and Jacobians of σ-harmonic mappings

Giovanni Alessandrini

Università degli Studi di Trieste
Geometric Properties for Parabolic and Elliptic PDE's 4th Italian-Japanese Workshop

Palinuro May 2015, 25-29

Introduction

Since the '80s, a dominant theme in Inverse Problems has been:
To image the interior of an object from measurements taken in its exterior.
Consider the (direct) elliptic Dirichlet problem of finding a weak solution u to

where Ω is a bounded connected open set in $\mathbb{R}^{n}, n \geq 2$, and $\sigma=\left\{\sigma_{i j}(x)\right\}$ satisfies uniform ellipticity

Introduction

Since the '80s, a dominant theme in Inverse Problems has been:
To image the interior of an object from measurements taken in its exterior.
Consider the (direct) elliptic Dirichlet problem of finding a weak solution u to

$$
\begin{cases}\operatorname{div}(\sigma \nabla u)=0 & \text { in } \quad \Omega \\ u=\varphi & \text { on } \quad \partial \Omega\end{cases}
$$

where Ω is a bounded connected open set in $\mathbb{R}^{n}, n \geq 2$, and $\sigma=\left\{\sigma_{i j}(x)\right\}$ satisfies uniform ellipticity

$$
\begin{array}{cl}
\sigma(x) \xi \cdot \xi & \geq K^{-1}|\xi|^{2} \quad, \quad \text { for every } x, \xi \in \mathbb{R}^{2}, \\
\sigma^{-1}(x) \xi \cdot \xi & \geq K^{-1}|\xi|^{2}, \quad \text { for every } x, \xi \in \mathbb{R}^{2}
\end{array}
$$

Introduction

Introduction The problem

Qualitative

The Calderón's inverse problem (EIT) is: Find σ, given all pairs of Cauchy data

$$
\left(\left.u\right|_{\partial \Omega},\left.\sigma \nabla u \cdot \nu\right|_{\partial \Omega}\right) .
$$

. Main problems:

$$
\begin{aligned}
& \text { - If } \sigma=\left\{\sigma_{i j}(x)\right\} \text {, nonuniqueness (Tartar '84). } \\
& \text { - If } \sigma=\left\{\gamma(x) \delta_{i j}\right\} \text {, instability (Mandache '01). }
\end{aligned}
$$

Introduction

The Calderón's inverse problem (EIT) is: Find σ, given all pairs of Cauchy data

$$
\left(\left.u\right|_{\partial \Omega},\left.\sigma \nabla u \cdot \nu\right|_{\partial \Omega}\right) .
$$

. Main problems:

- If $\sigma=\left\{\sigma_{i j}(x)\right\}$, nonuniqueness (Tartar '84).
- If $\sigma=\left\{\gamma(x) \delta_{i j}\right\}$, instability (Mandache '01).

Introduction

The Calderón's inverse problem (EIT) is:
Find σ, given all pairs of Cauchy data

$$
\left(\left.u\right|_{\partial \Omega},\left.\sigma \nabla u \cdot \nu\right|_{\partial \Omega}\right) .
$$

. Main problems:

- If $\sigma=\left\{\sigma_{i j}(x)\right\}$, nonuniqueness (Tartar '84).
- If $\sigma=\left\{\gamma(x) \delta_{i j}\right\}$, instability (Mandache '01).

Introduction

Coupled physics: to combine electrical measurements with other physical modalities.

- EIT + Magnetic Resonance (MREIT): interior values of $|\sigma \nabla u|$ (Kim, Kwon, Seo, Yoon '02).
- EIT + Ultrasonic waves (UMEIT): by focusing ultrasonic waves on a tiny spot near $x \in \Omega$ and by applying various boundary potentials φ_{i} it is possible to detect the local energies $H_{i j}=\sigma \nabla u_{i} \cdot \nabla u_{j}(x)$ (Ammari et al. '08).

Introduction

Coupled physics: to combine electrical measurements with other physical modalities.

- EIT + Magnetic Resonance (MREIT): interior values of $|\sigma \nabla u|$ (Kim, Kwon, Seo, Yoon '02).
- EIT + Ultrasonic waves (UMEIT): by focusing ultrasonic waves on a tiny spot near $x \in \Omega$ and by applying various boundary potentials φ_{i} it is possible to detect the local energies $H_{i j}=\sigma \nabla u_{i} \cdot \nabla u_{j}(x)$ (Ammari et al. '08)

Introduction

Coupled physics: to combine electrical measurements with other physical modalities.

- EIT + Magnetic Resonance (MREIT): interior values of $|\sigma \nabla u|$ (Kim, Kwon, Seo, Yoon '02).
- EIT + Ultrasonic waves (UMEIT): by focusing ultrasonic waves on a tiny spot near $x \in \Omega$ and by applying various boundary potentials φ_{i} it is possible to detect the local energies $H_{i j}=\sigma \nabla u_{i} \cdot \nabla u_{j}(x)$ (Ammari et al. '08).

The problem

Monard and Bal '12, '13: reconstruction of σ from $\left\{H_{i j}\right\}$, provided $U=\left(u_{1}, \ldots, u_{n}\right)$ is a σ-harmonic mapping (i.e.: a n-tuple of solutions) such that

$$
\operatorname{det} D U>0, \text { in } \Omega .
$$

Question:
Can we find $\phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$, independent of σ, such that det $D U>0$ everywhere?

The problem

Monard and Bal '12, '13: reconstruction of σ from $\left\{H_{i j}\right\}$, provided $U=\left(u_{1}, \ldots, u_{n}\right)$ is a σ-harmonic mapping (i.e.: a n-tuple of solutions) such that

$$
\operatorname{det} D U>0, \text { in } \Omega
$$

Question:
Can we find $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$,

The problem

Question:
Can we find $\Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$, independent of σ, such that $\operatorname{det} D U>0$ everywhere?

$n=2$. The Classical Results

Let $\Omega \subset \mathbb{R}^{2}$ be a Jordan domain and let

$$
\Phi=\left(\varphi_{1}, \varphi_{2}\right): \partial \Omega \rightarrow \partial G,
$$

be a homeomorphism. Consider

$$
\begin{cases}\Delta U=0, & \text { in } \quad \Omega, \\ U=\Phi, & \text { on } \partial \Omega .\end{cases}
$$

Theorem (H. Kneser '26) If G is convex, then U is a homeomorphism of $\bar{\Omega}$ onto \bar{G}.
Posed as a problem by Radó ('26), rediscovered by Choquet ('45).

Theorem (H. Lewy '36)
If $U: \Omega \rightarrow \mathbb{R}^{2}$ is a harmonic homeomorphism, then it is a diffeomorphism.

$n=2$. The Classical Results

Let $\Omega \subset \mathbb{R}^{2}$ be a Jordan domain and let

$$
\Phi=\left(\varphi_{1}, \varphi_{2}\right): \partial \Omega \rightarrow \partial G,
$$

be a homeomorphism. Consider

$$
\begin{cases}\Delta U=0, & \text { in } \quad \Omega, \\ U=\Phi, & \text { on } \partial \Omega .\end{cases}
$$

Theorem (H. Kneser '26)
If G is convex, then U is a homeomorphism of $\bar{\Omega}$ onto \bar{G}.
Posed as a problem by Radó ('26), rediscovered by Choquet ('45).
Theorem (H. Lewy '36)
 diffeomorphism.

$n=2$. The Classical Results

Let $\Omega \subset \mathbb{R}^{2}$ be a Jordan domain and let

$$
\Phi=\left(\varphi_{1}, \varphi_{2}\right): \partial \Omega \rightarrow \partial G,
$$

be a homeomorphism. Consider

$$
\begin{cases}\Delta U=0, & \text { in } \quad \Omega, \\ U=\Phi, & \text { on } \partial \Omega .\end{cases}
$$

Theorem (H. Kneser '26) If G is convex, then U is a homeomorphism of $\bar{\Omega}$ onto \bar{G}.
Posed as a problem by Radó ('26), rediscovered by Choquet ('45).
Theorem (H. Lewy '36)
If $U: \Omega \rightarrow \mathbb{R}^{2}$ is a harmonic homeomorphism, then it is a diffeomorphism.

$n=2$. Variable coefficients.

$$
\begin{cases}\operatorname{div}(\sigma \nabla U)=0, & \text { in } \quad \Omega, \\ U=\Phi, & \text { on } \quad \partial \Omega .\end{cases}
$$

Let

$$
\Phi: \partial \Omega \rightarrow \partial \mathcal{G},
$$

be a homeomorphism, and let G be convex.
Theorem (Bauman-Marini-Nesi '01)
Assume Ω, G be $C^{1, \alpha}$-smooth, $\sigma \in C^{\alpha}$ and Φ a $C^{1, \alpha}$ diffeomorphism.

$$
\begin{cases}\operatorname{div}(\sigma \nabla U)=0, & \text { in } \quad \Omega, \\ U=\Phi, & \text { on } \partial \Omega .\end{cases}
$$

then $U: \bar{\Omega} \rightarrow \bar{G}$ is a diffeomorphism.

Jacobians

Giovanni Alessandrini

$n=2$. Variable, nonsmooth, coefficients.

Theorem (A.-Nesi '01)
If we only assume $\sigma \in L^{\infty}$, then U is a homeomorphism of $\bar{\Omega}$ onto \bar{G}.

Theorem (A., Nesi '01)
If $U: \Omega \rightarrow \mathbb{R}^{2}$ is a σ-harmonic homeomorphism, then
$\operatorname{det} D U=0$ a.e.
In fact, | det DU| is a Muckenhoupt weight (A., Nesi '09)

$n=2$. Variable, nonsmooth, coefficients.

Theorem (A.-Nesi '01)
If we only assume $\sigma \in L^{\infty}$, then U is a homeomorphism of $\bar{\Omega}$ onto G.

Theorem (A., Nesi '01)
If $U: \Omega \rightarrow \mathbb{R}^{2}$ is a σ-harmonic homeomorphism, then

$$
|\operatorname{det} D U|>0 \text { a.e. . }
$$

In fact, | det DU| is a Muckenhoupt weight (A., Nesi '09) .

Meyers ('63). Fix $\alpha>0$

$$
\sigma(x)=\left(\begin{array}{cc}
\frac{\alpha^{-1} x_{1}^{2}+\alpha x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}} & \frac{\left(\alpha^{-1}-\alpha\right) x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}} \\
\frac{\left(\alpha^{-1}-\alpha\right) x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}} & \frac{\alpha x_{1}^{2}+\alpha^{-1} x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}
\end{array}\right) .
$$

σ has eigenvalues α and α^{-1}. Therefore σ satisfies uniform ellipticity. σ is discontinuous at $(0,0)$ (and only at $(0,0)$) when $\alpha \neq 1$. Denote

$$
\begin{aligned}
& u_{1}(x)=|x|^{\alpha-1} x_{1}, \\
& u_{2}(x)=|x|^{\alpha-1} x_{2} .
\end{aligned}
$$

A direct calculation shows that $U=\left(u_{1}, u_{2}\right)$ is σ-harmonic. We compute

$$
\operatorname{det} D U=\alpha|x|^{2(\alpha-1)} .
$$

Therefore det $D U$ vanishes at $(0,0)$ when $\alpha>1$, when $\alpha \in(0,1)$, it diverges as $z \rightarrow 0$.

n=2. Proof sketch

Definition

A function $\varphi \in C(\partial \Omega ; \mathbb{R})$ is called unimodal if $\partial \Omega$ can be split into two arcs Γ_{1}, Γ_{2} such that φ is non-decreasing on Γ_{1} and non-increasing on Γ_{2}.

$$
\begin{cases}\operatorname{div}(\sigma \nabla u)=0 & \text { in } \quad \Omega \\ u=\varphi & \text { on } \quad \partial \Omega\end{cases}
$$

Lemma
If φ is unimodal, then the level lines of u are formed by
simple arcs.
Hence (in the smooth case) $|\nabla u|>0$ everywhere in Ω.

n=2. Proof sketch

Definition

A function $\varphi \in C(\partial \Omega ; \mathbb{R})$ is called unimodal if $\partial \Omega$ can be split into two arcs Γ_{1}, Γ_{2} such that φ is non-decreasing on Γ_{1} and non-increasing on Γ_{2}.

$$
\begin{cases}\operatorname{div}(\sigma \nabla u)=0 & \text { in } \quad \Omega, \\ u=\varphi & \text { on } \quad \partial \Omega,\end{cases}
$$

Lemma
If φ is unimodal, then the level lines of u are formed by simple arcs.
Hence (in the smooth case) $|\nabla u|>0$ everywhere in Ω.

n=2. Proof sketch

Lemma

If

$$
\Phi: \partial \Omega \rightarrow \partial G, G \text { convex },
$$

is a homeomorphism, then $\varphi=\Phi \cdot \xi$ is unimodal for all ξ, $|\xi|=1$.
Hence

$$
D U^{\top} D U \xi \cdot \xi=|D U \xi|^{2}=|\nabla(U \cdot \xi)|^{2}>0
$$

everywhere and for all $\xi,|\xi|=1$. Therefore, $D U$ is nonsingular everywhere.

$\mathrm{n}=2$. Quantitative assumptions

Let $\omega:[0, \infty) \rightarrow[0, \infty)$ be a continuous strictly increasing function such that $\omega(0)=0$.

Definition

Given $m, M \in \mathbb{R}, m<M$, Given $\varphi \in C^{1, \alpha}(\partial \Omega ; \mathbb{R})$ we shall say that it is quantitatively unimodal, if considering the arclength parametrization of $\partial \Omega, x=x(s)$,
$0 \leq s \leq T=|\partial \Omega|$, the periodic extension of the function $[0, T] \ni s \rightarrow \varphi(s) \equiv \varphi(x(s))$ is such that there exists numbers $t_{1} \leq t_{2}<t_{3} \leq t_{4}<t_{1}+T$ such that

$$
\varphi(s)=m, s \in\left[t_{1}, t_{2}\right], \varphi(s)=M, s \in\left[t_{3}, t_{4}\right],
$$

"character of unimodality" of φ

$\mathrm{n}=2$. Quantitative assumptions

Let $\omega:[0, \infty) \rightarrow[0, \infty)$ be a continuous strictly increasing function such that $\omega(0)=0$.

Definition

Given $m, M \in \mathbb{R}, m<M$, Given $\varphi \in C^{1, \alpha}(\partial \Omega ; \mathbb{R})$ we shall say that it is quantitatively unimodal, if considering the arclength parametrization of $\partial \Omega, x=x(s)$,
$0 \leq s \leq T=|\partial \Omega|$, the periodic extension of the function $[0, T] \ni s \rightarrow \varphi(s) \equiv \varphi(x(s))$ is such that there exists numbers $t_{1} \leq t_{2}<t_{3} \leq t_{4}<t_{1}+T$ such that

$$
\begin{aligned}
& \varphi(s)=m, s \in\left[t_{1}, t_{2}\right], \varphi(s)=M, s \in\left[t_{3}, t_{4}\right], \\
& \varphi^{\prime}(s) \geq \min \left\{\omega\left(s-t_{2}\right), \omega\left(t_{3}-s\right)\right\}, s \in\left[t_{2}, t_{3}\right],
\end{aligned}
$$

We will refer to the quadruple $\{T, m, M, \omega\}$ as to the "character of unimodality" of φ.

$\mathrm{n}=2$. Quantitative assumptions

Let $\omega:[0, \infty) \rightarrow[0, \infty)$ be a continuous strictly increasing function such that $\omega(0)=0$.

Definition

Given $m, M \in \mathbb{R}, m<M$, Given $\varphi \in C^{1, \alpha}(\partial \Omega ; \mathbb{R})$ we shall say that it is quantitatively unimodal, if considering the arclength parametrization of $\partial \Omega, x=x(s)$,
$0 \leq s \leq T=|\partial \Omega|$, the periodic extension of the function $[0, T] \ni s \rightarrow \varphi(s) \equiv \varphi(x(s))$ is such that there exists numbers $t_{1} \leq t_{2}<t_{3} \leq t_{4}<t_{1}+T$ such that

$$
\begin{aligned}
& \varphi(s)=m, s \in\left[t_{1}, t_{2}\right], \varphi(s)=M, s \in\left[t_{3}, t_{4}\right], \\
& \varphi^{\prime}(s) \geq \min \left\{\omega\left(s-t_{2}\right), \omega\left(t_{3}-s\right)\right\}, s \in\left[t_{2}, t_{3}\right], \\
& -\varphi^{\prime}(s) \geq \min \left\{\omega\left(s-t_{4}\right), \omega\left(t_{1}+T-s\right)\right\}, s \in\left[t_{4}, t_{1}+T\right] .
\end{aligned}
$$

We will refer to the quadruple $\{T, m, M, \omega\}$ as to the
"character of unimodality" of φ.

$\mathrm{n}=2$. Quantitative assumptions

Let $\omega:[0, \infty) \rightarrow[0, \infty)$ be a continuous strictly increasing function such that $\omega(0)=0$.

Definition

Given $m, M \in \mathbb{R}, m<M$, Given $\varphi \in C^{1, \alpha}(\partial \Omega ; \mathbb{R})$ we shall say that it is quantitatively unimodal, if considering the arclength parametrization of $\partial \Omega, x=x(s)$,
$0 \leq s \leq T=|\partial \Omega|$, the periodic extension of the function $[0, T] \ni s \rightarrow \varphi(s) \equiv \varphi(x(s))$ is such that there exists numbers $t_{1} \leq t_{2}<t_{3} \leq t_{4}<t_{1}+T$ such that

$$
\begin{aligned}
& \varphi(s)=m, s \in\left[t_{1}, t_{2}\right], \varphi(s)=M, s \in\left[t_{3}, t_{4}\right], \\
& \varphi^{\prime}(s) \geq \min \left\{\omega\left(s-t_{2}\right), \omega\left(t_{3}-s\right)\right\}, s \in\left[t_{2}, t_{3}\right], \\
& -\varphi^{\prime}(s) \geq \min \left\{\omega\left(s-t_{4}\right), \omega\left(t_{1}+T-s\right)\right\}, s \in\left[t_{4}, t_{1}+T\right] .
\end{aligned}
$$

We will refer to the quadruple $\{T, m, M, \omega\}$ as to the "character of unimodality" of φ.

$\mathrm{n}=2$. Quantitative assumptions

Let

$$
\Phi: \partial \Omega \rightarrow \mathbb{R}^{2}
$$

be a $C^{1, \alpha}$ one-to-one mapping onto ∂G.
Definition
We say that Φ is quantitatively convex if for every $\xi \in \mathbb{R}^{2}$, $|\xi|=1$ the function

$$
\varphi=\Phi \cdot \xi
$$

is quantitatively unimodal with character of $\left\{T, m_{\xi}, M_{\xi}, \omega\right\}$ with m_{ξ}, M_{ξ} such that $M_{\xi}-m_{\xi} \geq D$, for a given $D>0$. We refer to the triple $\{T, D, \omega\}$ as to the "character of convexity" of Φ.
If ∂G is C^{2} with positive curvature, then quantitatively convex mappings $\Phi: \partial \Omega \rightarrow \partial G$ are easily constructed.

$\mathrm{n}=2$. Quantitative assumptions

Let

$$
\Phi: \partial \Omega \rightarrow \mathbb{R}^{2}
$$

be a $C^{1, \alpha}$ one-to-one mapping onto ∂G.
Definition
We say that Φ is quantitatively convex if for every $\xi \in \mathbb{R}^{2}$, $|\xi|=1$ the function

$$
\varphi=\Phi \cdot \xi
$$

is quantitatively unimodal with character of $\left\{T, m_{\xi}, M_{\xi}, \omega\right\}$ with m_{ξ}, M_{ξ} such that $M_{\xi}-m_{\xi} \geq D$, for a given $D>0$. We refer to the triple $\{T, D, \omega\}$ as to the "character of convexity" of Φ.
If ∂G is C^{2} with positive curvature, then quantitatively convex mappings $\Phi: \partial \Omega \rightarrow \partial G$ are easily constructed.

$\mathrm{n}=2$. Quantitative bound

Theorem (A., Nesi '15) Let Ω have $C^{1, \alpha}$ boundary, let σ be uniformly elliptic and C^{α}. Let $\Phi=\left(\varphi_{1}, \varphi_{2}\right): \partial \Omega \rightarrow \partial G$ be a $C^{1, \alpha}$ quantitatively convex map with character $\{|\partial \Omega|, D, \omega\}$. Let $U=\left(u_{1}, u_{2}\right)$ solve

$$
\begin{cases}\operatorname{div}\left(\sigma \nabla u_{i}\right)=0 & \text { in } \quad \Omega, \\ u_{i}=\varphi_{i} & \text { on } \quad \partial \Omega .\end{cases}
$$

Then there exists $C>0$, only depending on ellipticity, on the regularity assumptions and on the character of convexity of Φ such that

$$
\operatorname{det} D U \geq C>0 \text { in } \bar{\Omega} .
$$

Jacobians
Giovanni Alessandrini

n=2. Proof sketch

It suffices to obtain a lower bound on $|\nabla u|$ where $u=(U \cdot \xi)$, uniformly w.r.t. $\xi,|\xi|=1$.

Near the boundary we can use the quantitative unimodality and a Hopf-type lemma (Finn-Gilbarg '57).

In the interior we use the theory of Q.C. mappings. Using complex notation $z=x_{1}+i x_{2}, u=\Re e f$,

$$
f_{\bar{z}}=\mu f_{z}+\nu \bar{f}_{z} \quad \text { in } \Omega,
$$

where, the so called complex dilatations μ, ν only depend on σ and satisfy the ellipticity condition

$$
|\mu|+|\nu| \leq k<1
$$

n=2. Proof sketch

It suffices to obtain a lower bound on $|\nabla u|$ where $u=(U \cdot \xi)$, uniformly w.r.t. $\xi,|\xi|=1$.

Near the boundary we can use the quantitative unimodality and a Hopf-type lemma (Finn-Gilbarg '57).

In the interior we use the theory of Q.C. mappings. Using complex notation $z=x_{1}+i x_{2}, u=\Re e f$,

$$
f_{\bar{z}}=\mu f_{z}+\nu \bar{f}_{z} \quad \text { in } \Omega
$$

where, the so called complex dilatations μ, ν only depend on σ and satisfy the ellipticity condition

n=2. Proof sketch

It suffices to obtain a lower bound on $|\nabla u|$ where $u=(U \cdot \xi)$, uniformly w.r.t. $\xi,|\xi|=1$.

Near the boundary we can use the quantitative unimodality and a Hopf-type lemma (Finn-Gilbarg '57).

In the interior we use the theory of Q.C. mappings.
complex notation $z=x_{1}+i x_{2}, u=\Re e f$,

$$
f_{\bar{z}}=\mu f_{z}+\nu \bar{z}_{z} \quad \text { in } \Omega
$$

where, the so called complex dilatations μ, ν only depend on σ and satisfy the ellipticity condition

n=2. Proof sketch

It suffices to obtain a lower bound on $|\nabla u|$ where $u=(U \cdot \xi)$, uniformly w.r.t. $\xi,|\xi|=1$.

Near the boundary we can use the quantitative unimodality and a Hopf-type lemma (Finn-Gilbarg '57).

In the interior we use the theory of Q.C. mappings. Using complex notation $z=x_{1}+i x_{2}, u=\Re e f$,

$$
f_{\bar{z}}=\mu f_{z}+\nu \bar{f}_{z} \quad \text { in } \Omega,
$$

where, the so called complex dilatations μ, ν only depend on σ and satisfy the ellipticity condition

$$
|\mu|+|\nu| \leq k<1
$$

Here, being σ Hölder continuous, also μ and ν satisfy a Hölder bound.
Let us denote $g=f^{-1}(w), w \in \mathbb{C}$. A straightforward calculation gives

$$
g_{\bar{w}}=-\nu(g) g_{w}-\mu(g) \overline{g_{w}}
$$

By interior regularity estimates, g_{w} is locally bounded.

$$
\operatorname{det} D f^{-1}=\operatorname{det} D g=\left|g_{w}\right|^{2}-\left|g_{\bar{w}}\right|^{2} \leq C^{2}
$$

which can be rewritten as

$$
\sigma \nabla u \cdot \nabla u=\operatorname{det} D f \geq C^{-2}
$$

at any fixed distance from the boundary.

Consider $\Omega \subset \mathbb{R}^{n}$, a bounded domain diffeomorphic to a ball of class $C^{1, \alpha}$. Let σ satisfy uniform ellipticity and Hölder continuity.
Let $G \subset \mathbb{R}^{n}$ be a convex body with C^{2} boundary and having at each point principal curvatures bounded from below by

Let $\Phi: \partial \Omega \rightarrow \partial G$ be an orientation preserving
diffeomorphism such that Φ, Φ^{-1} are $C^{1, \alpha}$. Let U be the weak solution to

Consider $\Omega \subset \mathbb{R}^{n}$, a bounded domain diffeomorphic to a ball of class $C^{1, \alpha}$. Let σ satisfy uniform ellipticity and Hölder continuity.
Let $G \subset \mathbb{R}^{n}$ be a convex body with C^{2} boundary and having at each point principal curvatures bounded from below by $\kappa>0$.
Let $\Phi: \partial \Omega \rightarrow \partial G$ be an orientation preserving diffeomorphism such that Φ, Φ^{-1} are $C^{1, \alpha}$. Let U be the weak solution to

$$
\begin{cases}\operatorname{div}(\sigma \nabla U)=0 & \text { in } \quad \Omega, \\ U=\Phi & \text { on } \Omega,\end{cases}
$$

$$
\begin{cases}\operatorname{div}(\sigma \nabla U)=0 & \text { in } \quad \Omega \\ U=\Phi & \text { on } \quad \Omega\end{cases}
$$

Denote $\Omega_{\rho}=\{x \in \Omega \operatorname{dist}(x, \partial \Omega)>\rho\}$.
Theorem (A., Nesi '15)
There exists $\rho>0$ and $Q>0$ such that U is a diffeomorphism of $\bar{\Omega} \backslash \Omega_{\rho}$ onto a neighborhood of ∂G, within G and we have

$$
\operatorname{det} D U \geq Q \quad \text { in } \quad \bar{\Omega} \backslash \Omega_{\rho}
$$

Giovanni Alessandrini

Examples

Wood '91:

$$
U\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{3}-3 x_{1} x_{3}^{2}+x_{2} x_{3}, x_{2}-3 x_{1} x_{3}, x_{3}\right)
$$

U is a homeomorphism, but $\operatorname{det} D U=0$ on the plane $\left\{x_{1}=0\right\}$.

Laugesen '96: $\forall \varepsilon>0 \exists \Phi: \partial B \mapsto \partial B$ homeomorphism, such that $|\Phi(x)-x|<\varepsilon, \forall x \in \partial B$ and the solution $U=\left(u_{1}, u_{2}, u_{3}\right)$ to

is not one-to-one.

Examples

Wood '91:

$$
U\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{3}-3 x_{1} x_{3}^{2}+x_{2} x_{3}, x_{2}-3 x_{1} x_{3}, x_{3}\right)
$$

U is a homeomorphism, but $\operatorname{det} D U=0$ on the plane $\left\{x_{1}=0\right\}$.

Laugesen '96:
$\forall \varepsilon>0 \exists \Phi: \partial B \mapsto \partial B$ homeomorphism, such that $|\Phi(x)-x|<\varepsilon, \forall x \in \partial B$ and the solution $U=\left(u_{1}, u_{2}, u_{3}\right)$ to

$$
\begin{cases}\Delta U=0, & \text { in } \quad B, \\ U=\Phi, & \text { on } \partial B .\end{cases}
$$

is not one-to-one.

Examples

Briane, Milton, Nesi '04:
Set $Q=[0,1]^{3} \subset \mathbb{R}^{3}$, assume σQ-periodic and consider the cell problem

$$
\left\{\begin{array}{l}
\operatorname{div}(\sigma \nabla U)=0, \\
(U-x) Q \text {-periodic }
\end{array}\right.
$$

There exists an isotropic matrix $\sigma=\gamma /$, with γ taking only two values, with a smooth interface, such that det $D U$ changes its sign in the interior of the cube Q of periodicity.

Examples

Briane, Milton, Nesi '04:
Set $Q=[0,1]^{3} \subset \mathbb{R}^{3}$, assume σQ-periodic and consider the cell problem

$$
\begin{cases}\operatorname{div}(\sigma \nabla U)=0, & \text { in } \\ (U-x) Q \text {-periodic }\end{cases}
$$

There exists an isotropic matrix $\sigma=\gamma l$, with γ taking only two values, with a smooth interface, such that det $D U$ changes its sign in the interior of the cube Q of periodicity.

Examples

Capdeboscq, March 2015! (elaborating on the Briane-Milton-Nesi example):

Consider

For any Φ such that det $D H>0$ everywhere in Ω, there exist $\sigma \in C^{\infty}$ and isotropic such that, considering

$\operatorname{det} D U$ changes its sign in the interior of Ω.

Examples

Capdeboscq, March 2015! (elaborating on the Briane-Milton-Nesi example):

Consider

$$
\begin{cases}\Delta H=0, & \text { in } \quad \Omega \subset \mathbb{R}^{3}, \\ H=\Phi, & \text { on } \partial \Omega .\end{cases}
$$

For any Φ such that $\operatorname{det} D H>0$ everywhere in Ω, there exist $\sigma \in C^{\infty}$ and isotropic such that, considering

$\operatorname{det} D U$ changes its sign in the interior of Ω.

Examples

Capdeboscq, March 2015! (elaborating on the Briane-Milton-Nesi example):

Consider

$$
\begin{cases}\Delta H=0, & \text { in } \quad \Omega \subset \mathbb{R}^{3}, \\ H=\Phi, & \text { on } \partial \Omega .\end{cases}
$$

For any Φ such that $\operatorname{det} D H>0$ everywhere in Ω, there exist $\sigma \in C^{\infty}$ and isotropic such that, considering

$$
\begin{cases}\operatorname{div}(\sigma \nabla U)=0, & \text { in } \quad \Omega, \\ U=\Phi, & \text { on } \quad \partial \Omega\end{cases}
$$

det $D U$ changes its sign in the interior of Ω.

Open Problem: To control, in terms of the Dirichlet data, the size (or the dimension) of the set of points where the Jacobian may degenerate and possibly evaluate the vanishing rate at such points of degeneration.

Han and Lin, 2000: Let $\sigma \in C^{\infty}$. If U is nonconstant, then, locally, the set

$$
\{\operatorname{rank} D U=0\}
$$

has finite $n-2$-dimensional Hausdorff measure. If U is nonconstant, and $U(\Omega)$ is not contained in a straight line, then, locally, the set

$$
\{\operatorname{rank} D U=1\}
$$

has finite n-1-dimensional Hausdorff measure.

Open Problem: To control, in terms of the Dirichlet data, the size (or the dimension) of the set of points where the Jacobian may degenerate and possibly evaluate the vanishing rate at such points of degeneration.

has finite $n-2$-dimensional Hausdorff measure. If U is nonconstant, and $U(\Omega)$ is not contained in a straight line, then, locally, the set

has finite $n-1$-dimensional Hausdorff measure.

Open Problem: To control, in terms of the Dirichlet data, the size (or the dimension) of the set of points where the Jacobian may degenerate and possibly evaluate the vanishing rate at such points of degeneration.

Han and Lin, 2000: Let $\sigma \in C^{\infty}$. If U is nonconstant, then, locally, the set

$$
\{\text { rank } D U=0\}
$$

has finite n-2-dimensional Hausdorff measure.
line, then, locally, the set

has finite n-1-dimensional Hausdorff measure.

Open Problem: To control, in terms of the Dirichlet data, the size (or the dimension) of the set of points where the Jacobian may degenerate and possibly evaluate the vanishing rate at such points of degeneration.

Han and Lin, 2000: Let $\sigma \in C^{\infty}$. If U is nonconstant, then, locally, the set

$$
\{\text { rank } D U=0\}
$$

has finite $n-2$-dimensional Hausdorff measure.
If U is nonconstant, and $U(\Omega)$ is not contained in a straight line, then, locally, the set

$$
\{\operatorname{rank} D U=1\}
$$

has finite n-1-dimensional Hausdorff measure.

Introduction

 The problemJin and Kazdan '91:
$\exists \sigma \in C^{\infty}$ and a solution $U=\left(u_{1}, u_{2}, u_{3}\right)$ to

$$
\operatorname{div}(\sigma \nabla U)=0 \text { in } \mathbb{R}^{3}
$$

such that

$$
\left\{\begin{array}{lll}
\operatorname{rank} D U=2, & \text { for } & x_{3} \leq 0 \\
\operatorname{det} D U>0, & \text { for } & x_{3}>0
\end{array}\right.
$$

Giovanni Alessandrini

Let $a \in C^{\infty}(\mathbb{R} ; \mathbb{R})$ and set

$$
\sigma(x)=\left(\begin{array}{ccc}
1 & a\left(x_{3}\right) & 0 \\
a\left(x_{3}\right) & 1 & 0 \\
0 & 0 & b\left(x_{3}\right)
\end{array}\right)
$$

with

$$
\left\{\begin{array}{lll}
a\left(x_{3}\right)=0 & \text { for } & x_{3} \leq 0 \\
a\left(x_{3}\right) \in\left(0, a_{0}\right) & \text { for } & x_{3}>0 \\
b\left(x_{3}\right)=\frac{1}{1-a^{2}\left(x_{3}\right)} & \text { for } & x_{3} \in \mathbb{R}
\end{array} \text { with } \quad a_{0} \in(0,1)\right.
$$

We set

$$
U(x)=\left(x_{1}, x_{2},-x_{1} x_{2}+v\left(x_{3}\right)\right),
$$

where v is chosen in such a way that

$$
\begin{cases}\left(b v^{\prime}\right)^{\prime}-2 a=0, & x_{3} \in \mathbb{R}, \\ v\left(x_{3}\right)=0, & x_{3}<0 .\end{cases}
$$

It turns out that $v^{\prime}>0$ for $x_{3}>0$ and consequently

$$
\operatorname{det} D U= \begin{cases}v^{\prime}>0, & \text { for } \quad x_{3}>0 \\ v^{\prime}=0, & \text { for } \quad x_{3} \leq 0\end{cases}
$$

U maps $\left\{x_{3} \leq 0\right\}$ into the surface

$$
\left\{x_{3}=-x_{1} x_{2}\right\} .
$$

Giovanni Alessandrini

The end.

THANKS!

