X we can consider a sequence
(zp)n in D(A) with z,, — x in X. Then

ITx () = T(E)x|| < [Th@) (@ = zn) | + 1T @) (@0 — 2)[| + |1 TA )20 — T (t)2n]]
< 2|z — ol + |1 Tx ()20 — T(t)2nll

immediately yields limy\ o T (t)z = T'(t)2 uniformly on compact intervals.
From Ty (t)T)(s) = Th(t + s) we get T(t) (s) =T(t+ s). Indeed, for any z € X we have

IT@)T(s)x = T(t + s)x|| < | T(&)T(s)x —T(E)Tx(s)z|| + [T ()Tx(s)z — Ta(t)Ta(s)x]|
+ || Th@®)Ta(s)x — T(t+ s)x||— 0 as A 0.
———

Tx(t+s)

Step 4. Let € D(A) and and consider u), (t) = Th(t) Az = A \Tx(t)z. Then
[u(t) — T(t)Az|| = |TA(t) Ane — T(t) Az < ||Ta(t) Az — T(t) Az || + | Tx(8) (Arz — Az)|
< | Ta(t)Ax — T(t)Az|| + || Az — Ax]).

Hence we have

)1\1{‘1% uh(t) = )1\1{1% T)\(t)Ayx = T'(t) Az uniformly on compact sets in C([0, c0), X).

Then taking A N\, 0 on both sides, we get

up(t) =z + /0 uh(s)ds = T(t)x = x —i—/o T(s)Axzds,

from which we see that for z € D(A) we have T'(t)z € C*([0,00), X) with derivative T'(t) Az.
We now prove AT(t)x = T(t)Az for x € D(A). We have u)\(t) = A\T)\(t)z = AJ\T)\(t)x.
We claim that li{n I\T\(t)r = T(t)x in the topology of uniform convergence on compact

sets in C(]0,00), X). To prove this claim we write
[NTAO)x = T )z = [|Ta(t)z — T(E)z|| + [Ta(H)x — INTA(t)z]
= [[Tx(t)z = T ()|l + lz = Ta(t) Jaz|| < [Ta(@)x = T @)z + [l — Jxz].

But now we know that as A N\, 0 the r.h.s. converges to 0 in compact subsets of [0, c0).
This yields the desired claim. So, summing up, we have

lim (JyTx (8)z, AT (D)) = (T(t)a, T(H) Az) in X x X.
ANO0 —— —

uj\ (1)
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Since A is m—dissipative it follows that its graph G(A) is closed X x X (recall that G(A)
is closed iff G(1 — A) is closed and this is closed because G(.J}) is closed). This means that
T(t)x € D(A) with AT (t)z = T(t)Ax.

Now we are in position to show that T'(t)x € C([0,00), D(A)) with D(A) endowed with
the norm ||z[|p(4y = ||z| + [|Az|| for z € D(A). First of all we have T'(t)z € C([0,00), X)
and second we have AT(t)x = T'(t)Ax € C([0,00),X). This yields the desired claim.

Step 5. We check the uniqueness of the solution of (5.2). Let u(t) be a solution of (5.2) and
set v(t) := T(T—t)u(t) for 7 > 0 and t € [0,7]. We have v(t) € C([0, 7], D(A))NC*([0, 7], X)
and, in particular, from the chain rule and the product rule we have

V() = —AT(r — t)u(t) + T(r — t)u'(t) = =T (17 — t)Au(t) + T(7 — t) Au(t) = 0.

So in particular for any 2’ € X', we have that (v(t),2’) € C°([0,7],R), is differentiable
n (0,7) with 4(v(t),2’) = (4v(t),2’) = 0. Then by Lagrange’s Theorem we have that
(v(t),2’) is constant, in particular with (v(0),z’) = (v(7), ') for any 2’ € X', and so v(0) =
v(7) in X. So u(t) =v(r) =v(0) = T(7)z. So for any 7 > 0 we get u(7) = T(7)x. O

Definition 5.2 (Contraction semigroup). A family (7'(¢));>0 € £(X) is a contraction semi-
group if the following happens.

(1) |IT@®)|| <1 forallt>0.

(@) T

(3) T()T(s) =T(t+ s) for all t,s > 0.

(4) For any = € X we have T(t)z € C°([0, 00), X).

If instead only the conditions (2)—(4) are satisfied, then (T'(t)):>0 is called Cp—semigroup.
Notice that a special case of the above definition is the following.

Definition 5.3 (Isometry group). A family (7'(t))icr € £(X) is an isometry group if the
following happens.
1) |[T(t)x|| = ||z| for all t € R and all z € X.

T(0) =

(1)
(2)
(3) T(t)T(s) =T(t+s) for all t,s € R.
(4)

4) For any z € X we have T'(t)x € C°(R, X).
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Definition 5.4 (Generator of a contraction semigroup). Is the operator L defined by

T _
D(L)={z € X : lim (h)]fx exists in X }

V)

and for x € D(L)
Lo e lim LT =2
h\O h

We have the following examples :
1. 4 in LP(R,R) for p € [1,00) with D(:£) = WHP(R,R) and T(t)u(z) = u(x + t).
2. —4 in LP(R,R) for p € [1,00) with D(L) = WIP(R,R) and T(t)u(z) = u(z — t).
3. &L in LP(Ry,R) for p € [1,00) with D(:L) = WHP(Ry,R) and T(t)u(z) = u(z +1).

4. =4 in LP(Ry,R) for p € [1,00) with D(£) = {u € W'P(Ry,R) : u(0) = 0} and
T(t)u(z) = u(x —t) for z > ¢t and T'(t)u(x) = 0 for x < t.

5. The operator A = 7: with D(A) = {u € H'((0,1)) : w(1) = 0} in L?([0,1]) has
corresponding group

 Ju(x +t) forx+t <1,
Tt)u(x) = { 0 for x +t > 1.

Notice that for any v we have T'(t)u = 0 for t > 1.
Ezample 5.5. The following is an isometry group in any LP(R,R) for p € [1,00): T'(t) f(z) :=
f(x —t). The only nontrivial condition to check is (4). By density it is enough to consider
f e CP(R,R). Then
1 1
1T(h) f(x) = f(2)lle = |R] H/O f'(@ = th)dt||p < |l /0 1f(- = th)||edt = |h| || f']|» — O

as h \ 0 by Minkowsky inequality

Then we claim that L = —=. If f € D(L) then for ¢ € C°(R,R)
/ Lf(z)p(x)dx = lim/ fw = h) — f(x)qb(:c)d:):
R
L oz + h
~ Jim [ f@ da = [ @
So Lf = ——f € LP(R,R). If instead we consider f € LP(R,R) with %f € LP(R,R) we
have

T(h)f(f';s f(=) _ _/0 f(z — th)dt = _/0 T(ht)f'(x)dt
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Then

1
I _H@Z_AC”W—Df@ﬁ%O%h\Q

by condition (4).

Similarly, T'(¢) defines a contraction semigroup in Cp(R,R) with L = —%, that is D(L)
coincides with the set of f € Cp(R,R) s.t. f' € Ch(R,R).

On the other hand, for T'(t)f to be continuous in L*(R,R) it is necessary that f be
uniformly continuous and in L>®(R,R). So T'(t) does not define a contraction semigroup in
L™(R,R).

Notice that the difference between all these cases is that e '@ will define a contraction
semigroup in LP(R,R) for p < oo and in Cy(R,R) because —% is m dissipative with D( %)
dense. Notice that also % is m dissipative and its corresponding contraction semigroup is

('3 f) () = f(a+1).
Ezample 5.6. Consider X = {f € Cyp([0,00),R) : f(0) =0} and for ¢t > 0 set

T(H)f(x) = {f (@=0) for s 2

Then this is a contraction semigroup in X with L = —%.

This is a contraction semigroup also in LP([0,00)) for p € [1,00) with L = —£ with
boundary condition f(0) = 0. If f € D(L) then for ¢ € C°(R4+,R) where Ry = (0, 00)
/ Lf(x)¢p(x)dr = lim fle=h) = f(x)gb(:v)d:p

Ry h\0 R, h
. ¢(x +h) - ¢(x)
Jim 5 f(z) - x f( )dx¢( x)dx
So Lf = —4& f e LP(R},R). The limit f(0) exists. It has to be equal to 0 since from
T(h — !
IO ZID [ iy yar
0

for x < h we obtain
1 :
flx) = h/ T(ht)f'(z)dt = f(z) = 23;/ f'(z —2xt)dt — 0 as =\, 0.
0 0
Viceversa, let f be continuous with f(0) = 0 and such that ) € LP(R,,R) for j = 0, 1.

Then, setting g(z) = 0 for z < 0 and g(z) = f(z) for > 0, we get g¥¥) € LP(R,R) for
j =0,1. Then for x > 0 we have T'(h) f(x) = g(z — h).



Ezample 5.7. Consider X = Cy([0,00),R) and for ¢ > 0 set

T(t)f(2) = {f(z+1)

Then this is a contraction semigroup in X. This is a contraction semigroup also in L”(]0, 00))
for p € [1,00) with L = & with domain W'P(R}).

Proposition 5.8. Let L be the generator of a contraction semigroup (T'(t))i>0 € L(X).
Then L is m—dissipative and D(L) = X.

Proof. 1. L is dissipative For x € D(L), A > 0 and h > 0 we have

TT = ) @+ Az — A TRl = (1 4+ A e — AT (e

- A
o — AT
= llzll + A= (llall = 1T (R)z])) > |||
so that taking the limit for h \, 0 we get ||z — ALx| > ||z||.

2. L is m—dissipative Given x € X we need to show that there is y € D(L) s.t.
(1 — L)y = x. Formally, the idea is to set y = (1 — L)~ 12, which of course makes no sense
yet. However, thinking of the Laplace transform which formally gives us

o0
(1-0) 'z = / e tetlydt
0

we define y as the r.h.s. (which makes perfect sense) of the above equality. Then

T(h)y — o
();jy = p! / e HT(t+h) — T(t))zdt
0
) ) h
=t / e~ M) zdt — h! / e T (t)adt — h™ / e (t)adt
h h 0
eh—1 [ —t -1 h —t
=— e T (t)xdt —h e "T(t)xzdt - y—x as h \,0.
h 0

This means that y € D(L) with Ly = y — x or, equivalently, (1 — L)y = x. Hence L is
m—dissipative.
Remark 5.9. So we have proved that if we set Jo = [ e~ 'eladt then Jz € D(L).

Notice on the other hand that if ' is a group of isometries and if 2 ¢ D(L) then
etz & D(L) for all t € R. Nonetheless, Jx € D(L).

The fact about '’z ¢ D(L) can be seen noticing that if 7'(t) is a contraction semigroup
with generator A and if zg € D(A) then T(t)zg € C(]0,00), D(A)). So, if eofx € D(L)
for some ty > 0, for example, then for A = —L and using D(A) = D(L) we have that
eloly € D(L) = D(A) implies # = T(ty)e!o*z € D(A) = D(L), which contradicts = ¢ D(L).
So etlx ¢ D(L) for all t € R.
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3. D(L) is dense in X We set x; = t~1 fot T(s)xds. Then z; — x as t N\, 0 by the
continuity of T'(t). We show that z; € D(L) for ¢ > 0. Of course, as we will see in a
moment, this will be a simple computation, but the heuristic idea could be encapsulated in
the following formal integration:

t
Ltxy = L/ eslds x = (et — 1)z (5.3)
0
tL

The rigorous argument is as follows and yields Ltxy = "~z — a:

_ t+h ¢
T(h)xhtxt = h—lt_l/ T(s)xds — h_lt_l/ T(s)xds
h 0

t t+h t h
= h_lt_lt_lf T(s)a:ds—i—h_lt_l/ T(s)xds — h_lt_l/ T(s)xds — h_l/ T(s)xds
h t h 0
t+h h
= h_lt_l/ T(s)zds —h~ ! / T(s)zds — t T (t)z —t ™z as h \, 0.
t 0
So xy € D(L) with Ltx, =t 'T(t)x — t 'z, confirming the formal computation (5.4).

t

Ltz = L/ eslds x = (et — 1)z (5.4)
0

The rigorous argument is as follows and yields Ltx; = etfa —

T(h).’IJt — Xt
h

t t+h t h
= hltltl/ T(s)xds + hltl/ T(s)xds — hltl/ T(s)xds — hl/ T(s)zds
h t h 0

t+h ¢
= h_lt_l/ T(s)xds — h_lt_l/ T(s)xds
h 0

t+h h
=h ! / T(s)zds — h~ 1t ! / T(s)zds — t T (t)z —t 1z as h \, 0.
t 0

So x; € D(L) with Ltx; = t 1T (t)z — t 'z, confirming the formal computation (5.4).
O

Ezample 5.10. In X = L2([0,1]) the following is a contraction semigroup

 Ju(z+t)forz+t <1,
Tt)u(@) _{ 0 for z +t>1.

Let L be the generator. Then for x < 1 we have

lim T(t)u(z) — u(x) _ lim u(x +t) — u(z)

t—0+ t t—0+

= Lu(z)

implies that Lu(x) = u/(x). So the derivative exists a.e. and equals Lu(z). In fact this is
also an equality in a distributional sense as can be seen using test functions from C2°((0,1)).
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From the definition, for any u € L2([0,1]) we have (T(t)u)(1) = 0. For u € D(L) we
know that T'(t)u € C(]0,00), D(L)). So in particular, since D(L) C H'((0,1)) c C°([0,1])
it follows T'(t)u € C([0,0),C°([0,1]) and so (T(t)u)(1) = evy o T(t)u € C°([0,1]) where
evs, : C°([0,1]) — R is the map evy, f := f(s0), defined for any preassigned sq € [0, 1]. So

1) =lim(7T'(¢ 1) =0.
u(l) = lim(T(#)u)(1) =0
This means that G(L) C G(A) for A the operator in Example 3.15. Suppose now that they
are not equal and let f € D(A)\D(L). Set F = (1—A)f. Since L is m—dissipative we have
let ge D(L)st. F=(1—L)g=(1—A)g. Then (1 —A)(f —g) =0. Since A is dissipative
we have f =g.

Theorem 5.11. A is the generator of a contraction semigroup in X if and only if A is
m~—dissipative with dense domain.

Proof. If A is the generator of a contraction semigroup in X then A is m—dissipative with
dense domain by Prop. 5.8.

Viceversa, let A be m-—dissipative with dense domain. By Theorem 5.1 it remains
defined a contraction semigroup (7'(t)):>0. This has a generator L. We show now that
L=A.

For x € D(A) recall that then u(t) := T'(t)x satisfies (5.2), that is, it is the unique
solution of the following problem:

u € C([0,00), D(A)) N C*((0,00), X)
u'(t) = Au(t) for all t > 0
u(0) = =z,

Then for A > 0 we have

h h
T(h)xr =x +/ T(t)Azdt = lim Th)e = = lim h1/ T(t)Azdt = Ax.
0 R\0 h r\0 0
Then x € D(L) with Lz = Az. So G(A) C G(L).

Let y € D(L). Since A is m—dissipative there exists z € D(A) s.t. © — Ax =y — Ly.
Since G(A) C G(L) we have Az = Lz and so (z —y) — L(x — y) = 0. Since by Prop. 5.8 L
is m— dissipative, and so in particular dissipative, we have £ = y and so A = L.

U

5.1 Self-adjoint < 0 operators in Hilbert spaces

In the case of self-adjoint negative operators in Hilbert spaces things are simpler thanks to
the following formulation of the Spectral Theorem for separable Hilbert spaces, which can
be viewed as a diagonalization theorem. For a proof see Ch. 8 [6].
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Theorem 5.12 (Spectral Theorem for separable Hilbert spaces). Let X be a separable
Hilbert space and let A be self-adjoint. Then there exists a measure space (2, 1), an iso-
metric isomorphism U : L*(Q, 1) — X and a real valued measurable function a(w) in
s.t.

U AU f(w) = a(w) f(w) for any Uf € D(A).
Given f € L*(Q, u) we have Uf € D(A) if and only if a(w)f(w) € L*(Q, u).
0

Now we consider a self-adjoint operator A < 0 on a separable Hilbert space and its
corresponding contraction semigroup 7'(t).

Theorem 5.13. Let X be a e Hilbert space, assume that A is self-adjoint < 0. Let x € X
and let u(t) = T(t)x. Then u(t) is the unique solution of the following problem:

u € C°([0,00), X) N CY((0,00), D(A)) N CL((0,00), X) (5.5)
u'(t) = Au(t) for allt >0 (5.6)
u(0) =z (5.7)
We also have
[l
[Au(t)|| < G (5.8)
T
— (Au(t),u(t)) < ”2L| (5.9)

Finally, if v € D(A) we have
1
[ Au(®)|* < = (Az, ). (5.10)

Proof. We will consider only the case when the space X is separable. Then the Spectral
Theorem allows us to reduce to the special case in which X = L?(,u) and Au(w) =
a(w)u(w) for a real valued measurable function a(w) < 0. As a solution of (5.6)—(5.7) the
only possible candidate is

u(t,w) = @z (w). (5.11)
Notice that for ¢ > 0 and any n € N the function fi;(a) = a"e™® for a € Ry has a
point of maximum at ap; = § with maximum value fi(an) = ?—:6_". This implies that

u(t) € D(A™) for any ¢t > 0. In particular this gives for n =1

ta - Nzl _ ]l
[Au@®)]| < “”””i@g'“e < " (5.12)
and
N ) _ ll=]
(Au(t), u(®)) < [[Au(®)] [[u®)] < < (5.13)

et — 2t
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which imply (5.8)—(5.9). If 2 € D(A) we have
2 2 ta 1 2 1
lAu(@)” = (A%u(t), u(®)) < llae™ValzlllV]alzll < ZlIV]alz]” = = —(Az, 2).

This implies (5.10).
Finally the (5.11) satisfies (5.5) and more generally u € C'((0,00), D(A™)) for all I, n.

5.2 The semigroup e©

2
We set Ky(z) := (47Tt)_%€_%. We know that in L?(R", C) the operator A is m—dissipative
and that e!®f = K * f for any f € L>(R™,R).
Let now p € [1,00) with p # 2 and set T'(t)f = Ky * f for any f € LP(R",C) and any ¢t > 0.
Set T'(0) = I. Using the Fourier transform

F(Kppsx f) = e KPP F = (om)y=2 7 | Fr(e 1P w(K, # f)
2

||

(2t)" e~ ar
=F(Ki* (Ks*xf)) = Kips* f = Ky % (Kg* f).

So, in other words, this proves T'(t+s) = T'(t)T'(s). We know already that lim,\ o T'(¢) f = f,

so that we conclude that in fact t — T'(¢) f is in C([0, c0), LP(R™, R)).

Finally, [|T(t)fll, < [[Kllillfllp = |Ifllp, implies that T'(t) is a contraction semigroup in

IP(R™,R).

We know by Proposition 5.8 that T'(t) = €' for L an m-dissipative operator in LP(R", R).

We want to check that L = A with

D(A) == {f € I’(R",R) : Af € L’(R",R)}. (5.14)

Notice that we know that this is true in the case p = 2.
First of all we observe that G(A) O G(L). Indeed, in S'(R™, C) we have

F(ethf) = et F
and in S'(R",C)
tL g tLp —tlg)? _ R N
Fp =7 (lm ) = () < R = T = F o)

So if f € D(L) we have Lf = Af and so f € D(A).
Let now f € D(A). In §'(R™,C) we have

tLp —tlE? 1 . ft e—slé gs ~ [
F e f f) _ e _ Jo g2 :f( 1 SLA d ) )
( g — —— (=€) t /06 fds
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In particular, this implies that in §'(R™, C), but so also in LP(R™,R) , we have
tL oy _ t
erf-7 = tl/ eSLAfds.
0

t
Then . .
Lf—lim &t =7 _ hmtl/ LA fds = N
t\.0 t t\O 0

So A with domain (5.14) is the generator of T'(t) f = Ky f and in particular is m—dissipative.
All the above arguments can be repeated in the context of the space Cy(R™, R) based,
as they are, on Theorem 1.9.

6 Bochner integral

Let X be a Banach space.

Definition 6.1. Let I be an open interval. A function f : I — X is measurable if there
exists a set E of measure 0 and a sequence (f,(t)) in C.(I,X) s.t. fo(t) — f(t) for any
tel\E.

Lemma 6.2. Consider the notation of Def. 6.1. Then the function t — || f(t)|| is measur-
able.

Proof. In the notation of Def. 6.1 the sequence (|| f,(t)|]) in Cc(I,R) is s.t. || fu(®)|| = || f(©)]]
for any t € I\E. Then || f(t)| is measurable, see for example Theorem 1.14 [5]. O

Proposition 6.3. If (f,) is a sequence of measurable functions from I to X convergent
a.e. toa f:I— X, then f is measurable.

Proof. There is an E with |E| = 0 s.t. f,(t) — f(t) for any t € I\E. Consider for any
n a sequence Cc(I,X) 2 for — fn a.e.. We will suppose now that |I| < oo, by the proof
can be extended to the case |I| = oo by expressing I = U;I; for an increasing sequence of
intervals with |[;| < co. By applying Egorov Theorem to || f, r — fn|| there is E, C I with
|En| <277 s.t. fuk — frn uniformly in I\E, Let k(n) be s.t. || fy k) — full < 1/nin I\E,
and set gn = fp k). Set F'= EU(N,, Upsm En)- Then |F| = 0. Indeed for any m

o0
|F| < |E[+ ) |E.] "=70.
n=m
Let t € I\F. Since t ¢ E we have f,,(t) — f(t). Furthermore, for n large enough we have
t € I\E,. Indeed

tZ(\J En=3mst. tg |JEn= tZE,Vn>m.

m n>m n>m

Then ||gn(t) — fu(t)|| < 1/n and g,(t) — f(t). So f(t) is measurable.
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Definition 6.4. A measurable function f : I — X is integrable if there exists a sequence
(fn(®) in Co(I,X) s.t.
[ 1,00 = £t = 0. o)

Notice that || f,(t) — f(¢)||x is measurable by Lemma 6.2.

Proposition 6.5. Let f : I — X be integrable. Then there exists an © € X s.t. if (fn(t))
is a sequence in Cc(I, X) satisfying (6.1) then we have

lim z,, = x where x,, = /fn(t)dt. (6.2)
I

n—oo

Proof. First of all we check that x,, is Cauchy. This follows immediately from (6.1) and
from

[0 = zmx = |l /(fn(t) — fm(®))dt||x < /!fn(t) — fm(1)) | xdt

< /I 1) — F()xdlt + / 1£(6) = Fl®) .

Let us set x = lima,,. Let (g,(t)) be another sequence in C.(I, X) satisfying (6.1). Then
lim fl gn = T by

H / gn(t)dt — z]x = | / (gn(t) — Fult))di + / falt)dt — ]| x

/Ilgn — ful(t Ith+|/fn Yt — z|| xdt
< /1 lgn(t) — F(1) | xdt + / 1) — F(O)llxcde + | / fult)dt — | xdt.

O]

Definition 6.6. Let f : I — X be integrable and let x € X be the corresponding element
obtained from Proposition 6.5. The we set [; f L f(t)dt = .

Theorem 6.7 (Bochner’s Theorem). Let f: I — X be measurable. Then f is integrable if
and only if || f|| is integrable. Furthermore, we have

|| / F(t)dt]| < / 1£()]dt. (6.3)

Proof. Let f be integrable. Then there is a sequence (f,(t)) in C.(I, X) satisfying (6.1).
We have ||f|| < ||full + ||f — fnll- Since both functions in the r.h.s. are integrable and || f||
is measurable it follows that|| f|| is integrable.

Conversely let || f|| be integrable.Then there exists a sequence (g, (t)) in C.(I,R) s.t
Jrlgn@®) = [|f@)|||dt — 0 and [gn(t)] < g(t) a.e. for a g € L*(I). In fact it is possible to
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choose such a sequence so that ||g, — gml|1() < 27" for any n and any m > n. Then if we

set
Z |gn gn+1 )|

we have |[Sy|[r1) < 1. Since {Sn(t)}nen is increasing, the limit S(z) := limp 400 Sn(?)
remains defined, is finite a.e. and [[S]|p1;) < 1. Then |g,(t)] < [g1(t)] + S(t) =: g(?)
everywhere, where g € L'(I).

Let (fn(t)) in Co(I,X) s.t. fo(t) — f(t) a.e. . Set

untt) = g ),

I fn N +
We have 90 1101
9gn n
[|un(t)[] < W < gn(t)] < g(t).
We have
\gn( )l

lim w,(t) = lim I fu(t) = lim f,(t) = f(t) ae..

Then we have

lim [|up (t) — f(1)]| = 0 a.e. with [lu,(t) — f(0)]| < g(t) + | f ()] € LN(T)

n—oo

and by dominated convergence we conclude

lim/Hun — ()|t = 0.
n—oo

This implies that f is integrable. Finally, we have
u / F(Hdt] = lim | / un(B)dt] < lim / Jun (£) 1t = / 1£(6) .

Corollary 6.8 (Dominated Convergence). Consider a sequence (fn(t)) of integrable func-
tions I — X, g: I — R integrable and let f : I — X. Suppose that

| fn(@)] < g(t) for alln
Jim fo(t) = f(t) for almost all t.

O]

Then [ is integrable with [} f(t) =lim, [; fn(t)

32



Proof. By Dominated Convergence in L'(I,R) we have [} || f(¢)|| = lim,, [, [|f»(?)]|. Also, f
is measurable. By Bochner’s Theorem f is integrable. By the triangular inequality

hmsupn/ )l <hm/|!f fu®)] =0
(1

where the last inequality follows from |[f(t) — fn(t)]] < ||f(®)|| + g(¢) and the standard
Dominated Convergence. O

Definition 6.9. Let p € [1,00]. We denote by LP(I, X) the set of equivalence classes of
measurable functions f: I — X s.t. [|[f(¢)|| € LP(I,R). We set || fl|re(r,x) := [l f Il o (7,R)-

Proposition 6.10. (LP(I,X),|| ||zr) ¢s a Banach space. C°(I,X) is a dense subspace for
p < Q.

Definition 6.11. We denote by D’'(I, X) the space L(D(I,R), X).
Proposition 6.12. Let p € [1,00) and f € LP(R, X). Set

h
Tnf(t) =h~1 " f(s)ds fort € R and h # 0.
t

Then Ty f € LP(R, X) N CP(R, X), where from now on CY(R, X) := L*=(R, X) N C°(R, X),
and Ty, f h=30 fin LP(R, X) and for almost every t.

Proof. The fact that T}, f belongs to CP (R, X) is rather immediate. Indeed

t+h . : .
T <0 [ s)lds < ( / Hf(s)l!”ds> = -
t
On the other hand, for t <t <t+h

t'—t

— 0

t! t'+h
ITuf (6) — Tuf (&) < B~ / 1£(s)llds + /Hh 1£(s)lds

and a similar argument on convergence on the left guarantees Tj, f € C°(R, X).
Notice that by definition we have C.(R, X) dense in LP(R, X). Notice also that we have
Thnf = pn* f with pp(t) = hilx[()’l](h*lt). Replacing f with a g € C.(R, X) we have like in
+
Theorem 1.9 that Tjg h30 g in LP(R, X). By density we have also T}, f 29 fin LP(R, X).
Now we consider the pointwise convergence. Let g, be a sequence in C.(R,X) N

LP(R, X) with g, — f in LP(R, X). Then T},g,(t) hogt gn(t) for all ¢t € R. Furthermore we
may assume

lim |£() = ga(D)]] = 0 for all ¢ & 2,

for a 0 measure set 2. Furthermore there exists a 0 measure set Q/, s.t.

h—0t+

t+h
lim 5! / 1£(5) — gu(s)llds = [[£() — gn(®)]] for all ¢ & €2,
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Set now for t € QU Q' with Q' = UQ/,

Thf(t) - f(t) = Thgn(t) - gn(t) + Th(f - gn)(t) + gn(t) - f(t)

For any € > 0 there is n(e) s.t. for n > n(e) we have ||f(t) — gn(t)|| < €. Furthermore we
have

t+h
fimsup 1747 = g,) (Ol < Jim 570 [ 1£(5) = gu(s)lds = 1) = gnl0)] < e

h—0t

Hence for t € QU QY

limsup [T, f () — f(£)]| < 2e.
h—0+t

By the arbitrariness of € > 0 it follows
lim [|T,f(t) — f(t)]| =0fort QU .
h—07t
Corollary 6.13. Let f € L}, (I, X) be such that f =0 in D'(I, X). Then f =0 a.e.
Proof. First of all we have [ fdt = 0 for any J C I compact. Indeed, let (¢,) € D(I) with

0 <y, <1and ¢, — xs a.e. Then

where we applied Dominated Convergence for the last equality.

Set now f(t) = f(t) in J and f(t) = 0 outside J. The f € L'(R,X) and T}, f = 0 for all
h > 0. Then f(t) = 0 for a.e. t by Prop. 6.12. So f(t) = 0 for a.e. t € J by the previous
proposition. This implies f(¢) = 0 for a.e. t € I. O

Corollary 6.14. Let g € L}, (I,X), to € I, and f(t) := ftto g(s)ds. Then:
(1) "= g in the sense of distributions in D'(I, X);
(2) f is differentiable in the classical sense a.e. with f' =g a.e.

Proof. Tt is not restrictive to consider the case I = R and g € L*(R, X). We have

t+h t+h Dds — [t a(s)ds B
Thg(t):h_l/t g(s)dszfto 9(s) - ftog() :f(t+h})L f(t).

By Proposition 6.12 Tj,g h30 g for almost every ¢. This yields (2).
For ¢ € D(R) we have

(f's oo x)yp®) = —{f, ¢ ) p@x)DE®) = —/Rf(t)@/(t)dt-
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Furthermore
o(t+h) —

Jim ) 2 _ ) in Lo(R).

So
t+h

(f' ) p@x)D®) = —hm/f

h—0

=1 T_ = /
}lllif(l) Rgp(t) rg(t)dt = (9, ©)p (R, x)D(R)

where in the last equality we used 7_,g — g in L*(R, X) and so also in D'(R, X) So f' =g
in D'(1, X).

O]
Proposition 6.15. Let T € D'(I, X) s.t. T" =0 in D'(I,X). Then there exists an g € X
s.t.
(T, p) = xg/cp(t)dt for any ¢ € C°(I,R) (6.4)
I

Proof. Let ¥ € C®(I,R) with [, d9(t)dt = 1 and set zo = (T,9). Let [a,b] C I be s.t.
[a,b] 2 suppd. Then set for any ¢ € C >(I,R)

Mﬂz%LDQdﬁ—W$l¢wMﬁd&

Then ¢ € C°(I,R) with

We have
02@%5=@w%%ﬂ®ﬂﬂ®M=@W$ﬂm/ﬂﬂw-

I
This implies that T = xy.
O

Definition 6.16. Let p € [1,00]. We denote by WHYP(I, X) the space formed by the
ferLP(I,X)st. ffeD(I,X)isalso f/ € LP(I,X) and we set || f|lwie = [fllze + ||/ || e-

Theorem 6.17. Let p € [l,00] and f € LP(I,X). Then the following properties are
equivalent.

(1) f e WhP(I, X).

(2) There exists g € LP(I,X) s.t. for a.e. to and t in I we have

f@zﬂw+/g®%- (6.5)

to

35



(3) f is absolutely continuous, weakly differentiable a.e. with weak derivative g € LP(I, X).
Proof. (1)=-(2). Let to € I and set

w(t) = f(t) = f(t) with f(t) := f(to) + t f'(s)ds

f € COI, X) satisfies the conclusions of Corollary 6.14. So w'(t) = f' — f' = 0 in D'(I, X).
This implies w = z¢ in D'(I, X), so that we can set w(t) = xo for all ¢. Then we can pick
f € C°I,X) and we can apply this discussion to this specific function. But then necessarily
we must have xg = 0. This yields (2) for g = f’.

(2)=-(1). We can assume that (6.5) holds everywhere. Then we can apply Corollary 6.14
which tells us that f' = g in the sense of distributions. Hence f € W'P(I, X).

(2)=-(3). We assume, changing f(t) in a 0 measure set, that (6.5) holds for all ¢. Then by
Corollary 6.14 f is differentiable a.e. with f’ = g a.e. and its distributional derivative is
g € LP(I,X). Obviously, we can conclude that f is weakly differentiable a.e. with weak
derivative g.

We now show that f : R — C is absolutely continuous, that is for any ¢ > 0 there is 6 > 0

such that for any set of disjoint intervals (a1,b1), ..., (an,bn)
N
> (- <5=>2Hf flaj)ll <e
j=1

Indeed for the case p > 1 we can use

1 1
E:Wf Sfa)lE [ POl < U @) 1 s < 5 1 .
Uisy aj,bj
For the case p = 1 the result is also true. Notice tha if we set u(E) = [ || f'(t)||dt where

Ilf(t)|| € L*(I,R) a measure remains defined in R. Such p(FE) is absolutely continous, that
is for any € > 0 there is § > 0 such that |E| < 6 = pu(E) < e. This implies that f(¢) is AC.
(3)=(1). Set
¢
o) = 10 - f(to) = [ g(t)ar

to
and let 2’ € X’. Denote by h(t) the function t—(p(t),2’) xx/. It is absolutely continuous
and has a.e. derivative equal to 0. Since h(ty) = 0 it follows that h(t) = 0. Since this is
true for all 2’ € X' it follows that

t
ft) = f(to)+/ g(t")dt' for all ¢.
to

But now we can apply Corollary 6.14 and conclude that f' = ¢ in D'(I,X). Since g €
LP(I,X) we conclude that f € WLP(I, X).
[
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7 Inhomogeneous equations

Let T'> 0 and f:[0,7] — X. We consider the problem

u e C°[0,T], D(A)) N C*([0,T], X) (7.1)
u'(t) = Au(t) + f(t)
u(0) = z.

The first step consists in showing that (7.1)—(7.3) can be expressed in integral form. We
will later check conditions under which the integral formulation yields (7.1)—(7.3).

Lemma 7.1. Letz € D(A) and f € C°([0,T),X). Letu be a solution of (7.1)~(7.3). Then

we have
u(t) =T(t)x +/0 T(t —s)f(s)ds for allt € [0,T). (7.4)

Proof. The elementary way to prove Lemma (7.1) would be the classical integrating factor
argument for linear first order ODE’s, that is apply e ™4 to equation (7.2) thus getting

(e u(t)) = e (1)

and then, by integration,

e u(t) = u(0) + / e f(s)ds = u(t) = eu(0) + / =4 f(s)ds.

0 0

The problem with the above formal argument is that e *4 might not exist. So we need

a more elaborated version of the integrating factor argument. This goes as follows. For
t € (0,7] and s € [0,t] we set
w(s) :=T(t — s)u(s).

Notice that since u € C°([0, 7], X) and s — T(t — s) is strongly continuous and bounded,
then w(s) € C°([0,], X).
For s € [0,t) and h € (0,t — s| we write

Then and as h N\ 0 we get the right derivative

w(s + h) —w(s)

) _
T(t—s—h) {“<5 Hh ) T 1u<s>} 5 (D)) = Tt = ) {(s) = Au(s)} = T(t = 5)/(5).




For s € (0,t] and h € (—s,0)

w(s+h)—w(s)=T{t—s—h)u(s+h) =Tt —s)u(s) =
T(t—s)((T(=h) = Du(s+h)+u(s+h) —u(s)) =
T(t—s)(T(=h) — Du(s) +u(s+ h) —u(s)) + T(t — s)(T'(—h) — 1)(u(s + h) — u(s)).

Then and as h 0 we get the right derivative

w(s+ h) —w(s)

h
T(t - s) {“(3 il hh —u(s) _ T(_Z) - 1u(s)} = TEN =L ) — u(s))
5 (C)(s) = Tt — ) () = Auls)} = T(t = 5)7(s)
Here we used the fact that
_ T(=h)—1 T ,
}111;% A (u(s +h) —u(s)) = }Ll;‘l%)h ! ; T(s)A(u(s+h) —u(s))ds' =0

by u € C°([0,T], D(A)).
Since T'(t — s)f(s) € CY([0,], X) we have w € C1([0,t), X)

w'(s) =Tt —s)f(s). (7.5)
Then for 7 € (0,1)
w(r) —w(0) = /OT w'(s)ds = /OT T(t—s)f(s)ds,
where w(0) = T'(¢)x.
By w(s) € C°(]0,t], X) by taking the limit 7 ¢ on both sides we get

w(t) —T(t)x = /0 T(t—s)f(s)ds

where the Lh.s. is u(t) — T'(t)z. This yields (7.4). O
Now we give conditions under which (7.4) implies (7.1)—(7.3).

Proposition 7.2. Let x € D(A) and f € C°([0,T],X). Assume one of the following
conditions.

(i) f € L'([0,T],D(A)).
(ii) f € Whi([o,T], X).

Then u given by (7.4) is the solution to (7.1)—~(7.3).
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Proof. We set for ¢t € [0,T]

o(t) ::/0 T(t—s)f(s)ds:/o T()f(t — 5)ds.

Step 1. We prove now that v € C1([0,T), X). If (i) holds for t € [0,T) and h € (0,T — t]
we have

v(t+h)—v(t)  [7TTE+h—s)f(s)ds — [3 T(t —s)f(s)ds

h h
_ J(@(+h—s) = T(t = 5)f(s)ds + [, T(t + h = 5)f(s)ds
h
v —v ¢ . t+h
W - /0 T(t - s)T(hiblf(s)ds + ;L/t T(t+h—s)f(s)ds.  (7.6)
We take the limit for h \, 0 and claim that f € L'([0,T], D(A)) implies
h +
T(h})l_lf(s) = hl/o T(r)Af(s)dr 29" Af(s) in L*([0, T], X). (7.7)

To prove this notice that f € L'([0,T], D(A)) implies that there exists a sequence formed
by f € CO([0,T], D(A)) s.t. we have f, "= f in L'([0,T], D(A)). We have

h h
= /0 T(r)Af(s)dr — Af(s) = h~" /O (T(r) — 1) Af,(s)dr

h
s /0 T(r)A(f(s) ~ fals))dr + A(fu(s) — £(5)).

Notice that for any € > 0 there exists ng s.t. n > ng and h € (0,7 imply that the last line
has L'([0, 7], X) norm less than e. On the other hand for any n and for h \, 0 the first
term on the r.h.s. converges to 0 in L!([0,T], X). So the limit claimed in (7.7) is proved.
Similarly we have

t+h
% / T(t+h—s)f(s)ds "= f(1) (7.8)
t
which follows from f € C°([0,77], X). Then taking the limit in (7.6) we have
d+ t
ot) = /O T(t — s)Af(s)ds + f(8). (7.9)

Hence we have proved under hypothesis (i) that %v(t) e C°([0,T), X).
Assume now case (ii).

v(t+h)—v(t)  [TTT(s)f(t+h— s)ds — [3 T(s)f(t — s)ds

h h
Jo T (ft+h—s) = f(t —s)ds + [ T(s)f(t +h — s)ds _
h
t s — s h
/0 T(s) ft+h i)z It )ds + %T(h) /0 T(t—s)f(s)ds.
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We have h
L Jtth—s) — [(t—5)
R\0 h

= f'(t — s) in L'([0,1), X).

Then we have
i+ SN
ut) = /0 T()f'(t — 8)ds + T(t)£(0) (7.10)

Hence also under hypothesis (ii) we have proved that %U(t) € 0°([0,7), X).
Step 2. By similar arguments ‘fi—;v(t) € C%(0,T], X).
For example, if (i) holds for ¢t € (0,7] and h > 0 is small we have

v(t—h)—v(t) fot_h T(t—h—s)f(s)ds— fot T(t—s)f(s)ds

_h “h
_ Jo M@t —h—s) = T(t—s))f(s)ds — [\, T(t - 5)f(s)ds
“h
M= P 2 pwas s [ 1= s fss

As h ™\ 0 the limit (7.7) holds and the above converges to

%U(t): /0 T(t — $)Af(s)ds + f(£).

Notice that for ¢ € (0,7) we have %v(t) = C(li—;v(t).
Step 3. Let t € [0,T) and h € [0,T —t). Then

T(h;)z_%(t) _ T(h})l—lfo T(t — s)f(s)ds
o[ —s)f(s)ds — h™! t —8)J18)as
—h /0 T(t+h—s)f(s)ds —h /0 Tt = s)f(s)d

t+h t t+h
= [T b= s —nt [ 1= s)ps)ds =it [T h = ) )

v(t+h}27v(t)
(7.11)
So .
POy 28" Tty — (0. (7.12)
Then v(t) € D(A) with
Av(t) = (t) — f(t) for t € [0,T). (7.13)

Notice that by Step 1 and 2 we have v' € C([0,T], X). So since G(A) is closed we conclude
that also v(T") € D(A).
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We now discuss the fact that v € C°([0,T], D(A)). Here we know already that v €
C%(]0,T], X) and what remains to be shown is Av € C([0,T],X). If f € Whi([0,7], X)
this follows immediately from (7.13) (that holds also at T).

If f € LY([0,T], D(A)) then

A/ (t—s)f ds_/t T(t — s)Af(s)ds (7.14)

where we claim that the last term in C°([0,T],X). To prove this claim, let (f,) in
CY([0,T], D(A)) with f, — f in L'([0,T], D(A)). Then

Av(t)—/o T(t — $)Afo(s ds—i—/OTt—s (Af(s) — Afo(s))ds

=:pn (1)

Then we see that
[Av(t) — on(®)llx < [If = falloro,r),pca))-
This implies ¢, — Av in L*°([0,7T], X) and this, in turn, implies Av € C°([0, T}, X).
Step 4. Since u satisfies (7.4) we have u(t) = T(t)x+v(t). Ther.h.s. isin C°([0,T], D(A))N
CY([0,T), X). This yields (7.1). We have u/(t) = AT (t)x + Av(t) + f(t) = Au(t) + f(t) for
all ¢ € [0,T]. So (7.2) holds. Finally u(0) = z follows.

O

Corollary 7.3. Letz € X and f € C°([0,T), X) and let u be given by (7.4). Then we have
ue C%([0,7], X)nC'([0,T], X) (7.15)

u'(t) = Au(t) + f(t) (7.16)

u(0) = . (7.17)

Proof. Recall that X = D(A). We have f € C°([0,T], D(A)) € L*([0,T], D(A))nC°([0, T], X)
and z € D(A). So we can apply the Proposition 7.2.
O]

Corollary 7.4. Let x € X and f € C°([0,T],X) and let u be given by (7.4). Assume u
satisfies one of the following 2 conditions.

(i) ue CO0,T], D(A)).
(ii) uw e C([0,T], X).
Then u satisfies (7.1)—(7.3).
Proof. In case (i) we can apply the previous corollary. In particular we get (7.16). But (i)
implies Au(t) = Au(t). So (i) implies u/(t) = Au(t) + f(t). Since the right hand side is in
C*([0,T], X) than this and (i) imply u € C1([0,T], X). So we get (7.1)—(7.3).
Now assume case (ii). Solving (7.16) with respect to Au(t) we see that Au € C°([0, T}, X).

But this implies Au(t) = Au(t) and u € C°([0,T], D(A)). But then get (7.1)—(7.3).
O
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Proposition 7.5. Letz € X, f,u € L'([0,T], X). Assume that either u € L1([0,T], D(A))
oru € WH([0,T),X). Then u satisfies (7.4) if and only if

u e L'([0,T], D(A)) n W ([0, T], X) (7.18)
u'(t) = Au(t) + f(t) for almost any t € [0,T] (7.19)
u(0) = z. (7.20)

Proof. If u € WH([0,T), X) then u € C°([0,7],X) and so (7.20) makes sense. We now
show that (7.18)—(7.20) imply (7.4). We proceed like in Lemma 7.1. For ¢ € (0,7] and
s € (0,t) we set

w(s) =T (t — s)u(s).

For h € (0,t — s) we have already computed that

w(s + h})L —w(s) Tt —s—h) {u(s + h]?L —u(s) T(h;L— 1u(s)} (7.21)
and so
w(s+h) —w(s) =Tt —s—h){u(s+h)—u(s) — (T'(h) — u(s)} (7.22)

From this we see
[w(s+h) —w(s)|x < lluls+h) —u(s)lx + ] [u(s)lpa)
< 'l g1 (s,54m),x) + 101 () peay-

This implies that w is absolutely continuous from [0,77] to X.
The fact that v € L1([0,T], D(A))NnW11([0,T], X) implies that for a.e. s the limit for h \,
in (7.21) exists with

ng(s) — T(t — 5)(e/(s) — Au(s)) = T(t — 5)f(s). (7.23)
Similarly we have
%w(s) = T(t — s)f(s) ae. (7.24)
and so J
Zw(s) = T(t = s)f(s) ae. (7.25)

So now we have w € AC([0,T], X), the derivative w’ defined a.e. and is a function belonging
to L([0,T], X). Notice that w satisfies the hypotheses of claim (3) in Theorem 6.17. This
claim guarantees that under these hypotheses w € W11([0,T], X). We have

u(t) = w(t) = w(0) + /0 T(t—s)f(s)ds=T(t)x + /0 T(t—s)f(s)ds. (7.26)
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that is (7.4).

We prove now that (7.4) implies (7.18)—(7.20).

Let (fn) a sequence in C°([0,T),X) s.t. f, — f in LY([0,T],X) and let (u,) the
corresponding sequence of solutions of (7.4). Notice that for each n we are under the
hypotheses of Corollary 7.3. So we have

Un € CO([()?TLX) n Cl([O,T],Y)
ul, (t) = Aug(t) + fu(t) in [0, 7]
un(0) = .

In particular we conclude

t
up(t) = x —|—/ (Aup(s) + fu(s))ds for all t € [0,T]. (7.27)
0
Notice that we have also

t _ t
un(t) =T(t)x + / eU=9Af (s)ds = T(t)z + / eU=Af, (5)ds for all t € [0,T].
0 0

Then for n — oo and by (7.4)
t
lim w,(t) = T(t)e + / =94 f(s)ds = u(#) for all ¢ € [0, 7] and in X.
n oo 0

More precisely, we have
[u(t) = un(®)llx < If = fullror),x)-

This implies that u,(t) — u(t) in C°([0,T], X) or, equivalently, in C°([0, T], D(A)). Then
for n — 400 we obtain

u(t) =z + /Ot(Au(s) + f(s))ds for all t € [0, T]. (7.28)

It follows that u € WH1([0, T], X) with u/(t) = Au(t) + f(t) for almost any ¢. Since either
u € LY([0,T],D(A)) or u € WHL([0,T], X) and since f € L'([0,T],X) we have in fact
(7.19).

If w € WHi(]0,T], X) by hypothesis, then from (7.19) and f € L([0,7T], X) we get
Au € LY([0,T), X). This implies u € L*([0,T], D(A)) and proves (7.18).

If w € LY([0,T], D(A)) by hypothesis, then from (7.19) and f € L'([0,T], X) we get
u' € LY([0,T], X). This implies u € W1([0,T], X) and proves (7.18). O

Lemma 7.6 (Gronwall’s inequality). Let T > 0, A\, € L*(0,T) both > 0 a.e. and Cy, Cy
both > 0. Let A\p € L*(0,T) and let

p(t) <C1+Cy /Ot A(s) p(s)ds for a.e. t € (0,T).

Then we have \
o(t) < C1e“2 o X&) for e t € (0,T).
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Proof. Set .
P(t) :=Cr + C’g/o A(s) @(s)ds.
Then 1)(t) is absolutely continuous and so it is differentiable almost everywhere and we have
P (t) = Col(t) @(t) < Co(t) 4(t) for a.e. t € (0,T).
Also, the function 1) (t)e~¢? Jo A(s)ds ig absolutely continuous with

d

o7 (1/J(t)efc2 fs A(s)ds) <0 for ae. t € (0,T).

Then we have
() < P2 Jo Mosyy(0) = 012 o A for all ¢ € (0,T).

Since p(t) < 1(t) a.e., the result follows.

8 Abstract semilinear equations

Definition 8.1. A function F' : X — X is Lipschitz continuous on bounded subsets of X
if for any M > 0 3 L(M) s.t.

|FP(2) = F(y)| < LOM) & — y|| for all 2,y with lz] < M and [y < M. (8.1)

Lemma 8.2. Let T >0, v € X and let u,v € C°([0,T], X) solve

w(t) = T(t) + /O T(t — 5)F(w(s))ds. (8.2)

Then u = wv.

Let M = masoceer{ Ju())], o(t)][}. Then

[u(t) = (@) S/O [ (u(s)) = F(v(s))llds < L(M)/O [uls) = v(s)l|ds

and apply Gronwall’s inequality. ]
Proposition 8.3. Let + € X with ||z| < M. Then there is a unique solution u €
C°([0, T], X) of (8.2) with

1
T = .
M oL@M + |F(0)]) + 2

(8.3)
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Proof. Set K =2M + ||F(0)|| and
E = {uc C%0,Ta), X) : |u(t)| < K for all t € [0, Tas]}

with the distance of L>(]0,T/], X). E is a complete metric space. Next consider the map
ue F— ¢,

O,(t)=T(t)x + /Ot T(t — s)F(u(s))ds for all t € [0, Ths].

By Ty = m for all t € [0, Tys] we have
[E @)l < [[FO)[ + [F(u®) = FO) < [[FO)] + KL(K)
_M+|[F©O) (84)

= [[FO)[ + 2M + [[FO)) LK) < 2(M + [|[F(0)[[)(L(K) + 1) T

and
1T ()] < [lz]| < M. (8.5)

So from (8.4)—(8.5) for ¢t € [0, Tys] we have

[Pu(t)]] < M+t

M+ ||F
M <2M + |F(0)|| = K
Tn

and so &, € FE.
For u,v € E we have

[Pu(t) — Pu ()] < /0 1F(u(s)) = F(v(s))llds < Tar L(K)|Ju = ]| oo (jo,17, x)-
So by Ty L(K) < 271

[P0 — Poll o (o,77,x) < 27w — vl Lo (o.17,%)

Hence u — ®,, is a contraction in E and so it has exactly one fixed point.
O
Notice that if F(0) = 0 if and lim+ L(M) = 0, something which happens in many
M—0

important cases, we can improve the above result and get a T/ s.t. 1im+ Ty = 00, as we
M—0

will see now.

Proposition 8.4. Let © € X with ||z|| < M. Assume F(0) = 0 Then there is a unique
solution u € C°([0, Tyr], X) of (8.2) with

Ty = 2L(;M). (8.6)
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Proof. The argument is the same. Here we set K = 2M and define E as above by
E = {uc C%0,Ta], X) : |Ju(t)| < 2M for all t € [0, Tas]}

Consider the map v € £ — ®,, defined as above by

O,(t)=T(t)x + /Ot T(t — s)F(u(s))ds for all t € [0, Ths].

By Ty = m for all t € [0, Tas] we have
M
P (u(e)] < 2ML(2M) = - (5.7
M
and
1Tz < lxf] < M. (8.8)

So from (8.4)—(8.5) for ¢t € [0,Ts] we have
M
|@u(t)]| < M +t— <2M
T

and so ¢, € E.
For u,v € E we have

[®u(t) — 2o ()] < /0 [ (u(s)) = F(v(s)llds < Ta L2M)|lu = ]| Lo (fo,17,)-

So by Ty L(2M) =271

[P0 — Poll Lo (o,71,x) < 27w — vl Lo o.17,%)

Hence u — ®,, is a contraction in E and so it has exactly one fixed point. O
We now turn to an abstract form of the mazrimum principle.
Recall that in an ordered Banach space the ordering is characterized by a convex closed
cone C s.t.

l.¢c+ccc
2. A\C CC forall A >0 and
3. Cn(-C)={0}.
Then given z,y € X we write y > z if (y — x) € C.

Lemma 8.5. Suppose that in X there is a relation of order and that F(u) > 0 if u > 0.
Suppose furthermore that T(t) is positivity preserving, that is x > 0 = T(t)x > 0 for all t.
Then if x > 0 the solution u € C°([0,Ta], X) of Prop. 8.3 is u(t) > 0 for all t.
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Proof. We just rephrase the fixed point argument of Prop. 8.3 in a different set up. Indeed,
if we redefine the set E writing

E={ueC0,Ty],X) : ||lu®)| < K and u(t) > 0 for all t € [0, T]},

then E is a complete metric space. Furthermore the map v — &, with
t
O,t)=T)f +/ T(t — s)F(u(s))ds for all t € [0, Th].
0

is such that u(t) > 0 for all ¢ € [0, Tys] implies ®,(¢t) > 0 for all ¢ € [0, Ths]. Then the proof
of Proposition 8.3 works out in the same way as before under this slightly more restrictive
definition of E.

O

Lemma 8.6. Assume the hypotheses of Lemma 8.5 and furthermore that F(v) > F(u) > 0
ifv>u>0. Let v <y. Let u(t),v(t) € C°[0,T:), X) be solutions with u(0) = = and
v(0) =y. Then u(t) <wv(t) in [0,T}).

Proof. If M = max{||z||, ||y||}, then using the setup of Prop. 8.3 we consider the set
E={fcC%0,Ty],X): f(t) >0and ||f(t)|]| < K for all t € [0, Tas]}

and the maps f € E — ®,(f) and f € E — ®,(f)

t
D, ()(t) =T (t)wp +/0 T(t—s)F(f(s))ds for all t € [0, Ths].

Let u(t) be the solution with initial datum y. Then we have ®;(u) < ®,(u) = u. This can
be iterated and if 0 < ®%(u) < ®4 '(u), then 0 < ®4'(u) < ®}(u). But we know that

&, (u) 250 v, with v the solution with initial datum z. Hence v < w.
So we have proved u(t) < v(t) in [0, Tas]. Let now

Ty :=sup{T € [0, T%) such that u(t) < v(t) in [0, T]}.

If Ty = T the theorem is finished. If T} < T, we have by continuity u(7}) < v(71). But
then there exists a 0 < T < Ty, — T with s.t. u(t) := u(t + 71) and resp. v(t) := v(t + 11)
solve in [0, 7] the equation with initial data < y with T := u(7}) and resp. y := v(T1).
But for 7" small enough we have u(t) < v(¢) in [0,7] by the 1st part of the proof. But
this implies than u(t) < v(¢) in [0,77 + T]. This is absurd by the definition of 77, and so
T =1T,.
O
We will consider now the function 7' : X — (0, co] where for any z € X the interval
[0,T(z)) is the maximal (positive) interval of existence of the unique solution of (8.2).
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Theorem 8.7. We have, for u(t) the corresponding solution in C([0,T(x)), X),

2L(|F(0)]] + 2l|u(t)]]) > T(ﬁ_t _

for allt € [0,T(x)). We have the alternatives

(1) T(z) = +oo;

2)ifT(x) < th li t)|| = .

(2) i T(@) < +o0 then limu(t)]| = +o0
Proof. First of all it is obvious that if T'(x) < +oc then by (8.9)

lim L(||F(0)] + 2||u(t)|]) = oo = lim ||u(t)| = +o0
Jlim LOFO)]+2u(o)]) im ()]
where the implication follows from the fact that M — L(M) is an increasing function.
Let # € X. Set T(x) = sup{T > 0: Ju € C°([0,T), X) solution of (8.2) }. We are left

with the proof of (8.9), which is clearly true if T(x) = co. Now suppose that T'(x) < oo
and that (8.9) is false. This means that there exists a t € [0,7(x)) with

1 1
— — 2 =2L(|F 2|u(t — —2=T(z)—-t<T
T (E O+ 2[lu@®)]) < @ -t 27 (z) —t <Tny
for M = ||lu(t)||, where we recall Th; := 2L(2M+”1F(0)”)+2 in (8.3). Consider now v €
C9([0, Tw], X) the solution of

v(s) = T(s)u(t) + /Os T(s—s)F(v(s'))ds for all s € [0, Ty].

which exists by the previous Proposition 8.3. Then define

B u(s) for s € [0, 1]
w(s) := {v(s —t) for s € [t,t + Thyl.

We claim that w € C°([0,t + T)y], X) is a solution of (8.2). In [0,#] this is obvious since in
w = w in [0,¢] and u € C°([0, ], X) is a solution of (8.2). Let now s € (t,t -+ Tys]. We have

w(s) = v(s — t) = T(s — tyu(t) + /S_ T(s —t — &) F(u(s'))ds’
0
=T(s—1t) [T(t)x + /0 T(t— S/)F(U(S/))dS/:| + /0 T(s—t—s)F(v(s))ds

=T(s)x + /0 T(s— sl)F(u\(flJ))ds’ + /ts T(s—s)F(v(s' —t))ds
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Remark 8.8. Notice that if F'(0) = 0, then we can prove the improved estimate

2L([[FO) + 2[lu@®)]]) = T(x;_t

The proof is exactly the same of Theorem 8.7 using the altered definitions of Ty, Ty =
(2L(2M))~ 1.

(8.10)

Proposition 8.9. (1) T : X — (0,00] is lower semicontinuous;

(2) if xn — x in X and if T < T(x) the u, — u in C([0,T], X) with u, the solution of
(8.2) with initial datum x,.

Proof. Let u € C°([0,T(z)), X) the solution of (8.2) and consider T' < T(x). Set M =
2Hu||Loo([07T]7X) and let

Tn = sup{t € [0, T(zn)) : [|[unllpo(o,,x) < K} where K = 2M + [|[F(0)]|.

For n > 1 we have ||z,|| < M. Then u, € C°([0, Ty, X) with [Jup||re(j0,7,],x) < K by
Prop. 8.3. This implies 7, > Ths. For 0 < ¢t < min{T, 7,,} we have

t
u(t) — un(t) = T(t)(x — xn) + /O T(s = t)(F(u(s)) — F(un(s)))ds

and so

[u(®) = un (@) < [l = znll + L(K)/0 [u(s) = un(s)llds =
lu(t) = un (@)l < "Flz — 24| = JJu(t) = un(®)]] < "z — 2. (8.11)

So |lun(t)|| < |Ju®)| + “EOT |z — z,|| < M/2 + 2ET ||z — z,]] < M for n > 1 and
0 <t < min{T,7,}. This and continuity imply 7, > min{7,7,} and so 7, > T. Then
we have T'(x,) > T. This implies the lower semi—continuity in claim (1). Furthermore by
(8.11) we have also u, — u in C°([0,T], X). O

9 Nonlinear heat equation

We set X = Cp(R™,R) and consider a locally Lipschitz map g € C°(R,R). We set
F(u)(z) := g(u(x)). Recall that X is a closed subspace of L>*°(R",R). Consider, the

operator A with
D(A) :={f € Co(R™",R) : Af € Co(R",R)}.

We know from Sect. 5.2 that this operator is m—dissipative with corresponding semigroup
e!® f = K; % f. Furthermore the functional

F: Cy(R™,R) = Co(R™,R)
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is locally Lipschitz. We can then apply all the results of Section 8 to the equation.

u(t) = !> f + /t =B P (u(s))ds,
0

which is a formulation of the problem

{ut = Au+ F(u) for (t,z) € [0,00) x R"
u(0,z) = f(x)

Typical cases can be F(u) = Mu|P~tu for A € R\{0} and p > 1.

(9.1)

9.1 The blowup theorem by Hiroshi Fujita

We consider now the Cauchy problem for the heat equation

ug = Au+ |[ulP~lu with (t,2) € (0,T) x R?
u(0,x) = up(z) where ug € Co(R"™,R).

We first observe that by applying the theory in Section 8 we can prove the following
maximum principle property.

Lemma 9.1. Let u € C([0,T),Co(R™,R)) be the unique mazimal solution of
t
u(t) = e f + / =8 u(s) P u(s)ds (9.2)
0

and let f > 0. Then u(t,z) > 0 for all (t,x) € [0,T) x R™.

O
We now focus on positive solutions of
ug = Au+ |[ulP~lu with (t,2) € (0,T) x R? (9.3)
u(0,x) = ug(x) where ug € Co(R",R) '

Theorem 9.2. Letup € L'(R")NCo(R™) with ug > 0 and ug # 0 and suppose 1 < p < 1+2.
Suppose that u(t) € CY([0, Ty, ), Co(R™)) is a positive solution of

¢

u(t) = e“ug +/ =By (5)ds. (9.4)
0

Then T, < co.

Remark 9.3. The original paper by Fujita [3] deals with the case 1 <p < 1+ % The proof
we give is due to Weissler [7].
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Proof. We claim, and for the moment assume, the following inequality due to Weissler:

tﬁemuo(x) < C for a fixed C' = C(p) > 0, for any x € R", any up > 0 and any ¢ € [0,T,,).

(9.5)
Here, crucially, C' depends only on p.
Suppose we have T, = oo and assume (9.5).
By dominated convergence we have for any x € R"”
n o n |z —y|?
lim (47) 52 e Pug(z) = lim [ e At ug(y)dy = / uo(y)dy = |uollpr@ny. (9.6
t oo t, oo R Rn

In the particular case p < 1+ %, equivalent to z% — 5 >0, we see immediately that (9.6)
is incompatible with (9.5) since

. 1 . 1 _nn
lim t7-1e!Pug(z) = lim tr—1~ 2¢2e2

1 n n
== 1 p—1"2 4 2 ny — .
Jm Jm uo () t}rgot” (4m) 72 [|luol| L1 (mny = +00

In the case p =1+ % this argument does not provide a contradiction for all ug (although
this argument shows that if [lug||p1(rn) > (47)2C for C = C(1+ 2) then there is blow up).
We complete the argument below, but first we prove claim (9.5).

Proof of (9.5) We turn now to the proof of (9.5). We have u(t) > e!“ug(z) and

t t
u(t) 2/ =98P (5)ds 2/ =398 (5B 0P ds
0 0 (9.7)

t t
> / (e(tfs)AesAuO)pds — / (etAuO)pdS — t(etA’u,())p,
0 0

|z—

n 2
where we used, for du(y) := (4n7)"2e” T dy which gives a probability measure in R™,

_Jz—y|?

EA(f)P(x) = (4mT) "2 / e fPy)dy = . fP(y)du(y)
> ([ swantn) = ()t [ e 50a) = (2 0@)

which follows from Jensen’s inequality ([ fdp) < [¢o fdu for a convex function ¢ and a
probability measure .
By a substitution inside (9.7) and by repeating the same argument we get

t t +1
4P
u(t) 2/ e(t_s)Asp(eSAuo)pzds 2/ sp(emuo)p2ds = 7(emu0)p2.
0 0 p+1

This is the case k = 2 of the following inequality which for any k¥ € N with £ > 2 we will
obtain by induction:

_ k_q
t) > P2t (g )P GG
u( ) - (1 pk—2 2\pk—3 E—1\ k—¢° (9.8)
A+p)P A 4+p+p)P" > (A +p+ ...+ p1) I (pz_l)p
=2 pf]_
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Indeed, assuming (9.8) for k and repeating (9.7) we have

t t ——1 P
_ s p-1 _ k41
u(t) > / et S)Aup(s)ds > / e elt S)A(esAuO)p ds
0 0 Hk pt-1)\?
=2\ p—1
k_q _
t E—tp BT ptl
s p—1 k+1 tr-1 k+1
[7AN P _ tA P
> /0 . o1 1=t ds(e UO) pk+1-¢ k1 (6 uo)
p— P =
H£:2<p—1) He 2( 1) (p—1p+1)
PRl pktl
t p-1 k1 t p-l k+1
tA tA
= k11t (6 uO)p = pRri— e 0) .
Hk pt—1 p pkt+1_1 k-‘rl
(=2 \ p—-1 p—1

So (9.8) holds also for k + 1 and hence for any k € N with £ > 2. Then

L tA 1 k pz —1 pie LA s pz —1\r»r
k —
t (= 1pk < (u(t))l’ |_| <_1> = tr-le UuQ S |_| ( 1 >

4
> P‘llog(pjl) co 4 -1 ) ¢
= pT ) _ (XZeplos(Ti01 ) <« (X log(8') o 4o

This proves (9.5).

Proof of the case p =1+ % We return to the proof of Theorem 9.2 when p = 1 + %
If instead of looking at solutions in Cp(R™) we look at solutions in X := Co(R") N L'(R")
then our u € C°([0,T,,), Co(R™)) is also u € CY([0,Ty,), X). Indeed, if the lifespan in X
was shorter, then for some ¢ty < 7T}, we would have

lim ||u(t ny = 0o while su U(t)|| 7,00 Rny < 00.
£t [Ju(t )HLl(R ) Ogtgto [u(t)[| (Rm)

But this is impossible because from (9.4) for ¢ < t(, we get

)l L1 @y < lluollLrmny /Ilu M e gy 1 (3) | 1 (e ds

implies by the Gronwall inequality

)1z < lluala el EPosisto IO ™ < oo

and so

00 = lim [[u(t)l|z1(gny < ol el Posesto MO < oo,
0

which is absurd.
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Hence we conclude that tg = T, and we have u € C°([0,T,,), L*(R™)), and so u(t) €
LY(R™) for all t € [0,T,,). Since any such ¢ can be taken as an initial value at time t for
our solution, it follows that

72 (e"Pu(t))(z) < C for a fixed C >0, any € R® and 0 < 7 < Ty, — ¢
and for all t € [0,Ty,). In particular if T, = co

[w(t)]| 1 @ny < (47)2C for all ¢ > 0. (9.9)

2|2
Initially we assume that ug > kK,, for K,(x) := (47‘(’(1)_%6_%. Notice that K, = e**dp.
Then we have (a bit formally, but can be checked)

u(t) > ePuy > ket K, = ket® e85y = kel@ V2§, = kKot
Now we have
t t
Ju)l| L1 @ny > H/ e(t_S)Aup(S)dSHLl(Rn) = / d:v/ e 20P () (z)ds
0 n 0

t t
= / ds/ duet=)2uP (s)(x) = / ||e(t_8)Aup(s)||L1(Rn)ds (by commuting the order of integration)
0 n 0
t
> [ et g1 s
0

= [as [t [ avkiso ety = [ds [ aetur) [ ek

n

Rn

1
t t t
- /0 (€2 o) 1 gmyds > kP /0 (€2 K )Pds]| 1 ey = &P /0 1K Lo ey ds.

Now notice that since p =1+ 2/n

plz|? o _pla?

Kg(x) = (4775)_%106_T = (47T5)_%(p_1)p_%(47r5/p) Se 1 — (4,”5)—%(10—1)1)—

= (4mB)"'p~

wl3
TS
~—~
8
N—

SIE]
kST
—~
8
~

This implies that if by absurd we suppose Ty, = +00 then we have
(@)l L1 gn) = p‘?’f”/g (dm(a+ )7 | Kot [l 1 rmyds
t
= p_gk:p(47r)_1/ (a+s)"tds — +ooas t /oo
0
This contradicts (9.9).
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Suppose now we don’t have ug > kK,. Let us set v(t) = u(t + ) for some € > 0. The v(t)
a solution of (9.4) with initial value u(g). We have u(e) > e*“uq

N _n _lz—yl? _n _lz? lz4ul®> _ ly?
v(0) = ule) > e Tug = (4me) ™2 | e” = f(y)dy = (dme)"2e” = | e E e = f(y)dy

n

n |z

2 2
> (4me)"2e” 2 / e_%f(y)dy = kK

%
where we used the parallelogram formula
@+ yl? + |z — y|* = 22 + 2]y

But then v(t) blows up in finite time, and so u(t) does too. This completes the proof of
Theorem 9.2 also in the case p =1+ %
O

So far we have proved the blow up when 1 < p <1+ % for positive initial data with
ug € CY(R™)NLY(R™). But in fact the result holds for ug € C{(R") because of the maximum
principle.

Lemma 9.4. Suppose that 0 < vy < ug are in CJ(R™) and let u(t),v(t) € C°([0,T], CY(R™))
be corresponding solutions of (9.4). Then u(t) > v(t).

This follows by Lemma 8.6 and means that if ug € CJ(R™) but ug ¢ L'(R"), the
conclusions of Theorem (9.2) continue to hold, because we can find a 0 < vy < ug with
vp € C§(R™) N LY(R™) and vy non zero whose corresponding v(t) blows up. Then by the
maximum principle also u(t) blows up.

The coefficient p = 1 —i—% is critical. In fact we have the following global existence result
for small initial data.

Theorem 9.5. Let p > 1+ 2 and up € X := CJ(R") N LY(R"). There is an ey > 0 s.t. for
|uollx < €0 then equation (9.4) admits a global solution in C°(]0,00), CJ(R™) N L*(R™)).

In the proof of Theorem 9.5 we will use the Japanese bracket (t) :== /1 + t2.
Proof of Theorem 9.5. (9.2) can be solved locally because u — |u[P~1u is locally Lipschitz
in CJ(R™) N L*(R™). Now we prove that it is globally defined if €y > 0 is sufficiently small.
Suppose that the maximum interval of existence is [0,T") and let 7 € (0,7). Then set
all$D = 118) % wll oo o7, oo ()

Nl = el Lo (.71, -

We will prove that there is a fixed constant C and a function F(x1,22) = Y cqp|w1|%|22/|®
with @ + b > 1 (the sums are finite and with fixed constants ¢, > 0) s.t. we have

ull$) < Coeo + F(ul S, ufl ™)

., i (9.10)
ull$” < Coeo + F(Ju D, lul (7).
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Then, assume that we have Hqu) < 2Cphep and HquT) < 2Cep, for eg sufficiently small we
can assume |F'| < %60. So we can conclude that Hu||g)) < 2Cphep and HquT) < 2Chep imply

3
Jul| D) < 50060

5 3
Julli” < 5Coco.
Hence we conclude that for any ¢t < T we have (£)2 ||u(t)|p~ < 3¢ and [u(t)|p < 3eo.

But if T" < oo we have 3
=1 t o < —
o = lim [u(®)linz < G0

which is absurd.
So now we turn to the proof of (9.10). We can always assume by taking ¢y > 0 small
that T' > 1, so we can pick 7 large. For ¢t < 10 we have for j =1, 00

t
lull§™ < (10)% Juoll s + <10>2/0 lu() 7 u(s)llrds < (10)% fuol| s+ 10¢10)% ([luf) )P~ [u{”.
For t > 10 we have
t t
u(t) = ePuy +/ U= u(s) P u(s)ds = ePug + /2 et u(s) P u(s)ds
0 0

t—1 t
[P (s + [ ISP u(s)ds = T 1T 11T 41V

’ t—1

Now for each t € [10,7] we bound the L*™ norm of each term in the right hand side. We
have
e Pul|zee < (8) 2 €.

We have

I < / 12 1 poo () B2 () | rds < / (t— sy~ (5)~ 30~ Dids((Ju )P a7

ol

<C(t)E /0 ()72 s (] D)l < €0 ()P 7
where we used Z(p — 1) > 1 (the latter equivalent to p > 1+ 2). We have

t t
Vo S/ ||6“‘S>AIIL<>ML°°HU(S)II”oodSS/t 1<8>_5”d8(HUI|<§?)p < O(t) 72 ([ull D).
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Finally to bound 111 there are 2 cases, either p > 2 which is easier, or p < 2. If p > 2 we
bound

t—1 t—1
11| o~ S[ =92 a oo luls) 7o u(s) || 1 ds Sﬂ (t— )75 (s)"E PV ds([[u D) ull 7
3 3
-1 . : M3 ifn=1,
< C’(t>_2(p_1)/t (s — )" Fds(([ul D)~ Hlul{” < ) EED((u| Dy ulli” < log(2 + () if n = 2
bl lifn>2
< O3 ([l QP ully”.
Notice that we used the fact that for n = 1 we have p > 3 and for n = 2 we have p > 2.
Notice also that for p < 2 this argument does not give us the desired result.
If p < 2 (necessarily n > 3) we consider % = p — 1 and the corresponding % =2 —p, and
t—1 .
11| < /t 1792 [ Las poo [luls) I [|u(s) | Lads
t—1 2 _n p—1+L L =1 -2 G
S ﬂ (t—s) 2aflu(s)l[poo * [[uls)llfids :/t (t —s) 2 |uls)|| Lo luls)] 1 ds
2t_1 n n 2 n t_l n
= / (t = s)" 30D ()3 dslul Q) ([lulli”) " < (1) / (t = )75V ds |l D ([lu] 7))
t t
3 3

< ()% [|ul D (flu) 7P

A comment on this last computation. Since the previous computation could not possibly

yield the desired result, we have succeed by sacrificing some of the factor (t—s>_%, replacing

it with (¢ — s)fi(pfl), which however is good enough, but gaining in this way the fact that
_ p—1+% -

instead of Hu(s)HZioo1 we get the better term [[u(s)|[;« * = |lu(s)||L, which is exactly

n

what we need to get the factor (s)™2 ~ (£)72.
We also have

t
()]l < lle“uollr + / et 1y u(s) 2o u(s) | prds
t
Set / (5)" 2@ Vs (|u| DYl < eo + Clul Dy u) (™

from $(p —1) > 1.

O
9.2 Global well posedness
We consider now instead the Cauchy problem for the heat equation
ug = Au — |ulP~tu with (t,2) € (0,T) x R* and p > 1, (9.11)
u(0,2) = up(z) where ug € Co(R™, R). '
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We can apply the abstract theory on semilinear equations and conclude that for any
up € X there is a maximal T,, € (0,+occ] and a unique u(t) € C°([0,Ty,), Co(R",R))
satisfying

u(t) = e®ug — /Ot =8 u(s) P u(s)ds. (9.12)
For € > 0 let us consider g(|u|?) = (e + ]u|2)pT_1 and F.(u) = g(|u|*)u and the equation
u(t) = ePug — /Ot e (u(s))ds. (9.13)
Lemma 9.6. Let u(t) € C°([0,T),Co(R™)) be a solution of (9.13) and suppose that ug €
CI(R™). Then u(t) € C([0,T), CJ(R™)).

Proof. First of all, if ug € CJ*(R") then e'“uy € C([0,00), CF*(R™)) and furthermore
||etAu0”Wm,oo(Rn) < |luol[wm.co(rn). When we solve (9.13) in Cp(R"), we consider a fixed
point problem in

E = {ue %0, T, Co(R™) : [|u(t)]|os < 2ljuol|os for all £ € [0, Ths]}

for M = ||ug||oo and Thy = If we pick u € CY([0, Ths], CF*(R™)) and if we set

1
2L(2M) "
t
D, (1) = eug - / eI, (u(s))ds,
0

then ®,, € CO([0, Th], CF*(R™)) with, by the chain rule,

|a

¢
0D, (1) = L%y — Z Z ca[g/ =B FE) (4(5))0P1u(s)...0%u(s)ds
k=11B1]+...+|B1]=l|a]

for appropriate constants c,g = cap,,.... 5, Notice that the only element where the summa-
tion on the r.h.s. depends on a derivative of order |« is

t
—/ eU=)AE (u(s))0%u(s)ds.
0

For any A let L'(A) be such that for any u,v € Cy"(R") with [Juyme@mny < A and

[v[lpyrm.comny < A we have

|a|

S > Cap[FM ()0 u...000u — FP (0)00M0...05000] oo < L'(A)[|u — v|lyyrm.co (g)-
lal<m k=1 |B1|+...+ x| =lof

Set M’ = 2||ug||yym.co@n). Then for T" = consider

1
2L/ (2M7)

Ep = {u € C°[0,T'), C*(R™) : [[u(t) | ymoe gy < M for all t € [0, Tyy]}.
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It is then easy to see that u — &, preserves F,, and is a contraction therein. So there
is a fixed point and hence a solution u € C°([0,T"], C§*(R™)) of (9.13), which is obvi-
ously the solution in C°([0,T"], CJ(R™)). Let now consider the maximal solution u(t) €
C(]0,T),Co(R™)) and the maximal solution u(t) € C([0,T,), Cg*(R™)). Evidently T;, < T,
and we claim that T, = T.

Let us consider case m = 1. We have

t
%u(t) = e>0%ug — / eU=)A ! (u(s))0%u(s)ds.
0
from which we see that by Gronwall
t
107 u(t) oo < (105 uolloo +/ 1L () oo 02 u(5) loods = | 0%u(t) oo < 0%to]| e 172N Iocds
0

so that we cannot have ||0%u(t)|co it Ty < T Suppose now we have shown T,,—1 =

T. By a similar method we show that T, = T. Indeed we have for any |a| = m

xT

ocu(t) = cq(t) — /0 =B F (u(s))0%u(s)ds where

|a

ca(t) = — Z Z Caﬁ/o et F ) (4(5)) 05 u(s)...0% u(s)ds.

k=2 |B1|+...+|Bx|=lc

Since c4(t) depends on derivatives of order < m — 1 we have cq(t) € C°([0,T), Co(R™)).
Then we conclude T,,, = T by the same argument as for the case m = 1. O
The solutions of (9.13) satisfy the following.

Lemma 9.7. Let u € C([0,T),Co(R™,R)) be a solution of (9.13) and let ug > 0. Then
u(t,z) >0 for all (t,z) € [0,T) x R™.

Proof. First of all, by well posedness it is enough to consider just uyg € C°(R",R), as we
will see below. If ug € C2°(R"™,R) then by Lemma 9.6 we have u(t) € C([0,T"), Cy*(R™)) for
all m. Then wu(t) solves not only the integral equation (9.13), but by Corollary 7.4 (claim
(i)) solves also the differential equation:

u = Au — g€(|u|2)u.
Then u(t) € CL([0,7), Cy*(R™)) for all m.
Let us assume that ug € C°(R",R) with up > 0 exists s.t. there is a tp > 0 such that

0 > —p = inf eprn u(to, x). Let

t1 = inf{t € (0, o] : ian u(t,z) = —p}.
TER™
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Then, t; < ty and since u € C([0,to], Co(R™)) we have t; > 0. Let z; be a point of
minimum of u(ty,z). Then Vyu(t;,z1) = 0, the Hessian H(t1,21) of u is positive definite
and so Au(ty,x1) = traceH (t1,21) > 0. Then we have

1
0> dulty, z1) > —ge(|u(ts, z1)P)u(ts, x1) = (e + p) = p > 0.

This is absurd and so Lemma 9.7 holds if ug € C2°(R"™). In the general case let C°(R™,R) >
1, (0,2) "= up(0, 2) in Co(R™,R) and with u,(0,2) > 0. Then by well posedness we have
uy (t,z) "= u(t, z) in Co(R™, R) and so u(t,z) > 0. O
Lemma 9.8. Let u,v € C([0,T),Co(R™,R)) be solutions of (9.13) and let ug > vo for their
initial data. Then u(t,x) > v(t,x) for all (t,x) € [0,T) x R"™.

Proof. Again it is enough to consider just ug, v € C°(R™,R). Let us assume that ug, vy €
C®(R™ R) with ug > vy exist s.t. there is a ¢y > 0 such that 0 > —pu = inf crn w(to, x)
where w(t, z) := u(t,z) — v(t,x). Let

t1 = inf{t € (0, 7o) : ian w(t,x) = —p}.
rzeR?

Then, 0 < t; < tg like before. Let x1 be a point of minimum of w(t1, ). Then Aw(ty,x1) >
0. Notice that we have w(t1,z1) = —p, so in particular u(t;,z1) < v(t;,x1) and so

ge(Jv(tr, z1)[P)v(t1, v1) > ge(Ju(ty, 1)|?)u(t1, 71) by the fact that t — g (t?)t = (e + tz)%t
is strictly increasing. So we have

0> dpw(ty, z1) > —ge(|ulty, z1)|*)ulty, £1) + ge(Ju(te, £1)[*)v(ty, 21) > 0.

This is absurd and so Lemma 9.8 holds if ug,vg € C°(R™). The general case follows by
density. O

Corollary 9.9. Let u € C([0,T,,), Co(R™,R)) be the mazimal solution of (9.13). Then
Ty, = 00.

Proof. 1f Ty, < oo then limy ~r,,  [|u(t)||Le = +o00. In the case ugp > 0 we have we have for
all t € [0,T,,)

p—1

t
0 < u(t) = e'®ug - / I8 e+ [uld (5)]?)"F uls)ds < ePup < Jug = < oo,
0

then T,,, = co. Suppose now that ug does not have constant sign. Then we have —|ug| <
uo < Jug| and let v(t) € C([0,00),Co(R™ R)) be the solution with v(0) = |up|. Then
—vu(t) < u(t) < w(t) and this implies Ty, = oo.

O
Lemma 9.10. Let u € C([0,T,,), Co(R™, R)) the mazimal solution of (9.12) and let u(®) €

C([0,00), Co(R™, R)) be the solutions of (9.13). Then for any 0 < T < Ty, we have u'® =30
u in C([0,T], Co(R™, R)).

99



Proof. We have
W) = uft) = = [ [(fe )T — WO
- [ [ ) o)t
Now we have ||u(9)(s)]lso < ||uolloe by the discussion in Corollary 9.9. Using this fact we

have also for e small

e+ 1uD(s)) 7 =[O )P o < sup e+ [t2) 7 = [t < Cpugpue™ =Y.
[t]<]|uo]| oo

Indeed if we set ¢(s) = (e+$)* — s* for s € [0, M] and o > 0 we have ¢/(s) = a(e+s)"1—

a—1

as® * and this has constant sign, so that ¢(s) < max(p(0),p(M)). Now ¢(0) = €* and
O(M) = MY[(1+¢/M + 8)* — 1] = M®[e/M + O(¢?)].

Then for ¢t € [0,7]
t
€ min( 252 €
1 () = w()lloo < TClpug o™ 7V luolloo + L(M)/O 1 (s) = u(s) oo,
with M = max{|[uo||oc, Supsejo,77 [|(8)[|oc}. Then by Gronwall for ¢ € [0, T

6D (@) — w(t)|oo < TCHuO”ooemin(%’l)||u0HooeTL(M) = 0 uniformly in [0, T7.
O

Lemma 9.11. Let u,v € C([0,T%), Co(R™,R)) be solutions of (9.12) with ug > vo. Then
u(t,x) > v(t,z) for all (t,z) € [0,T) x R™.

Proof. 1t is enough to show this for all (t,z) € [0,7] x R™ with 0 < T < Ts. But we know
u((t,z) > v (t,z) for all (t,x) € [0,00) x R™. The desired result follows taking e \, 0.

Corollary 9.12. Let u € C([0,Ty,), Co(R™,R)) be the maximal solution of (9.12). Then
Ty, = 00.

Proof. 1t follows from Lemma 9.11 the same way Corollary 9.9 follows from Lemma 9.8.
O
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