Giovanni Alessandrini

Introduction

The basic problet Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

The inverse crack problem open issues and some new result

Giovanni Alessandrini¹

¹ M Università di Trieste

Inverse Problems in Analysis and Geometry Isaac Newton Institute, Cambridge 1-5 August 2011

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

The basic problem

Consider a body $\Omega \subset \mathbb{R}^3$ which might contain an unknown, inaccessible, crack represented by $\Sigma \subset \subset \Omega$, a two-dimensional orientable surface with boundary . We wish to recover Σ from electrostatic measurements taken on $\partial\Omega$.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problem:

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

The basic problem

Perfectly insulating crack

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The direct problem. Given Σ and given ψ on ∂ Ω such that $\int_{\partial \Omega} \psi = 0$, find *u* such that

$$\left\{ \begin{array}{ll} \Delta u = 0, & \text{in} & \Omega \setminus \Sigma, \\ \nabla u \cdot \nu^{\pm} = 0, & \text{on either side of} & \Sigma, \\ \nabla u \cdot \nu = \psi, & \text{on} & \partial \Omega. \end{array} \right.$$

The inverse problem. Find Σ given $u_k|_{\partial\Omega}$, k = 1, ..., K, with the potentials u_k corresponding to *suitable* finitely many choices of $\psi = \psi_1, ..., \psi_K$.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problem:

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

The basic problem

Perfectly insulating crack

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The direct problem. Given Σ and given ψ on ∂ Ω such that $\int_{\partial \Omega} \psi = 0$, find *u* such that

$$\left\{ \begin{array}{ll} \Delta u = 0, & \text{in} & \Omega \setminus \Sigma, \\ \nabla u \cdot \nu^{\pm} = 0, & \text{on either side of} & \Sigma, \\ \nabla u \cdot \nu = \psi, & \text{on} & \partial \Omega. \end{array} \right.$$

The inverse problem. Find Σ given $u_k|_{\partial\Omega}$, k = 1, ..., K, with the potentials u_k corresponding to *suitable* finitely many choices of $\psi = \psi_1, ..., \psi_K$.

Giovanni Alessandrini

Introduction

The basic probl Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Perfectly conducting crack.

$$\begin{cases} \Delta u = 0, & \text{in} \quad \Omega \setminus \Sigma, \\ u = const., & \text{on} \quad \Sigma, \\ \nabla u \cdot \nu = \psi, & \text{on} \quad \partial \Omega. \end{cases}$$

Crack with impedance.

 $\begin{cases} \Delta u = 0, & \text{in} & \Omega \setminus \Sigma, \\ -\nabla u \cdot \nu^{\pm} + \gamma^{\pm} u^{\pm} = 0, & \text{on either side of} & \Sigma, \\ \nabla u \cdot \nu = \psi, & \text{on} & \partial \Omega. \end{cases}$

here ν^+, ν^- are the unit outward normal vectors on the two sides of Σ and γ^+, γ^- are nonnegative functions.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Variants

Giovanni Alessandrini

Introduction

The basic probl Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Perfectly conducting crack.

$$\begin{cases} \Delta u = 0, & \text{in} \quad \Omega \setminus \Sigma, \\ u = const., & \text{on} \quad \Sigma, \\ \nabla u \cdot \nu = \psi, & \text{on} \quad \partial \Omega. \end{cases}$$

Crack with impedance.

 $\left\{ \begin{array}{ll} \Delta u = 0, & \text{in} & \Omega \setminus \Sigma, \\ -\nabla u \cdot \nu^{\pm} + \gamma^{\pm} u^{\pm} = 0, & \text{on either side of} & \Sigma, \\ \nabla u \cdot \nu = \psi, & \text{on} & \partial \Omega. \end{array} \right.$

here ν^+, ν^- are the unit outward normal vectors on the two sides of Σ and γ^+, γ^- are nonnegative functions.

Variants

Giovanni Alessandrini

Introduction

The basic probler Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Further variants

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

2D model. $\Omega \subset \mathbb{R}^2$, Σ simple arc.

Multiple cracks. Σ disjoint union of finitely many cracks Σ_j .

Full boundary data.

$$N_{\Sigma}: \nabla u \cdot \nu|_{\partial\Omega} \to u|_{\partial\Omega}$$
.

or otherwise

 $\Lambda_{\Sigma}: u|_{\partial\Omega} \to \nabla u \cdot \nu|_{\partial\Omega}$.

Giovanni Alessandrini

Introduction

The basic probler Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Further variants

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

2D model. $\Omega \subset \mathbb{R}^2$, Σ simple arc.

Multiple cracks. Σ disjoint union of finitely many cracks Σ_i .

Full boundary data.

 $N_{\Sigma}: \nabla u \cdot \nu|_{\partial\Omega} \to u|_{\partial\Omega}$.

or otherwise

 $\Lambda_{\Sigma}: u|_{\partial\Omega} \to \nabla u \cdot \nu|_{\partial\Omega}$.

Giovanni Alessandrini

Introduction

The basic probler Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Further variants

▲□▶▲□▶▲□▶▲□▶ □ のQ@

2D model. $\Omega \subset \mathbb{R}^2$, Σ simple arc.

Multiple cracks. Σ disjoint union of finitely many cracks Σ_j .

Full boundary data.

$$N_{\Sigma}: \nabla u \cdot \nu|_{\partial \Omega} \to u|_{\partial \Omega}$$
.

or otherwise

 $\Lambda_{\Sigma}: u|_{\partial\Omega} \to \nabla u \cdot \nu|_{\partial\Omega}$.

Giovanni Alessandrini

Introduction

The basic probler Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Further variants

▲□▶▲□▶▲□▶▲□▶ □ のQ@

2D model. $\Omega \subset \mathbb{R}^2$, Σ simple arc.

Multiple cracks. Σ disjoint union of finitely many cracks Σ_j .

Full boundary data.

$$N_{\Sigma}: \nabla u \cdot \nu|_{\partial \Omega} \to u|_{\partial \Omega}$$
.

or otherwise

$$\Lambda_{\Sigma}: u|_{\partial\Omega} \to \nabla u \cdot \nu|_{\partial\Omega}$$

Giovanni Alessandrini

Introduction

The basic probler Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Further variants

▲□▶▲□▶▲□▶▲□▶ □ のQ@

2D model. $\Omega \subset \mathbb{R}^2$, Σ simple arc.

Multiple cracks. Σ disjoint union of finitely many cracks Σ_j .

Full boundary data.

$$N_{\Sigma}: \nabla u \cdot \nu|_{\partial \Omega} \to u|_{\partial \Omega}$$
.

or otherwise

$$\Lambda_{\Sigma}: u|_{\partial\Omega} \to \nabla u \cdot \nu|_{\partial\Omega}$$

Giovanni Alessandrini

Results in 2D. Uniqueness.

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Introduction

The basic problem Variants

Known results

2D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Single crack: Friedman-Vogelius '89.

- Two measurements are necessary.
- Two suitable measurements suffice.
- Duality conducting-insulating cracks.

Multiple cracks: Bryan-Vogelius '92. A.-Diaz Valenzuela '96. Kim-Seo '96.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 2D. Uniqueness.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Single crack: Friedman-Vogelius '89.

- Two measurements are necessary.
- Two suitable measurements suffice.
- Duality conducting-insulating cracks.

Multiple cracks: Bryan-Vogelius '92. A.-Diaz Valenzuela '96. Kim-Seo '96.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 2D. Uniqueness.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Single crack: Friedman-Vogelius '89.

- Two measurements are necessary.
- Two suitable measurements suffice.
- Duality conducting-insulating cracks.

Multiple cracks: Bryan-Vogelius '92. A.-Diaz Valenzuela '96. Kim-Seo '96.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 2D. Uniqueness.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Single crack: Friedman-Vogelius '89.

- Two measurements are necessary.
- Two suitable measurements suffice.
- Duality conducting-insulating cracks.

Multiple cracks: Bryan-Vogelius '92. A.-Diaz Valenzuela '96. Kim-Seo '96.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 2D. Uniqueness.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Single crack: Friedman-Vogelius '89.

- Two measurements are necessary.
- Two suitable measurements suffice.
- Duality conducting-insulating cracks.

Multiple cracks: Bryan-Vogelius '92. A.-Diaz Valenzuela '96. Kim-Seo '96.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 2D. Uniqueness.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Single crack: Friedman-Vogelius '89.

- Two measurements are necessary.
- Two suitable measurements suffice.
- Duality conducting-insulating cracks.

Multiple cracks: Bryan-Vogelius '92. A.-Diaz Valenzuela '96. Kim-Seo '96.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 2D. Uniqueness.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Single crack: Friedman-Vogelius '89.

- Two measurements are necessary.
- Two suitable measurements suffice.
- Duality conducting-insulating cracks.

Multiple cracks: Bryan-Vogelius '92. A.-Diaz Valenzuela '96. Kim-Seo '96.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 2D. Stability

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A. '93. A.-Rondi '99, Rondi '99, Rondi '05. Under a-priori regularity (Lipschitz) assumptions on the unknown (multiple) crack the mapping

data \rightarrow crack

is continuous with a logarithmic modulus of continuity.

Di Cristo-Rondi '03. Logarithmic continuity is optimal also with full boundary data.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Stability

Results in 2D

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A. '93. A.-Rondi '99, Rondi '99, Rondi '05. Under a-priori regularity (Lipschitz) assumptions on the unknown (multiple) crack the mapping

data \rightarrow crack

is continuous with a logarithmic modulus of continuity.

Di Cristo-Rondi '03.

Logarithmic continuity is optimal also with full boundary data.

Giovanni Alessandrini

Introduction

The basic problem Variants

2D 2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 3D.

ubo '91. Uniqueness for a planar perfectly insulating crack ith 3 suitable measurements.

Eller '96. Uniqueness for a crack with impedance with full boundary data.

A.-DiBenedetto '97.

- Uniqueness for multiple perfectly conducting cracks with 2 suitable measurements.
- 2 Stability for a planar perfectly conducting crack.
- Oniqueness for multiple perfectly insulating planar cracks with 2 suitable measurements.

Giovanni Alessandrini

Introduction

The basic problem Variants

2D 2D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 3D.

Kubo '91. Uniqueness for a planar perfectly insulating crack with 3 suitable measurements.

Eller '96. Uniqueness for a crack with impedance with full poundary data.

- A.-DiBenedetto '97.
 - Uniqueness for multiple perfectly conducting cracks with 2 suitable measurements.
 - 2 Stability for a planar perfectly conducting crack.
 - Oniqueness for multiple perfectly insulating planar cracks with 2 suitable measurements.

Giovanni Alessandrini

Introduction

The basic problem Variants

2D 2D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 3D.

Kubo '91. Uniqueness for a planar perfectly insulating crack with 3 suitable measurements.

Eller '96. Uniqueness for a crack with impedance with full boundary data.

A.-DiBenedetto '97.

- Uniqueness for multiple perfectly conducting cracks with 2 suitable measurements.
- 2 Stability for a planar perfectly conducting crack.
- Oniqueness for multiple perfectly insulating planar cracks with 2 suitable measurements.

Giovanni Alessandrini

Introduction

The basic problem Variants

2D 2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 3D.

Kubo '91. Uniqueness for a planar perfectly insulating crack with 3 suitable measurements.

Eller '96. Uniqueness for a crack with impedance with full boundary data.

A.-DiBenedetto '97.

- Uniqueness for multiple perfectly conducting cracks with 2 suitable measurements.
- 2 Stability for a planar perfectly conducting crack.
- Oniqueness for multiple perfectly insulating planar cracks with 2 suitable measurements.

Giovanni Alessandrini

Introduction

The basic problem Variants

2D 2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 3D.

Kubo '91. Uniqueness for a planar perfectly insulating crack with 3 suitable measurements.

Eller '96. Uniqueness for a crack with impedance with full boundary data.

- A.-DiBenedetto '97.
 - Uniqueness for multiple perfectly conducting cracks with 2 suitable measurements.
 - 2 Stability for a planar perfectly conducting crack.
 - Oniqueness for multiple perfectly insulating planar cracks with 2 suitable measurements.

Giovanni Alessandrini

Introduction

The basic problem Variants

2D 2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 3D.

Kubo '91. Uniqueness for a planar perfectly insulating crack with 3 suitable measurements.

Eller '96. Uniqueness for a crack with impedance with full boundary data.

- A.-DiBenedetto '97.
 - Uniqueness for multiple perfectly conducting cracks with 2 suitable measurements.
 - 2 Stability for a planar perfectly conducting crack.
 - Our cracks with 2 suitable measurements.

Giovanni Alessandrini

Introduction

The basic problem Variants

2D 2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Results in 3D.

Kubo '91. Uniqueness for a planar perfectly insulating crack with 3 suitable measurements.

Eller '96. Uniqueness for a crack with impedance with full boundary data.

- A.-DiBenedetto '97.
 - Uniqueness for multiple perfectly conducting cracks with 2 suitable measurements.
 - 2 Stability for a planar perfectly conducting crack.
 - Output of the second second

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Main open problems in 3D.

- Uniqueness and stability for cracks in known inhomogeneous medium.
- 2 Uniqueness for curved insulating cracks, with finitely many measurements.
- Stability for curved cracks, conducting and insulating.

イロン 不得 とくほ とくほ とうほ

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Main open problems in 3D.

1 Uniqueness and stability for cracks in known inhomogeneous medium.

2 Uniqueness for curved insulating cracks, with finitely many measurements.

Stability for curved cracks, conducting and insulating.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Main open problems in 3D.

- 1 Uniqueness and stability for cracks in known inhomogeneous medium.
- 2 Uniqueness for curved insulating cracks, with finitely many measurements.

Stability for curved cracks, conducting and insulating.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Main open problems in 3D.

- 1 Uniqueness and stability for cracks in known inhomogeneous medium.
- 2 Uniqueness for curved insulating cracks, with finitely many measurements.
- 3 Stability for curved cracks, conducting and insulating.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces

Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Conducting crack in 3D.

The result of uniqueness in A.-DiBenedetto is as follows.

Given three distinct points $P, Q_1, Q_2 \in \partial\Omega$, prescribe boundary current densities $\psi_1 = \delta_P - \delta_{Q_1}, \psi_2 = \delta_P - \delta_{Q_2}$. The corresponding boundary potentials $u_1|_{\partial\Omega}, u_2|_{\partial\Omega}$ uniquely determine Σ .

Question. Can this result be extended to inhomogeneous media?

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data

Singular solution: An identity

End

Conducting crack in 3D.

The result of uniqueness in A.-DiBenedetto is as follows.

Given three distinct points $P, Q_1, Q_2 \in \partial\Omega$, prescribe boundary current densities $\psi_1 = \delta_P - \delta_{Q_1}, \psi_2 = \delta_P - \delta_{Q_2}$. The corresponding boundary potentials $u_1|_{\partial\Omega}, u_2|_{\partial\Omega}$ uniquely determine Σ .

Question. Can this result be extended to inhomogeneous media?

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces

Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

One crucial step in the proof.

Let *S* be a regular connected surface in an open set $G \subset \mathbb{R}^3$, let *S'* be a nonempty open subset of *S*. Let *u* and *v* be two harmonic functions in $G \subset \mathbb{R}^3$. If $u \equiv c = const.$ on *S* and $v \equiv b = const.$ on *S'*, then $v \equiv b$ on all of *S*.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Unique continuation along level surfaces.

Problem (A.-Favaron, '00)

Let S, S' be as above. Let \mathcal{L} be a second order elliptic operator with Lipschitz coefficients in the principal part. Let u, v solve

$$\mathcal{L}u = \mathcal{L}v = 0$$
 in G .

Is it true that, if $u \equiv c = const.$ on S and $v \equiv b = const.$ on S', then $v \equiv b$ on all of S?

Giovanni Alessandrini

Introduction

The basic problet Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces

Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Uniqueness in 2D, in a nutshell.

$$\left\{ \begin{array}{ll} \Delta u = 0, & \text{in} & \Omega \setminus \Sigma, \\ \nabla u \cdot \nu^{\pm} = 0, & \text{on either side of} & \Sigma, \\ \nabla u \cdot \nu = \psi, & \text{on} & \partial \Omega. \end{array} \right.$$

There exist pairs of boundary current densities ψ_1, ψ_2 such that (no matter which is Σ) the map $U = (u_1, u_2)$ is such that

det $\textit{DU} \neq 0$ everywhere in $\Omega \setminus \Sigma$.

Question. Can this result be extended to 3D? Can we find current densities ψ_1, ψ_2, ψ_3 such that (no matter which is Σ) the map $U = (u_1, u_2, u_3)$ is such that

det $DU \neq 0$ everywhere in $\Omega \setminus \Sigma$?

Giovanni Alessandrini

Introduction

The basic problet Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces

Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

```
End
```

Uniqueness in 2D, in a nutshell.

$$\left\{ \begin{array}{ll} \Delta u = 0, & \text{in} & \Omega \setminus \Sigma, \\ \nabla u \cdot \nu^{\pm} = 0, & \text{on either side of} & \Sigma, \\ \nabla u \cdot \nu = \psi, & \text{on} & \partial \Omega. \end{array} \right.$$

There exist pairs of boundary current densities ψ_1, ψ_2 such that (no matter which is Σ) the map $U = (u_1, u_2)$ is such that

det $DU \neq 0$ everywhere in $\Omega \setminus \Sigma$.

Question. Can this result be extended to 3D? Can we find current densities ψ_1, ψ_2, ψ_3 such that (no matter which is Σ) the map $U = (u_1, u_2, u_3)$ is such that

det $DU \neq 0$ everywhere in $\Omega \setminus \Sigma$?

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces

Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Theorem (Radó, Kneser, Choquet)

Let $\Omega \subset \mathbb{R}^2$ be simply connected. Let $D \subset \mathbb{R}^2$ be a convex domain.

Given a homeomorphism $\Phi:\partial\Omega\mapsto\partial D$, consider the solution $U=(u_1,u_2):\Omega\mapsto\mathbb{R}^2$ to the following Dirichlet problem

$$\left\{ \begin{array}{ll} \Delta U=0, & \mbox{in} & \Omega, \\ U=\Phi, & \mbox{on} & \partial\Omega. \end{array}
ight.$$

then (Radó '26, Kneser '26, Choquet '45) U is a homeomorphism of $\overline{\Omega} \mapsto \overline{D}$ and (Lewy '36) det $DU \neq 0$ in B

The ancestor.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces

Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Theorem (Radó, Kneser, Choquet)

Let $\Omega \subset \mathbb{R}^2$ be simply connected. Let $D \subset \mathbb{R}^2$ be a convex domain.

The ancestor.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Given a homeomorphism $\Phi : \partial\Omega \mapsto \partial D$, consider the solution $U = (u_1, u_2) : \Omega \mapsto \mathbb{R}^2$ to the following Dirichlet problem

$$\left\{ \begin{array}{ll} \Delta U=0, & \textit{in} \quad \Omega, \\ U=\Phi, & \textit{on} \quad \partial \Omega. \end{array}
ight.$$

then (Radó '26, Kneser '26, Choquet '45) U is a homeomorphism of $\overline{\Omega} \mapsto \overline{D}$ and (Lewy '36) det $DU \neq 0$ in B.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces

Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Counterexamples in 3D.

Wood '74. There exists a harmonic homeomorphism $U : \mathbb{R}^3 \mapsto \mathbb{R}^3$ such that det DU(0) = 0.

Melas '93. There exists a harmonic homeomorphism $U:\overline{B}\mapsto \overline{B},\,B\subset \mathbb{R}^3$ unit ball, such that det DU(0)=0.

Laugesen '96. $\forall \varepsilon > 0 \exists \Phi : \partial B \mapsto \partial B$ homeomorphism, such that $|\Phi(x) - x| < \varepsilon, \forall x \in \partial B$ and the solution *U* to

$$\left(\begin{array}{cc} \Delta U=0, & {
m in} & B, \\ U=\Phi, & {
m on} & \partial B. \end{array}
ight.$$

is not one-to-one.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces

Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Counterexamples in 3D.

Wood '74. There exists a harmonic homeomorphism $U : \mathbb{R}^3 \mapsto \mathbb{R}^3$ such that det DU(0) = 0.

Welas '93. There exists a harmonic homeomorphism $U:\overline{B}\mapsto \overline{B},\,B\subset \mathbb{R}^3$ unit ball, such that det DU(0)=0.

Laugesen '96. $\forall \varepsilon > 0 \exists \Phi : \partial B \mapsto \partial B$ homeomorphism, such that $|\Phi(x) - x| < \varepsilon, \forall x \in \partial B$ and the solution *U* to

$$\left\{ \begin{array}{ccc} \Delta U=0, & {
m in} & B, \\ U=\Phi, & {
m on} & \partial B. \end{array}
ight.$$

is not one-to-one.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces

Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Counterexamples in 3D.

Wood '74. There exists a harmonic homeomorphism $U : \mathbb{R}^3 \mapsto \mathbb{R}^3$ such that det DU(0) = 0.

Melas '93. There exists a harmonic homeomorphism $U: \overline{B} \mapsto \overline{B}, B \subset \mathbb{R}^3$ unit ball, such that det DU(0) = 0.

Laugesen '96. $\forall \varepsilon > 0 \exists \Phi : \partial B \mapsto \partial B$ homeomorphism, such that $|\Phi(x) - x| < \varepsilon, \forall x \in \partial B$ and the solution *U* to

$$\left\{ \begin{array}{ccc} \Delta U=0, & {
m in} & B, \\ U=\Phi, & {
m on} & \partial B. \end{array}
ight.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

is not one-to-one.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces

Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Counterexamples in 3D.

Wood '74. There exists a harmonic homeomorphism $U : \mathbb{R}^3 \mapsto \mathbb{R}^3$ such that det DU(0) = 0.

Melas '93. There exists a harmonic homeomorphism $U: \overline{B} \mapsto \overline{B}, B \subset \mathbb{R}^3$ unit ball, such that det DU(0) = 0.

Laugesen '96. $\forall \varepsilon > 0 \exists \Phi : \partial B \mapsto \partial B$ homeomorphism, such that $|\Phi(x) - x| < \varepsilon, \forall x \in \partial B$ and the solution *U* to

$$\left\{ egin{array}{ccc} \Delta U=0, & {
m in} & B, \ U=\Phi, & {
m on} & \partial B. \end{array}
ight.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

is not one-to-one.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces

Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

A relaxed question.

In order to prove uniqueness for an insulating crack it would be sufficient to prove that we can find current densities ψ_1, ψ_2, ψ_3 such that, for any Σ and for any regular surface $S \subset \Omega \setminus \Sigma$ there exists one potential u_i , corresponding to the current density ψ_i , such that $\nabla u_i \cdot \nu$ does not identically vanish on *S*.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open

Unique continuation along level surfaces

Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

A relaxed question.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Problem

Let $U = (u_1, u_2, u_3)$ be the map whose components solve

To find ψ_1, ψ_2, ψ_3 such that, for any Σ , the set

 $S = \{x \in \Omega \setminus \Sigma | detDU(x) = 0, (DU \nabla detDU)(x) = 0\}$

has at most dimension 1.

Giovanni Alessandrini

Introduction

The basic probler Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data

Singular solution An identity

End

Stability with full boundary data.

$$\begin{aligned} &\Delta u = \mathbf{0}, & \text{in} & \Omega \setminus \Sigma, \\ &-\nabla u \cdot \nu^{\pm} + \gamma^{\pm} u^{\pm} = \mathbf{0}, & \text{on either side of} & \Sigma, \\ &\nabla u \cdot \nu = \psi, & \text{on} & \partial \Omega. \end{aligned}$$

$$N_{\Sigma}:\psi
ightarrow U|_{\partial\Omega}$$
.

Theorem (A.-Sincich)

Under a-priori $C^{1,\alpha}$ regularity assumption on Σ , the map

 $N_{\Sigma} \to \Sigma$

・ コット (雪) (小田) (コット 日)

is continuous with logarithmic modulus of continuity.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data

Singular solution An identity

End

Stability with full boundary data.

$$\begin{array}{ll} \Delta u = 0, & \text{in} & \Omega \setminus \Sigma, \\ -\nabla u \cdot \nu^{\pm} + \gamma^{\pm} u^{\pm} = 0, & \text{on either side of} & \Sigma, \\ \nabla u \cdot \nu = \psi, & \text{on} & \partial \Omega. \end{array}$$

$$N_{\Sigma}:\psi
ightarrow U|_{\partial\Omega}$$
.

Theorem (A.-Sincich)

Under a-priori $C^{1,\alpha}$ regularity assumption on Σ , the map

 $N_{\Sigma} \to \Sigma$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

is continuous with logarithmic modulus of continuity.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data

Singular solutions An identity

End

Method of singular solutions.

Uniqueness.

• Isakov '88. Inclusion problem div $((1 + \chi_D)\nabla u) = 0$.

• Eller '96.

Stability.

- A. '90, A.-Gaburro '01,'09, Salo '04, A.-Vessella '05, Gaburro-Lionheart '09. Inverse conductivity problem and variants.
- A.-Di Cristo '05. Inclusion problem. Di Cristo-Vessella '10. Time dependent inclusion ut - div ((1 + χ_{D(t)})∇u) = 0.
 Di Cristo '09. Inverse scattering of a penetrable obstacle.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Reconstruction.

Giovanni Alessandrini

Introduction

The basic probler Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data

Singular solutions An identity

End

Method of singular solutions.

Uniqueness.

• Isakov '88. Inclusion problem div $((1 + \chi_D)\nabla u) = 0$.

• Eller '96.

Stability.

- A. '90, A.-Gaburro '01,'09, Salo '04, A.-Vessella '05, Gaburro-Lionheart '09. Inverse conductivity problem and variants.
- A.-Di Cristo '05. Inclusion problem. Di Cristo-Vessella '10. Time dependent inclusion ut - div ((1 + χ_{D(t)})∇u) = 0.
 Di Cristo '09. Inverse scattering of a penetrable obstacle.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Reconstruction.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data

Singular solutions An identity

End

Method of singular solutions.

Uniqueness.

- Isakov '88. Inclusion problem div $((1 + \chi_D)\nabla u) = 0$.
- Eller '96.

Stability.

- A. '90, A.-Gaburro '01,'09, Salo '04, A.-Vessella '05, Gaburro-Lionheart '09. Inverse conductivity problem and variants.
- A.-Di Cristo '05. Inclusion problem. Di Cristo-Vessella '10. Time dependent inclusion u_t - div ((1 + χ_{D(t)})∇u) = 0. Di Cristo '09. Inverse scattering of a penetrable obstacle.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Reconstruction.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data

Singular solutions An identity

End

Method of singular solutions.

Uniqueness.

- Isakov '88. Inclusion problem div $((1 + \chi_D)\nabla u) = 0$.
- Eller '96.

Stability.

- A. '90, A.-Gaburro '01,'09, Salo '04, A.-Vessella '05, Gaburro-Lionheart '09. Inverse conductivity problem and variants.
 - A.-Di Cristo '05. Inclusion problem. Di Cristo-Vessella '10. Time dependent inclusion ut - div ((1 + χ_{D(t)})∇u) = 0. Di Cristo '09. Inverse scattering of a penetrable obstacle.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Reconstruction.

Giovanni Alessandrini

Introduction

The basic problen Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data

Singular solutions An identity

End

Method of singular solutions.

Uniqueness.

- Isakov '88. Inclusion problem div $((1 + \chi_D)\nabla u) = 0$.
- Eller '96.

Stability.

- A. '90, A.-Gaburro '01,'09, Salo '04, A.-Vessella '05, Gaburro-Lionheart '09. Inverse conductivity problem and variants.
- A.-Di Cristo '05. Inclusion problem. Di Cristo-Vessella '10. Time dependent inclusion u_t - div ((1 + χ_{D(t)})∇u) = 0. Di Cristo '09. Inverse scattering of a penetrable obstacle.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reconstruction.

Giovanni Alessandrini

Introduction

The basic problen Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data

Singular solutions An identity

End

Method of singular solutions.

Uniqueness.

- Isakov '88. Inclusion problem div $((1 + \chi_D)\nabla u) = 0$.
- Eller '96.

Stability.

- A. '90, A.-Gaburro '01,'09, Salo '04, A.-Vessella '05, Gaburro-Lionheart '09. Inverse conductivity problem and variants.
- A.-Di Cristo '05. Inclusion problem. Di Cristo-Vessella '10. Time dependent inclusion u_t - div ((1 + χ_{D(t)})∇u) = 0. Di Cristo '09. Inverse scattering of a penetrable obstacle.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reconstruction.

Giovanni Alessandrini

Introduction

The basic problen Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data

Singular solutions An identity

End

Method of singular solutions.

Uniqueness.

- Isakov '88. Inclusion problem div $((1 + \chi_D)\nabla u) = 0$.
- Eller '96.

Stability.

- A. '90, A.-Gaburro '01,'09, Salo '04, A.-Vessella '05, Gaburro-Lionheart '09. Inverse conductivity problem and variants.
- A.-Di Cristo '05. Inclusion problem. Di Cristo-Vessella '10. Time dependent inclusion u_t - div ((1 + χ_{D(t)})∇u) = 0. Di Cristo '09. Inverse scattering of a penetrable obstacle.

Reconstruction.

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

Let Σ_1, Σ_2 be two cracks, u_1, u_2 be corresponding solutions with data ψ_1, ψ_2 and let N_1, N_2 be the associated Neumann-Dirichlet maps.

$$<\psi_1, (N_2 - N_1)\psi_2> =$$

$$= \int_{\Sigma_1 \setminus \Sigma_2} (u_2[\partial_{\nu_1} u_1]_1 - [u_1]_1 \partial_{\nu_1} u_2) \, d\sigma + \\ + \int_{\Sigma_2 \setminus \Sigma_1} ([u_2]_2 \partial_{\nu_2} u_1 - u_1[\partial_{\nu_2} u_2]_2) \, d\sigma + \\ + \int_{\Sigma_1 \cap \Sigma_2} ([u_2 \partial_{\nu_1} u_1]_1 - [u_1 \partial_{\nu_2} u_2]_2) \, d\sigma .$$

Here

 $[\cdot]_i = \text{ jump across } \Sigma_i \text{ w.r.t. the normal } \nu_i$.

An identity.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

The Robin function.

Fix $\widetilde{\Omega}$ such that $\Omega \subset \subset \widetilde{\Omega}$, for any $y \in \widetilde{\Omega} \setminus \Sigma_i$ consider $R_i(x, y)$ solution to

 $\left\{ \begin{array}{l} \Delta R_i(\cdot, y) = -\delta(\cdot - y), \text{ in } \widetilde{\Omega} \setminus \Sigma_i \ , \\ -\nabla R_i(\cdot, y) \cdot \nu^{\pm} + \gamma_i^{\pm} R_i(\cdot, y)^{\pm} = 0, \text{ on either side of } \Sigma \ , \\ \nabla R_i(\cdot, y) \cdot \nu = -\frac{1}{|\partial \widetilde{\Omega}|}, \text{ on } \partial \widetilde{\Omega} \ . \end{array} \right.$

For any $y, w \in \widetilde{\Omega} \setminus \overline{\Omega}$ we can choose $u_1 = R_1(\cdot, y), u_2 = R_2(\cdot, w)$ and apply the identity.

 $\begin{aligned} &< \partial_{\nu} R_{1}(\cdot, y), (N_{2} - N_{1}) \partial_{\nu} R_{2}(\cdot, w) > = \\ &= \int_{\Sigma_{1} \setminus \Sigma_{2}} (R_{2}(\cdot, w) [\gamma_{1} R_{1}(\cdot, y)]_{1} - [R_{1}(\cdot, y)]_{1} \partial_{\nu_{1}} R_{2}(\cdot, w)) \, d\sigma + \\ &+ \int_{\Sigma_{2} \setminus \Sigma_{1}} ([R_{2}(\cdot, w)]_{2} \partial_{\nu_{2}} R_{1}(\cdot, y) - R_{1}(\cdot, y) [\gamma_{2} R_{2}(\cdot, w)]_{2}) \, d\sigma + \\ &+ \int_{\Sigma_{1} \cap \Sigma_{2}} [(\gamma_{1} - \gamma_{2}) R_{1}(\cdot, y) R_{2}(\cdot, w)]_{1} \, d\sigma . \end{aligned}$

Giovanni Alessandrini

Introduction

The basic problem Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

The Robin function.

Fix $\widetilde{\Omega}$ such that $\Omega \subset \subset \widetilde{\Omega}$, for any $y \in \widetilde{\Omega} \setminus \Sigma_i$ consider $R_i(x, y)$ solution to

 $\begin{cases} \Delta R_i(\cdot, y) = -\delta(\cdot - y), \text{ in } \widetilde{\Omega} \setminus \Sigma_i ,\\ -\nabla R_i(\cdot, y) \cdot \nu^{\pm} + \gamma_i^{\pm} R_i(\cdot, y)^{\pm} = 0, \text{ on either side of } \Sigma ,\\ \nabla R_i(\cdot, y) \cdot \nu = -\frac{1}{|\partial \widetilde{\Omega}|}, \text{ on } \partial \widetilde{\Omega} . \end{cases}$

For any $y, w \in \widetilde{\Omega} \setminus \overline{\Omega}$ we can choose $u_1 = R_1(\cdot, y), u_2 = R_2(\cdot, w)$ and apply the identity.

 $\begin{aligned} &< \partial_{\nu} R_{1}(\cdot, y), (N_{2} - N_{1}) \partial_{\nu} R_{2}(\cdot, w) > = \\ &= \int_{\Sigma_{1} \setminus \Sigma_{2}} (R_{2}(\cdot, w) [\gamma_{1} R_{1}(\cdot, y)]_{1} - [R_{1}(\cdot, y)]_{1} \partial_{\nu_{1}} R_{2}(\cdot, w)) \, d\sigma + \\ &+ \int_{\Sigma_{2} \setminus \Sigma_{1}} ([R_{2}(\cdot, w)]_{2} \partial_{\nu_{2}} R_{1}(\cdot, y) - R_{1}(\cdot, y) [\gamma_{2} R_{2}(\cdot, w)]_{2}) \, d\sigma + \\ &+ \int_{\Sigma_{1} \cap \Sigma_{2}} [(\gamma_{1} - \gamma_{2}) R_{1}(\cdot, y) R_{2}(\cdot, w)]_{1} \, d\sigma . \end{aligned}$

Giovanni Alessandrini

Introduction

The basic probler Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

The scheme of the proof.

For any $y, w \in \widetilde{\Omega} \setminus (\Sigma_1 \cup \Sigma_2)$ consider

$$\begin{split} F(y,w) &= \\ &= \int_{\Sigma_1 \setminus \Sigma_2} \left(R_2(\cdot,w) [\gamma_1 R_1(\cdot,y)]_1 - [R_1(\cdot,y)]_1 \partial_{\nu_1} R_2(\cdot,w) \right) d\sigma + \\ &+ \int_{\Sigma_2 \setminus \Sigma_1} \left([R_2(\cdot,w)]_2 \partial_{\nu_2} R_1(\cdot,y) - R_1(\cdot,y) [\gamma_2 R_2(\cdot,w)]_2 \right) d\sigma + \\ &+ \int_{\Sigma_1 \cap \Sigma_2} [(\gamma_1 - \gamma_2) R_1(\cdot,y) R_2(\cdot,w)]_1 d\sigma \,. \end{split}$$

- If y, w ∈ Ω \ Ω (and away from ∂Ω) F(y, w) is dominated by ||N₁ − N₂||.
- $F(\cdot, w), F(y, \cdot)$ are harmonic in $\widetilde{\Omega} \setminus (\Sigma_1 \cup \Sigma_2)$.
- If $x \in \Sigma_1 \setminus \Sigma_2$ then F(y, w) blows up as $y, w \to x$.

Giovanni Alessandrini

Introduction

The basic probler Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

The scheme of the proof.

For any $y, w \in \widetilde{\Omega} \setminus (\Sigma_1 \cup \Sigma_2)$ consider

$$\begin{split} F(y,w) &= \\ &= \int_{\Sigma_1 \setminus \Sigma_2} (R_2(\cdot,w)[\gamma_1 R_1(\cdot,y)]_1 - [R_1(\cdot,y)]_1 \partial_{\nu_1} R_2(\cdot,w)) \, d\sigma + \\ &+ \int_{\Sigma_2 \setminus \Sigma_1} ([R_2(\cdot,w)]_2 \partial_{\nu_2} R_1(\cdot,y) - R_1(\cdot,y)[\gamma_2 R_2(\cdot,w)]_2) \, d\sigma + \\ &+ \int_{\Sigma_1 \cap \Sigma_2} [(\gamma_1 - \gamma_2) R_1(\cdot,y) R_2(\cdot,w)]_1 \, d\sigma \, . \end{split}$$

- If y, w ∈ Ω \ Ω (and away from ∂Ω) F(y, w) is dominated by ||N₁ − N₂||.
- $F(\cdot, w), F(y, \cdot)$ are harmonic in $\widetilde{\Omega} \setminus (\Sigma_1 \cup \Sigma_2)$.
- If $x \in \Sigma_1 \setminus \Sigma_2$ then F(y, w) blows up as $y, w \to x$.

Giovanni Alessandrini

Introduction

The basic probler Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

The scheme of the proof.

For any $y, w \in \widetilde{\Omega} \setminus (\Sigma_1 \cup \Sigma_2)$ consider

$$\begin{split} F(y,w) &= \\ &= \int_{\Sigma_1 \setminus \Sigma_2} (R_2(\cdot,w)[\gamma_1 R_1(\cdot,y)]_1 - [R_1(\cdot,y)]_1 \partial_{\nu_1} R_2(\cdot,w)) \, d\sigma + \\ &+ \int_{\Sigma_2 \setminus \Sigma_1} ([R_2(\cdot,w)]_2 \partial_{\nu_2} R_1(\cdot,y) - R_1(\cdot,y)[\gamma_2 R_2(\cdot,w)]_2) \, d\sigma + \\ &+ \int_{\Sigma_1 \cap \Sigma_2} [(\gamma_1 - \gamma_2) R_1(\cdot,y) R_2(\cdot,w)]_1 \, d\sigma \, . \end{split}$$

- If y, w ∈ Ω \ Ω (and away from ∂Ω) F(y, w) is dominated by ||N₁ − N₂||.
- $F(\cdot, w), F(y, \cdot)$ are harmonic in $\widetilde{\Omega} \setminus (\Sigma_1 \cup \Sigma_2)$.
- If $x \in \Sigma_1 \setminus \Sigma_2$ then F(y, w) blows up as $y, w \to x$.

Giovanni Alessandrini

Introduction

The basic probler Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

The scheme of the proof.

For any
$$y, w \in \widetilde{\Omega} \setminus (\Sigma_1 \cup \Sigma_2)$$
 consider

$$\begin{split} F(y,w) &= \\ &= \int_{\Sigma_1 \setminus \Sigma_2} (R_2(\cdot,w)[\gamma_1 R_1(\cdot,y)]_1 - [R_1(\cdot,y)]_1 \partial_{\nu_1} R_2(\cdot,w)) \, d\sigma + \\ &+ \int_{\Sigma_2 \setminus \Sigma_1} ([R_2(\cdot,w)]_2 \partial_{\nu_2} R_1(\cdot,y) - R_1(\cdot,y)[\gamma_2 R_2(\cdot,w)]_2) \, d\sigma + \\ &+ \int_{\Sigma_1 \cap \Sigma_2} [(\gamma_1 - \gamma_2) R_1(\cdot,y) R_2(\cdot,w)]_1 \, d\sigma \, . \end{split}$$

- If y, w ∈ Ω \ Ω (and away from ∂Ω) F(y, w) is dominated by ||N₁ − N₂||.
- $F(\cdot, w), F(y, \cdot)$ are harmonic in $\widetilde{\Omega} \setminus (\Sigma_1 \cup \Sigma_2)$.
- If $x \in \Sigma_1 \setminus \Sigma_2$ then F(y, w) blows up as $y, w \to x$.

Giovanni Alessandrini

Introduction

The basic probler Variants

Known results

2D 3D

Open problems

Unique continuation along level surfaces Insulating cracks and harmonic maps in 3D

Stability with full boundary data Singular solutions An identity

End

The end.

from en.wikipedia

(日) (圖) (E) (E) (E)

THANKS!