Giovanni Alessandrini

Global stability for coupled physics inverse problems.
 A case study

Giovanni Alessandrini

Università degli Studi di Trieste

Problémes Inverses et Imagerie
12-13/02/2014

Institut Henri Poincaré

Giovanni Alessandrini

Since the '80s, a dominant theme in Inverse Problems has been:
To image the interior of an object from measurements taken in its exterior

- overdetermined boundary data,
- scattering data.

With coupled physics IPs there is a shift to data associated to interior information.

Introduction

With coupled physics IPs there is a stift to data associated

Introduction

Since the '80s, a dominant theme in Inverse Problems has been:
To image the interior of an object from measurements taken in its exterior

- overdetermined boundary data,
- scattering data.

With coupled physics IPs there is a shift to data associated to interior information.

Introduction

Interior data may provide much better stability than inverse boundary problems, or inverse scattering problems. Available results require nondegeneracy conditions on the solutions of the involved direct problems:

Introduction

Giovanni Alessandrini

Interior data may provide much better stability than inverse boundary problems, or inverse scattering problems. Available results require nondegeneracy conditions on the solutions of the involved direct problems:

- Nonvanishing of solution.
- Nonvanishing of gradients.
- Nonvanishing of Jacobians.
- Nonvanishing of augmented Jacobians.

Introduction

Giovanni Alessandrini

Interior data may provide much better stability than inverse boundary problems, or inverse scattering problems. Available results require nondegeneracy conditions on the solutions of the involved direct problems:

- Nonvanishing of solution.
- Nonvanishing of gradients.
- Nonvanishing of Jacobians.
- Nonvanishing of augmented Jacobians.

Introduction

Giovanni Alessandrini

Interior data may provide much better stability than inverse boundary problems, or inverse scattering problems. Available results require nondegeneracy conditions on the solutions of the involved direct problems:

- Nonvanishing of solution.
- Nonvanishing of gradients.
- Nonvanishing of Jacobians.
- Nonvanishing of augmented Jacobians.

Introduction

Giovanni Alessandrini

Interior data may provide much better stability than inverse boundary problems, or inverse scattering problems. Available results require nondegeneracy conditions on the solutions of the involved direct problems:

- Nonvanishing of solution.
- Nonvanishing of gradients.
- Nonvanishing of Jacobians.
- Nonvanishing of augmented Jacobians.

Giovanni Alessandrini

Global stability

Question. Is it possible to obtain global stability from measurements arising from arbitrary (nontrivial) solutions of the direct problem?

The model problem A problem arising in microwave imaging coupled with ultrasound, Triki (2010).
$\Delta u+q u=0$ in Ω
Find $q \geq$ constant >0 given the local energy $q u^{2}$ and the boundary data $\left.u\right|_{\partial \Omega}$.

Giovanni Alessandrini

Global stability

Question. Is it possible to obtain global stability from measurements arising from arbitrary (nontrivial) solutions of the direct problem?

The model problem A problem arising in microwave imaging coupled with ultrasound, Triki (2010).

$$
\Delta u+q u=0 \text { in } \Omega
$$

Find $q \geq$ constant >0 given the local energy $q u^{2}$ and the boundary data $\left.u\right|_{\partial \Omega}$.

Global stability

Giovanni Alessandrini

Question. Is it possible to obtain global stability from measurements arising from arbitrary (nontrivial) solutions of the direct problem?

The model problem A problem arising in microwave imaging coupled with ultrasound, Triki (2010).

$$
\Delta u+q u=0 \text { in } \Omega
$$

Find $q \geq$ constant >0 given the local energy $q u^{2}$ and the boundary data $\left.u\right|_{\partial \Omega}$.

Giovanni Alessandrini

The full problem

Ammari, Capdeboscq, De Gournay, Rozanova-Pierrat, Triki (2011):

$$
\operatorname{div}(a \nabla u)+k^{2} q u=0 \operatorname{in} \Omega
$$

Find $a, q \geq$ constant >0 given the local energies $q u^{2}$, $a|\nabla u|^{2}$ (with several u 's and k 's!).

Here:
$u=$ electric field, $q=$ electric permittivity, $a^{-1}=$ magnetic permeability.

Giovanni Alessandrini

The full problem

Ammari, Capdeboscq, De Gournay, Rozanova-Pierrat, Triki (2011):

$$
\operatorname{div}(a \nabla u)+k^{2} q u=0 \operatorname{in} \Omega
$$

Find $a, q \geq$ constant >0 given the local energies $q u^{2}$, $a|\nabla u|^{2}$ (with several u 's and k 's!).

Here:
$u=$ electric field, $q=$ electric permittivity, $a^{-1}=$ magnetic permeability.

```
STABILITY
    FOR
    COUPLED
PHYSICS IPs
```


Goals

Giovanni

``` Alessandrini
```

Introduction
An example
A priori assumptions

Main Theorem
Stability for |u|
Quantitative UCP

Concluding remarks

End

- Stability of global type.
- Measurements for a single (nontrivial) solution u possibly sign changing.
- No spectral assumptions on $\Delta+q$.

```
STABILITY
    FOR
    COUPLED
PHYSICS IPs
```

Giovanni Alessandrini

```
Introduction
```

An example
A priori
assumptions
Main Theorem
Stability for |u|
Quantitative
UCP
Concluding
remarks

- Stability of global type.
- Measurements for a single (nontrivial) solution u possibly sign changing.
- No spectral assumptions on $\Delta+q$.

STABILITY
FOR
COUPLED
PHYSICS IPs
Giovanni
Alessandrini
Introduction
An example
A priori
assumptions
Main Theorem
Stability for \|u
Quantitative
UCP
Concluding
remarks
End

Goals

Giovanni Alessandrini

```
Introduction
```

A priori
assumptions

- Stability of global type.
- Measurements for a single (nontrivial) solution u possibly sign changing.
- No spectral assumptions on $\Delta+q$.

```
STABILITY
Giovanni Alessandrini

\section*{Goals}
- Stability of global type.
- Measurements for a single (nontrivial) solution \(u\) possibly sign changing.
- No spectral assumptions on \(\Delta+q\).

Giovanni Alessandrini

Introduction
An example
A priori assumptions Main Theorem Stability for |u|

\section*{An example}

In dimension \(n=1\), fix \(0<r<R\) and, for every \(k=1,2, \ldots\), set
\[
q_{k}(x)=\left\{\begin{aligned}
A_{k} & \text { if }|x|<r, \\
1 & \text { if } r \leq|x| \leq R,
\end{aligned}\right.
\]
where
\[
A_{k}=\left(\frac{\pi}{2}+2 k \pi\right)^{2} r^{-2}
\]

A solution to \(u_{x x}+q_{k} u=0\) in \((-R, R)\) is


Giovanni Alessandrini

Introduction An example

\section*{An example}

In dimension \(n=1\), fix \(0<r<R\) and, for every \(k=1,2, \ldots\), set
\[
q_{k}(x)=\left\{\begin{aligned}
A_{k} & \text { if }|x|<r, \\
1 & \text { if } r \leq|x| \leq R,
\end{aligned}\right.
\]
where
\[
A_{k}=\left(\frac{\pi}{2}+2 k \pi\right)^{2} r^{-2}
\]

A solution to \(u_{x x}+q_{k} u=0\) in \((-R, R)\) is
\[
u_{k}(x)=\left\{\begin{aligned}
\frac{1}{\sqrt{A_{k}}} \cos \left(\sqrt{A_{k}} x\right) & \text { if }|x|<r \\
-\sin (|x|-r) & \text { if } r \leq|x| \leq R
\end{aligned}\right.
\]

\section*{An example}

Giovanni Alessandrini
```

Introduction

```
An example
A priori
assumptions
Main Theorem
Stability for |u|
Quantitative
UCP
Concluding
remarks
we have
\[
\left\|q_{2 k} u_{2 k}^{2}-q_{k} u_{k}^{2}\right\|_{\infty} \leq 2
\]
whereas, for any \(p\)
\[
\left\|q_{2 k}-q_{k}\right\|_{p} \rightarrow \infty
\]

Giovanni Alessandrini

Introduction
An example
A priori assumptions
Main Theoren
Stability for |u|
we have
\[
\left\|q_{2 k} u_{2 k}^{2}-q_{k} u_{k}^{2}\right\|_{\infty} \leq 2
\]
whereas, for any \(p, 1 \leq p \leq \infty\)
\[
\left\|q_{2 k}-q_{k}\right\|_{p} \rightarrow \infty
\]

Giovanni Alessandrini
\[
0<K^{-1} \leq q \leq K \text { a.e. in } \Omega
\]
for a given \(K \geq 1\).

Giovanni Alessandrini

Introduction
An example
A priori assumptions

Main Theorem
Stability for |u|
Quantitative UCP

Concluding remarks

\section*{A priori assumptions}

Energy bound. \(E>0\) is given such that:
\[
\int_{\Omega}|\nabla u|^{2}+u^{2} \leq E^{2}
\]
Nontriviality of the data. \(H>0\) is given such that:
A priori data: \(\mathrm{K}, \mathrm{E}, \mathrm{H}\) and \(\Omega(\operatorname{diam}(\Omega)\), constants of its Lipschitz character).
Notation: For every \(d>0: \Omega_{d}=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)\)

Giovanni Alessandrini

Introduction
An example
A priori assumptions
Main Theorem
Stability for |u|

\section*{A priori assumptions}

Energy bound. \(E>0\) is given such that:
\[
\int_{\Omega}|\nabla u|^{2}+u^{2} \leq E^{2}
\]

Nontriviality of the data. \(H>0\) is given such that:
\[
\int_{\Omega} q u^{2} \geq H^{2}>0
\]

A priori data: K, E, H and \(\Omega(\operatorname{diam}(\Omega)\), constants of its Lipschitz character).

Notation: For every \(d>0: \Omega_{d}=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>d\}\).

Giovanni Alessandrini

Introduction
An example
A priori assumptions

Main Theorem
Stability for |u|

\section*{A priori assumptions}

Energy bound. \(E>0\) is given such that:
\[
\int_{\Omega}|\nabla u|^{2}+u^{2} \leq E^{2}
\]

Nontriviality of the data. \(H>0\) is given such that:
\[
\int_{\Omega} q u^{2} \geq H^{2}>0
\]

A priori data: \(\mathrm{K}, \mathrm{E}, \mathrm{H}\) and \(\Omega\) (diam \((\Omega)\), constants of its Lipschitz character).

Notation: For every \(d>0: \Omega_{d}=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>d\}\)

FOR
COUPLED PHYSICS IPs

Giovanni Alessandrini

\section*{A priori assumptions}

Energy bound. \(E>0\) is given such that:
\[
\int_{\Omega}|\nabla u|^{2}+u^{2} \leq E^{2}
\]

Nontriviality of the data. \(H>0\) is given such that:
\[
\int_{\Omega} q u^{2} \geq H^{2}>0
\]

A priori data: K, E, H and \(\Omega\) (diam \((\Omega)\), constants of its Lipschitz character).

Notation: For every \(d>0: \Omega_{d}=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>d\}\).


\section*{The main Theorem}

Theorem. Let \(q_{1}, q_{2}\) and the corresponding solutions \(u_{1}, u_{2}\) satisfy the a priori assumptions and suppose that
\[
\begin{equation*}
\left\|q_{1} u_{1}^{2}-q_{2} u_{2}^{2}\right\|_{L^{\infty}(\Omega)} \leq \varepsilon \tag{1}
\end{equation*}
\]
for a given \(\varepsilon>0\), and also
\[
\begin{equation*}
\left\|\left|u_{1}\right|-\left|u_{2}\right|\right\|_{L^{\infty}(\partial \Omega)} \leq \sqrt{K \varepsilon} \tag{2}
\end{equation*}
\]

Then, for every \(d>0\), there exists \(\eta \in(0,1)\) and \(C>0\), only depending on \(d\) and on the a priori data such that


Note: If we know \(q_{1}=q_{2}\) near \(\partial \Omega\), then \((1) \Rightarrow(2)\).

\section*{The main Theorem}

Giovanni Alessandrini

Theorem. Let \(q_{1}, q_{2}\) and the corresponding solutions \(u_{1}, u_{2}\) satisfy the a priori assumptions and suppose that
\[
\begin{equation*}
\left\|q_{1} u_{1}^{2}-q_{2} u_{2}^{2}\right\|_{L^{\infty}(\Omega)} \leq \varepsilon \tag{1}
\end{equation*}
\]
for a given \(\varepsilon>0\), and also
\[
\begin{equation*}
\left\|\left|u_{1}\right|-\left|u_{2}\right|\right\|_{L^{\infty}(\partial \Omega)} \leq \sqrt{K \varepsilon} \tag{2}
\end{equation*}
\]

Then, for every \(d>0\), there exists \(\eta \in(0,1)\) and \(C>0\), only depending on \(d\) and on the a priori data such that
\[
\left\|q_{1}-q_{2}\right\|_{L^{2}\left(\Omega_{d}\right)} \leq C\left(\varepsilon^{1 / 3}+\varepsilon\right)^{\eta}
\]

Note: If we know \(q_{1}=q_{2}\) near \(\partial \Omega\), then \((1) \Rightarrow(2)\).

\section*{The main Theorem}

Giovanni Alessandrini

Theorem. Let \(q_{1}, q_{2}\) and the corresponding solutions \(u_{1}, u_{2}\) satisfy the a priori assumptions and suppose that
\[
\begin{equation*}
\left\|q_{1} u_{1}^{2}-q_{2} u_{2}^{2}\right\|_{L^{\infty}(\Omega)} \leq \varepsilon \tag{1}
\end{equation*}
\]
for a given \(\varepsilon>0\), and also
\[
\begin{equation*}
\left\|\left|u_{1}\right|-\left|u_{2}\right|\right\|_{L^{\infty}(\partial \Omega)} \leq \sqrt{K \varepsilon} \tag{2}
\end{equation*}
\]

Then, for every \(d>0\), there exists \(\eta \in(0,1)\) and \(C>0\), only depending on \(d\) and on the a priori data such that
\[
\left\|q_{1}-q_{2}\right\|_{L^{2}\left(\Omega_{d}\right)} \leq C\left(\varepsilon^{1 / 3}+\varepsilon\right)^{\eta}
\]

Note: If we know \(q_{1}=q_{2}\) near \(\partial \Omega\), then \((1) \Rightarrow(2)\).
STABILITY FOR COUPLED PHYSICS IPs
Giovanni Alessandrini
Introduction
An example
A priori assumptions

\author{
Main Theorem
}
Stability for |u|
Quantitative UCP
Theorem A (Stability for \(|u|\) )
There exists \(C>0\), only depending on \(K, E\) and \(\Omega\), such that
\[
\int_{\Omega}\left\|u_{1}|-| u_{2}\right\|^{3} \leq C \varepsilon
\]
Theorem B (Integrability of \(|u|^{-\delta}\) ) For every \(d>0\), there exists \(p>1, C>0\), only depending on \(K, E, H\) and \(\Omega\), such that

Note: This is a form of quantitative estimate of unique continuation.

\section*{Main tools}

Giovanni Alessandrini
\[
\int_{\Omega_{d}}\left|u_{1}\right|^{-\frac{2}{p-1}} \leq C
\]

Note: This is a form of quantitative estimate of unique continuation.

\section*{Main tools}

Giovanni Alessandrini
\[
\int_{\Omega_{d}}\left|u_{1}\right|^{-\frac{2}{p-1}} \leq C
\]

Note: This is a form of quantitative estimate of unique continuation.
Theorem A (Stability for \(|u|\) )
There exists \(C>0\), only depending on \(K, E\) and \(\Omega\), such that
\[
\int_{\Omega}\left\|u_{1}|-| u_{2}\right\|^{3} \leq C \varepsilon
\]

Theorem B (Integrability of \(|u|^{-\delta}\) ) For every \(d>0\), there exists \(p>1, C>0\), only depending on \(K, E, H\) and \(\Omega\), such that

Giovanni Alessandrini

An example
A priori assumptions Main Theorem Stability for |u|

\section*{Proof of the main theorem}
\[
\begin{aligned}
& \left(q_{1}-q_{2}\right) u_{1}^{2}=q_{2}\left(u_{2}^{2}-u_{1}^{2}\right)+\left(q_{1} u_{1}^{2}-q_{2} u_{2}^{2}\right)= \\
& =q_{2}\left(\left|u_{2}\right|+\left|u_{1}\right|\right)\left(\left|u_{2}\right|-\left|u_{1}\right|\right)+\left(q_{1} u_{1}^{2}-q_{2} u_{2}^{2}\right)
\end{aligned}
\]
hence
\(\int_{\Omega}\left|q_{1}-q_{2}\right| u_{1}^{2} \leq K\left\|| | u_{1}\left|+\left|u_{2}\right|\left\|_{L^{3 / 2}(\Omega)}\right\|\right| u_{1}\left|-\left|u_{2}\right| \|_{L^{3}(\Omega)}+|\Omega| \varepsilon\right.\right.\)
and, by Theorem A,

Giovanni Alessandrini

\section*{Proof of the main theorem}
\[
\begin{aligned}
& \left(q_{1}-q_{2}\right) u_{1}^{2}=q_{2}\left(u_{2}^{2}-u_{1}^{2}\right)+\left(q_{1} u_{1}^{2}-q_{2} u_{2}^{2}\right)= \\
& =q_{2}\left(\left|u_{2}\right|+\left|u_{1}\right|\right)\left(\left|u_{2}\right|-\left|u_{1}\right|\right)+\left(q_{1} u_{1}^{2}-q_{2} u_{2}^{2}\right)
\end{aligned}
\]
hence
\(\int_{\Omega}\left|q_{1}-q_{2}\right| u_{1}^{2} \leq K\left\|| | u_{1}\left|+\left|u_{2}\right|\left\|_{L^{3 / 2}(\Omega)}\right\|\right| u_{1}\left|-\left|u_{2}\right| \|_{L^{3}(\Omega)}+|\Omega| \varepsilon\right.\right.\) and, by Theorem A,
\[
\int_{\Omega}\left|q_{1}-q_{2}\right| u_{1}^{2} \leq C\left(\varepsilon^{1 / 3}+\varepsilon\right)
\]

Giovanni Alessandrini

Introduction
An example
A priori assumptions

\author{
Main Theorem
}

Stability for |u|

\section*{Proof of the main theorem}

Now, by Hölder's inequality, for any \(\delta>0\)
\[
\int_{\Omega_{d}}\left|q_{1}-q_{2}\right|^{\frac{\delta}{\delta+2}} \leq\left(\int_{\Omega_{d}}\left|u_{1}\right|^{-\delta}\right)^{\frac{2}{\delta+2}}\left(\int_{\Omega}\left|q_{1}-q_{2}\right| u_{1}^{2}\right)^{\frac{\delta}{\delta+2}}
\]
and choosing \(\delta=\frac{2}{p-1}\), by Theorem B


\section*{Recalling \(K^{-1} \leq q_{i} \leq K\) we arrive at}


Giovanni Alessandrini

Introduction An example
\[
\int_{\Omega_{d}}\left|q_{1}-q_{2}\right|^{\frac{\delta}{\delta+2}} \leq C\left(\int_{\Omega}\left|q_{1}-q_{2}\right| u_{1}^{2}\right)^{\frac{\delta}{\delta+2}}
\]

\section*{Recalling \(K^{-1} \leq q_{i} \leq K\) we arrive at}

Now, by Hölder's inequality, for any \(\delta>0\)
\[
\int_{\Omega_{d}}\left|q_{1}-q_{2}\right|^{\frac{\delta}{\delta+2}} \leq\left(\int_{\Omega_{d}}\left|u_{1}\right|^{-\delta}\right)^{\frac{2}{\delta+2}}\left(\int_{\Omega}\left|q_{1}-q_{2}\right| u_{1}^{2}\right)^{\frac{\delta}{\delta+2}}
\]
and choosing \(\delta=\frac{2}{p-1}\), by Theorem B

Giovanni Alessandrini

Introduction An example

\section*{Proof of the main theorem}

Now, by Hölder's inequality, for any \(\delta>0\)
\[
\int_{\Omega_{d}}\left|q_{1}-q_{2}\right|^{\frac{\delta}{\delta+2}} \leq\left(\int_{\Omega_{d}}\left|u_{1}\right|^{-\delta}\right)^{\frac{2}{\delta+2}}\left(\int_{\Omega}\left|q_{1}-q_{2}\right| u_{1}^{2}\right)^{\frac{\delta}{\delta+2}}
\]
and choosing \(\delta=\frac{2}{p-1}\), by Theorem B
\[
\int_{\Omega_{d}}\left|q_{1}-q_{2}\right|^{\frac{\delta}{\delta+2}} \leq C\left(\int_{\Omega}\left|q_{1}-q_{2}\right| u_{1}^{2}\right)^{\frac{\delta}{\delta+2}} .
\]

Recalling \(K^{-1} \leq q_{i} \leq K\) we arrive at
\[
\int_{\Omega_{d}}\left|q_{1}-q_{2}\right|^{2} \leq C\left(\varepsilon^{1 / 3}+\varepsilon\right)^{\frac{\delta}{\delta+2}}
\]

Giovanni Alessandrini

Introduction
An example
A priori assumptions

Main Theorem
Stability for |u|
Quantitative UCP

\title{
Denote \(N_{i}=\left\{u_{i}=0\right\}, i=1,2\). Let \(\Omega_{j}, j=1,2, \ldots\) be the connected components of \(\Omega \backslash\left(N_{1} \cup N_{2}\right)\).
}

For each j we may split

where
\[
\Gamma_{0}=\partial \Omega_{j} \cap \partial \Omega, \Gamma_{1}=\partial \Omega_{j} \cap N_{1}, \Gamma_{2}=\partial \Omega_{j} \cap N_{2}
\]

By assumption, on \(\Gamma_{0}\) we have \(\| u_{1}\left|-\left|u_{2}\right|\right| \leq \sqrt{K \varepsilon}\), while, on \(\Gamma_{1}, q_{2} u_{2}^{2} \leq \varepsilon\) and on \(\Gamma_{2}, q_{1} u_{1}^{2} \leq \varepsilon\). Hence, on \(\partial \Omega_{j}\) we have

Giovanni Alessandrini
\[
\begin{aligned}
& \qquad \Gamma_{0}=\partial \Omega_{j} \cap \partial \Omega, \Gamma_{1}=\partial \Omega_{j} \cap N_{1}, \Gamma_{2}=\partial \Omega_{j} \cap N_{2} \\
& \text { By assumption, on } \Gamma_{0} \text { we have } \|\left|u_{1}\right|-\left|u_{2}\right| \mid \leq \sqrt{K \varepsilon} \text {, while, on } \\
& \Gamma_{1}, q_{2} u_{2}^{2} \leq \varepsilon \text { and on } \Gamma_{2}, q_{1} u_{1}^{2} \leq \varepsilon \text {. Hence, on } \partial \Omega_{j} \text { we have }
\end{aligned}
\] connected components of \(\Omega \backslash\left(N_{1} \cup N_{2}\right)\). For each \(j\) we may split
\[
\partial \Omega_{j}=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}
\]
where

\section*{Stability for \(|u|\)}

Denote \(N_{i}=\left\{u_{i}=0\right\}, i=1,2\). Let \(\Omega_{j}, j=1,2, \ldots\) be the connected components of \(\Omega \backslash\left(N_{1} \cup N_{2}\right)\). For each \(j\) we may split
\[
\partial \Omega_{j}=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}
\]
where
\[
\Gamma_{0}=\partial \Omega_{j} \cap \partial \Omega, \Gamma_{1}=\partial \Omega_{j} \cap N_{1}, \Gamma_{2}=\partial \Omega_{j} \cap N_{2}
\]

By assumption, on \(\Gamma_{0}\) we have \(\| u_{1}\left|-\left|u_{2}\right|\right| \leq \sqrt{K \varepsilon}\), while, on \(\Gamma_{1}, q_{2} u_{2}^{2} \leq \varepsilon\) and on \(\Gamma_{2}, q_{1} u_{1}^{2} \leq \varepsilon\). Hence, on \(\partial \Omega_{j}\) we have
\[
\| u_{1}\left|-\left|u_{2}\right|\right| \leq \sqrt{K \varepsilon}
\]

Giovanni Alessandrini

Introduction
An example
A priori assumptions

Main Theorem
Stability for |u|
Quantitative UCP

Concluding remarks

\section*{Stability for \(|u|\)}
W.I.o.g. we may assume \(u_{1}, u_{2}>0\) in \(\Omega_{j}\). Set
\(\varphi^{+}=\left[u_{1}-u_{2}-2 \sqrt{K \varepsilon}\right]^{+}, \varphi^{-}=\left[u_{2}-u_{1}-2 \sqrt{K \varepsilon}\right]^{+}\).
Note that \(\varphi^{ \pm} \in W_{0}^{1,2}\left(\Omega_{j}\right) \cap C\left(\overline{\Omega_{j}}\right)\) and use \(\psi_{i}^{ \pm}=\varphi^{ \pm} u_{i}\) as test functions in the weak formulation of \(\Delta u_{i}+q_{i} u_{i}=0\). We arrive at


\section*{Adding up w.r.t. \(j\), and using the energy bound,}


Giovanni Alessandrini

\section*{Stability for \(|u|\)}
W.I.o.g. we may assume \(u_{1}, u_{2}>0\) in \(\Omega_{j}\). Set
\[
\varphi^{+}=\left[u_{1}-u_{2}-2 \sqrt{K \varepsilon}\right]^{+}, \varphi^{-}=\left[u_{2}-u_{1}-2 \sqrt{K \varepsilon}\right]^{+}
\]

Note that \(\varphi^{ \pm} \in W_{0}^{1,2}\left(\Omega_{j}\right) \cap C\left(\overline{\Omega_{j}}\right)\) and use \(\psi_{i}^{ \pm}=\varphi^{ \pm} u_{i}\) as test functions in the weak formulation of \(\Delta u_{i}+q_{i} u_{i}=0\). We arrive at
\[
\begin{aligned}
& \qquad \int_{\Omega_{j}}\left(\left|u_{1}\right|+\left|u_{2}\right|\right)\left(\left|u_{1}\right|-\left|u_{2}\right|\right)^{2} \leq C \int_{\Omega_{j}}\left(\left|u_{1}\right|+\left|u_{2}\right|\right) \varepsilon \\
& \text { Adding up w.r.t. } j \text {, and using the energy bound, }
\end{aligned}
\]
W.I.o.g. we may assume \(u_{1}, u_{2}>0\) in \(\Omega_{j}\). Set
\[
\varphi^{+}=\left[u_{1}-u_{2}-2 \sqrt{K \varepsilon}\right]^{+}, \varphi^{-}=\left[u_{2}-u_{1}-2 \sqrt{K \varepsilon}\right]^{+}
\]

Note that \(\varphi^{ \pm} \in W_{0}^{1,2}\left(\Omega_{j}\right) \cap C\left(\overline{\Omega_{j}}\right)\) and use \(\psi_{i}^{ \pm}=\varphi^{ \pm} u_{i}\) as test functions in the weak formulation of \(\Delta u_{i}+q_{i} u_{i}=0\). We arrive at
\[
\int_{\Omega_{j}}\left(\left|u_{1}\right|+\left|u_{2}\right|\right)\left(\left|u_{1}\right|-\left|u_{2}\right|\right)^{2} \leq C \int_{\Omega_{j}}\left(\left|u_{1}\right|+\left|u_{2}\right|\right) \varepsilon
\]

Adding up w.r.t. \(j\), and using the energy bound,
\[
\int_{\Omega}| | u_{1}\left|-\left|u_{2}\right|^{3} \leq \int_{\Omega}\left(\left|u_{1}\right|+\left|u_{2}\right|\right)\left(\left|u_{1}\right|-\left|u_{2}\right|\right)^{2} \leq C \varepsilon\right.
\]

Giovanni Alessandrini

Introduction
An example

\section*{Integrability of \(|u|^{-\delta}\)}

Lipschitz propagation of smallness (A. and Rosset '98, A., Rondi, Rosset and Vessella 2009) If
\[
\frac{\int_{\Omega}|\nabla u|^{2}+u^{2}}{\int_{\Omega} u^{2}} \leq \mathcal{F}
\]
then for any \(B_{\rho}\left(x_{0}\right) \subset \Omega\) we have
\[
\int_{B_{\rho}\left(x_{0}\right)} u^{2} \geq C \int_{\Omega}|\nabla u|^{2}+u^{2}
\]
where \(C>0\) only depends on \(\rho, K, \Omega\) and on \(\mathcal{F}\). Note: Under our a priori assumptions:

Lipschitz propagation of smallness (A. and Rosset '98, A., Rondi, Rosset and Vessella 2009) If
\[
\frac{\int_{\Omega}|\nabla u|^{2}+u^{2}}{\int_{\Omega} u^{2}} \leq \mathcal{F}
\]
then for any \(B_{\rho}\left(x_{0}\right) \subset \Omega\) we have
\[
\int_{B_{\rho}\left(x_{0}\right)} u^{2} \geq C \int_{\Omega}|\nabla u|^{2}+u^{2}
\]
where \(C>0\) only depends on \(\rho, K, \Omega\) and on \(\mathcal{F}\). Note: Under our a priori assumptions:
\[
\mathcal{F}=\frac{K E^{2}}{H^{2}}
\]

\section*{Integrability of \(|u|^{-\delta}\)}

Doubling inequality (Garofalo and Lin '86) There exists \(R=R(K)\) such that if \(r_{0} \leq R\) and \(B_{r_{0}}\left(x_{0}\right) \subset \Omega\) then
\[
\int_{B_{2 r}\left(x_{0}\right)} u^{2} \leq C \int_{B_{r}\left(x_{0}\right)} u^{2}, \forall r<\frac{r_{0}}{4}
\]
where \(C>0\) only depends on \(r_{0}\) and on the a priori data.

\section*{Integrability of \(|u|^{-\delta}\)}

Giovanni Alessandrini
\(A_{p}\) property (Garofalo and Lin '86)
For any \(d>0\) there exist \(p>1, C>0\), only depending on \(d\) and on the a priori data, such that for every \(x_{0} \in \Omega_{d}\) and every \(r \leq d / 4\)
\[
\left(\frac{1}{\left|B_{r}\right|} \int_{B_{r}\left(x_{0}\right)} u^{2}\right)\left(\frac{1}{\left|B_{r}\right|} \int_{B_{r}\left(x_{0}\right)} u^{-\frac{2}{p-1}}\right)^{p-1} \leq C
\]

\section*{Concluding remarks}

Quantitative estimates of unique continuation seem to be a necessary ingredient for stability estimates for IP with interior data, when available data depend on few solutions of the direct problem, and few restrictions can be imposed on such solutions.
Open issues may arise in investigating the vanishing rate of gradients or Jacobians.

\section*{Concluding remarks}

Giovanni Alessandrini

Quantitative estimates of unique continuation seem to be a necessary ingredient for stability estimates for IP with interior data, when available data depend on few solutions of the direct problem, and few restrictions can be imposed on such solutions. Open issues may arise in investigating the vanishing rate of gradients or Jacobians.

Giovanni Alessandrini

Introduction
An example
A priori assumptions

\section*{Concluding remarks}

For equations with no zero order term, such as
\[
\operatorname{div}(\sigma \nabla u)=0
\]
with \(\lambda^{-1} I \leq \sigma \leq \lambda I\), and if \(n \geq 3, \sigma \in C^{0,1}\), estimates on the vanishing rate of \(|\nabla u|^{2}\) are available.
If also a zero order term is present, e.g.:
with \(|q| \leq K\), estimates on the vanishing rate are known for


The situation is not clear for \(|\nabla u|^{2}\) alone.

\section*{Concluding remarks}

Giovanni Alessandrini
\[
\operatorname{div}(\sigma \nabla u)+q u=0
\]
with \(|q| \leq K\), estimates on the vanishing rate are known for \(|\nabla u|^{2}+|u|^{2}\).

The situation is not clear for \(|\nabla u|^{2}\) alone.

\section*{Concluding remarks}

Giovanni Alessandrini
\[
\operatorname{div}(\sigma \nabla u)+q u=0
\]
with \(|q| \leq K\), estimates on the vanishing rate are known for \(|\nabla u|^{2}+|u|^{2}\).

The situation is not clear for \(|\nabla u|^{2}\) alone.
with \(\lambda^{-1} I \leq \sigma \leq \lambda I\), and if \(n \geq 3, \sigma \in C^{0,1}\), estimates on the vanishing rate of \(|\nabla u|^{2}\) are available. If also a zero order term is present, e.g.:
For equations with no zero order term, such as
\[
\operatorname{div}(\sigma \nabla u)=0
\]

Giovanni Alessandrini

\section*{Concluding remarks}

An example
\[
u_{x x}+q u=0 \text { on }(0,+\infty)
\]
with
\[
q(x)=\chi_{\left(0, \frac{\pi}{2}\right)}(x)
\]
and
\[
u(x)=\left\{\begin{aligned}
\sin x & \text { if } 0<x \leq \frac{\pi}{2} \\
1 & \text { if } x \geq \frac{\pi}{2}
\end{aligned}\right.
\]

STABILITY FOR COUPLED PHYSICS IPs

Giovanni Alessandrini

Example (Laugesen '96). \(\forall \varepsilon>0 \exists \Phi: \partial B \mapsto \partial B\) homeomorphism, such that \(|\Phi(x)-x|<\varepsilon, \forall x \in \partial B\) and the solution \(U=\left(u_{1}, u_{2}, u_{3}\right)\) to

is not one-to-one.

Giovanni Alessandrini

\section*{Concluding remarks}

Further problems arise with Jacobians.
Example (Laugesen '96). \(\forall \varepsilon>0 \exists \Phi: \partial B \mapsto \partial B\) homeomorphism, such that \(|\Phi(x)-x|<\varepsilon, \forall x \in \partial B\) and the solution \(U=\left(u_{1}, u_{2}, u_{3}\right)\) to
\[
\begin{cases}\Delta U=0, & \text { in } \quad B, \\ U=\Phi, & \text { on } \quad \partial B .\end{cases}
\]
is not one-to-one.

Giovanni Alessandrini

An example
A priori assumptions Main Theorem Stability for |u|

\section*{Concluding remarks}

Example (Jin and Kazdan '91).
\(\exists \sigma \in C^{\infty}\left(\mathbb{R}^{3}\right), \lambda^{-1} I \leq \sigma \leq \lambda I\) and a solution \(U=\left(u_{1}, u_{2}, u_{3}\right)\) to
\[
\operatorname{div}(\sigma \nabla U)=0 \text { in } \mathbb{R}^{3}
\]
such that
\[
\begin{cases}\operatorname{det} D U=0, & \text { for } \\ \operatorname{det} D U>0 & x_{3} \leq 0, \\ \text { for } & x_{3}>0\end{cases}
\]
```

STABILITY
FOR
COUPLED
PHYSICS IPs

```

\section*{The end.}

Giovanni Alessandrini

\author{
Introduction
}

An example
A priori
assumptions
Main Theorem
Stability for \(|u|\)
Quantitative UCP

Concluding

\section*{remarks}

End

\section*{THANKS!}```

