COGNOME	NOME
N. Matricola	Anno di corso
ESERCIZIO N. 1. Per (la funzione $f : \mathbb{R} \to \mathbb{R}$, de	$(a,b) \in \mathbb{R}^2$ e per $[x] \in \mathbb{Z}$ con $[x] \leq x < [x] + 1$ la funzione parte intera, si consideri finita da
j	$f(x) = \begin{cases} e^{-\left[\frac{1}{x}\right]} + \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right) & \text{se } x > 0, \\ 2x + a \int_{x}^{0} \sin\left(\frac{1}{t}\right) dt + b & \sinh(x) & \text{se } x \le 0. \end{cases}$
Si spieghino le risposte	
(i) Si determinino i valori	di (a, b) t.c. f e' continua in 0.
(ii) Per ogni (a,b) calcola dove sono definite.	re $f'(x)$ nei punti dove e' definita, ed altrimenti calcolare $f_d'(x), f_s'(x)$ nei punti
(iii) Si determinino i valo	ri di (a,b) t.c. $f'(0)$ esiste, calcolandone il valore esatto .

SERCIZIO N. 2. Si determini le soluzioni $z \in \mathbb{C}$ dell'equazione $z^6 - z ^4 + z ^2 = 1$.			

COCNOME	_	NΤ	0	N/IT
$\mathbf{COGNOME}$	е	IN	V.	IVLE

_ N. Matricola _

ESERCIZIO N. 3. Si consideri

$$f(x) = \begin{cases} -\frac{2}{3^{\frac{3}{2}}} \int_0^x \frac{3+t}{(1+t)(2+t)} dt & \text{se } x > 0, \\ \sqrt{1 - \left(x - \frac{1}{2}\right)^2} - \frac{\sqrt{3}}{2} & \text{se } -\frac{1}{2} \le x \le 0. \end{cases}$$

Si determinino (spiegando come si ottengono le risposte):

- $\bullet \lim_{x \to +\infty} f(x);$
- f'(x);

- ullet si determinino massimi e minimi locali ed assoluti, dove f(x) cresce e dove decresce;
- si calcoli f(1);

per $g:f(\mathbb{R}_+)\to\mathbb{R}_+$ l'inversa di $f|_{\mathbb{R}_+}$ si scriva l'equazione della retta tangente a y=g(x) nel punto ((f(1),1).

ESERCIZIO N. 4. Si ponga $f(x) = x^3 \sin(x^2)$

(i) Calcolare i polinomi di Taylor in 0 di $\sin(x)$.	
(ii) Calcolare i polinomi di Taylor in 0 di $f(x)$.	
(12)	
(iv) Calcolare $f^{(13)}(0)$.	

COGNOME	NOME
N. Matricola	Anno di corso
ESERCIZIO N. 1. Si o	consideri per $(a,b) \in \mathbb{R}^2$ la funzione $f: \mathbb{R} \to \mathbb{R}$, definita da $f(x) = \begin{cases} e^{-\frac{1}{x^2}} + x \left(1 - \tanh\left(\frac{1}{x}\right)\right) & \text{se } x > 0, \\ x + a \ x(\cos(x) - 1) + b \sin(x) & \text{se } x \le 0. \end{cases}$
	ri di (a,b) t.c. $f \in C^0(\mathbb{R})$.
(ii) Si determinino i valo	ori di (a,b) t.c. $f\in C^1(\mathbb{R}).$
(iii) Stabilire, giustifican	do la risposta, qual'e' il massimo $n\in\mathbb{N}$ t.c. esistono (a,b) t.c. $f\in C^n(\mathbb{R}).$

	 $: Im(z^2) > Re(z$	

ESERCIZIO N. 3. Si consideri

$$f(x) = \begin{cases} \int_0^x \frac{2}{(1+t)^2(2+t)} dt & \text{se } x > 0, \\ x^2 + x & \text{se } x \le 0. \end{cases}$$

Si determinino (spiegando come si ottengono le risposte):

• $\lim_{x \to +\infty} f(x)$.

• si calcoli f'(x)

 \bullet si determinino massimi e minimi locali ed assoluti, dove f(x) cresce e dove decresce

- si determini $f(\mathbb{R}_+)$ e per $g:f(\mathbb{R}_+)\to\mathbb{R}_+$ l'inversa di $f|_{\mathbb{R}_+}$ si calcoli g'(f(1)).
- \bullet si determini il numero delle soluzioni $x \in \mathbb{R}$ dell'equazione f(x) = k, al variare di $k \in \mathbb{R}$

(i) Calcolare i polinomi di Taylor in 0 di $\frac{1}{1-x}$.
(ii) Calcolare i polinomi di Taylor in 0 di $\frac{1}{1-x^3}$.
(iii) Calcolare i polinomi di Taylor in 0 di $f(x)$.
(iv) Calcolare $f^{(13)}(0)$.

COGNOME	NOME
N. Matricola	Anno di corso
ESERCIZIO N. 1. Per (a, b) la funzione $f : \mathbb{R} \to \mathbb{R}$, defin	$b) \in {\rm I\!R}^2$ e per $[x] \in {\rm Z\!\!\!\!Z}$ con $[x] \le x < [x] + 1$ la funzione parte intera, si consideri nita da
f($x) = \begin{cases} e^{-\left[\frac{1}{x}\right]} + \frac{\pi}{2} - \arctan\left(\frac{1}{x^3}\right) & \text{se } x > 0, \\ 2x + a & \sinh(x) + b \int_x^0 \sin\left(\frac{1}{t}\right) dt & \text{se } x \le 0. \end{cases}$
Si giustifichino le risposte	
(i) Si determinino i valori d	i (a,b) t.c. f e' continua in 0.
dove sono definite.	e $f'(x)$ nei punti dove e' definita, ed altrimenti calcolare $f'_d(x), f'_s(x)$ nei punti di (a,b) t.c. $f'(0)$ esiste, calcolandone il valore esatto .

RCIZIO N. 2. Si determini		

ററ	$\mathbf{C}\mathbf{N}$	\mathbf{OME}	\mathbf{a}	N	$\mathbf{\Omega}$	ALE:
\sim \sim	CIL		C	ıν	\mathbf{O}^{T}	VII.

_ N. Matricola _

ESERCIZIO N. 3. Si consideri

$$f(x) = \begin{cases} -\frac{2}{3^{\frac{3}{2}}} \int_0^x \frac{3+t}{(1+t)(2+t)} dt & \text{se } x > 0, \\ \sqrt{1 - \left(x - \frac{1}{2}\right)^2 - \frac{\sqrt{3}}{2}} & \text{se } -\frac{1}{2} \le x \le 0. \end{cases}$$

Si determinino (spiegando come si ottengono le risposte):

- $\bullet \lim_{x \to +\infty} f(x);$
- Si calcolino $f'_s(x)$, $f'_d(x)$ e f'(x) laddove sono definite;
- ullet si determinino massimi e minimi locali ed assoluti, dove f(x) cresce e dove decresce;
- si calcoli f(2);

per $g:f(\mathbb{R}_+)\to\mathbb{R}_+$ l'inversa di $f|_{\mathbb{R}_+}$ si scriva l'equazione della retta tangente a y=g(x) nel punto ((f(2),2).

ESERCIZIO N. 4. Si ponga $f(x) = x^2 \cos(x^2)$

(i) Calcolare i polinomi di Taylor in 0 di $\cos(x)$.	
(i) Calcolate i politionii di Tayloi ili o di $\cos(x)$.	
(u) G 1 1 1 1 1 T 1 1 0 1 1 (v)	
(ii) Calcolare i polinomi di Taylor in 0 di $f(x)$.	
(10)	
(iv) Calcolare $f^{(14)}(0)$.	

COGNOME	NOME
N. Matricola	Anno di corso
ESERCIZIO N. 1. Si c	onsideri per $(a,b) \in \mathbb{R}^2$ la funzione $f: \mathbb{R} \to \mathbb{R}$, definita da
	$f(x) = \begin{cases} e^{-\frac{1}{x^2}} + x \left(1 - \tanh\left(\frac{1}{x^3}\right) \right) & \text{se } x > 0, \\ x + a\sin(x) + b \ x(\cos(x) - 1) & \text{se } x \le 0. \end{cases}$
Si giustifichino le risposte	
(i) Si determinino i valor	i di (a,b) t.c. $f \in C^0(\mathbb{R})$.
(ii) Si determinino i valo	ri di (a,b) t.c. $f \in C^1(\mathbb{R})$.
(iii) Stabilire, giustifican	do la risposta, qual'e' il massimo $n \in \mathbb{N}$ t.c. esistono (a,b) t.c. $f \in C^n(\mathbb{R})$.

SERCIZIO N. 2	2. Si determini l'insie	me $E = \{z \in \mathbb{C} : Ir$	$n(z^2) > Re(z^2)\}$	$\bigcap \left\{ z \in \mathbb{C} : \frac{ 2z - i }{ 2\overline{z} + 1 } \le \right\}$	≦1}.

COGNOME	_	N	Ω	Æ
COGNOME	е	TJ	\mathbf{O}	v L \mathbf{L}_i

_ N. Matricola _

ESERCIZIO N. 3. Si consideri

$$f(x) = \begin{cases} \int_0^x \frac{1}{(1+t)^2(2+t)} dt & \text{se } x > 0, \\ x^2 + x & \text{se } x \le 0. \end{cases}$$

Si determinino (spiegando come si ottengono le risposte):

• $\lim_{x \to +\infty} f(x)$.

• si calcoli f'(x)

- \bullet si determinino massimi e minimi locali ed assoluti, dove f(x) cresce e dove decresce
- si determini $f(\mathbb{R}_+)$ e per $g:f(\mathbb{R}_+)\to\mathbb{R}_+$ l'inversa di $f|_{\mathbb{R}_+}$ si calcoli g'(f(1)).
- ullet si determini il numero delle soluzioni $x\in\mathbb{R}$ dell'equazione f(x)=k, al variare di $k\in\mathbb{R}$

(i) Calcolare i polinomi di Taylor in 0 di $\frac{1}{1-x}$.
(ii) Calcalara i polinomi di Taylor in 0 di 1
(ii) Calcolare i polinomi di Taylor in 0 di $\frac{1}{1-x^2}$.
(iii) Calcolare i polinomi di Taylor in 0 di $f(x)$.
(iv) Calcolare $f^{(20)}(0)$.
(vv) Calcolle j (v).