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A family of problems

Consider a body Ω ⊂ Rn which might contain an unknown,
inaccessible, cavity D (or an inclusion). To detect the
presence and the shape of D from measurements taken
from the exterior, accessible, boundary of Ω, when some
field (electric, electromagnetic, thermal, elastic, . . . ) is
applied to it.



Unknown
Boundaries

Giovanni
Alessandrini

Introduction

Insulating
cavity in a
conductor.
Strategy for
uniqueness.

Tools for stability.

Cavity with
boundary
impedance.

Rigid inclusion
in an elastic
body.

End.

A family of problems

• Ω electrical conductor, D cavity with insulating
boundary,

• Ω electrical conductor, D perfectly conducting inclusion,

Andrieux, Ben Abda, Jaoua (1993), Beretta, Vessella
(1996), Bukhgeim, Cheng, Yamamoto (1998, 1999, 2000)
Cheng, Hon and Yamamoto (2001), A., Beretta, Rosset,
Vessella (2000), A., Rondi (2001).

• Ω electrical conductor, D cavity with boundary
impedance,

Cakoni, Kress (2007), Rundell (2008), Bacchelli (2009),
Pagani, Pierotti (2009), Sincich (2010).
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A family of problems

• Ω elastic body, D cavity,

Higashimori (2002), Morassi, Rosset (2004).

• Ω elastic body, D rigid inclusion,

Morassi, Rosset (2009).

• Ω fluid container, D immersed body,

Alvarez, Conca, Friz, Kavian, Ortega (2005), Doubova,
Fernández-Cara, González-Burgos, Ortega (2006),
Doubova, Fernández-Cara, Ortega (2007), Ballerini (2010).
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The prototype.
insulating cavity in a conductor

Assume Ω \ D connected.
∆u = 0, in Ω \ D,
∇u · ν = 0, on ∂D,
∇u · ν = ψ, on ∂Ω.

ν exterior unit normal to ∂(Ω \ D).
∫
∂Ω ψ = 0.

Find D given u|∂Ω.
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The prototype.
instability

A.–Rondi (2001). Let n = 2, Ω = B1(0), D0 = B1/2(0),
denote z = x + iy and

fk (z) = z exp[εk (zk − z−k )], z 6= 0,

with
εk = O(k−M2−k ) ∈ R, k = 1,2, . . .

denote Dk = f (D0). Then Dk are uniformly CM -smooth and
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The prototype.
instability

dH(∂D0, ∂Dk ) ∼ k−M → 0 polynomially ,

whereas,
letting uk be the potential corresponding to Dk , k = 0,1, . . .

‖uk − u0‖L2(∂Ω) ∼ ε
1/2
k → 0 exponentially .
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Strategy for uniqueness.

Given two cavities D1,D2, and given a nontrivial boundary
current density ψ, let u1,u2 solve for i = 1,2

∆ui = 0, in Ω \ Di ,
∇ui · ν = 0, on ∂Di ,
∇ui · ν = ψ, on ∂Ω,

and suppose D1,D2 give rise to the same potential on ∂Ω:
u1|∂Ω = u2|∂Ω.
If we had D1 6= D2 ,we might assume w.l.o.g. D2 \ D1 6= ∅.
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Strategy for uniqueness.

Figure: two cavities.
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Figure: the set G.

G: connected component of Ω \ (D1 ∪ D2) such that
∂Ω ⊂ ∂G.
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Figure: the set E2 ⊃ D2 \ D1.

E2 = Ω \ D1 ∪G
∂E2 = Γ1 ∪ Γ2, Γ1 ⊂ (∂D1 \G), Γ2 ⊂ (∂D2 ∩ ∂G).
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Strategy for uniqueness.
u1,u2 have the same Cauchy data on ∂Ω:

∇u1 · ν = ∇u2 · ν = ψ and u1 = u2 on ∂Ω.

Hence, by unique continuation,

u1 ≡ u2 in G,

⇓

∇u1 · ν = ∇u2 · ν = 0 on Γ2 ⊂ (∂D2 ∩ ∂G)

Therefore ∫
D2\D1

|∇u1|2 ≤
∫

E2
|∇u1|2 ≤

≤
∫
Γ1
|u1∇u1 · ν|+

∫
Γ2
|u1∇u2 · ν| = 0.
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Either:
u1 ≡ constant on an open set

unique continuation
⇓

ψ ≡ 0,

or
D2 \ D1 = ∅.
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Tools for stability.

• Assume a-priori C1,α bounds on ∂D1, ∂D2 and on ∂Ω.

• Assume ψ nontrivial:

‖ψ‖L2(∂Ω)

‖ψ‖H−1/2(∂Ω)

≤ F .

• Assume
‖u1 − u2‖L2(∂Ω) ≤ ε.
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Tools for stability.
step 1

Stability for a Cauchy problem in G.∫
D2\D1

|∇u1|2 ≤ ω(2)(ε)

where ω(2)(ε) = ω ◦ ω(ε) and

ω(ε) ∼ | log ε|−γ , as ε→ 0.

Improved stability for a Cauchy problem in G.
If in addition, G is known to be Lipschitz, then∫

D2\D1
|∇u1|2 ≤ ω(ε)
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Tools for stability.
step 2

Propagation of smallness.
If, for a suitable s > 1, Bsρ(x) ⊂ Ω \ D1 then∫

Bρ(x)
|∇u1|2 ≥

C(F )

exp[Aρ−B]

∫
Ω\D1

|∇u1|2.
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step 3

Geometric argument.

inradius(D2 \ D1) + inradius(D1 \ D2) ≤ ω(3)(ε)

using the C1,α a-priori bound

dH(∂D1, ∂D2) ≤ ω(3)(ε).

When ε is small enough, then the above rough bound
implies that G is Lipschitz, we can use the improved
estimate for the Cauchy problem and arrive at

dH(∂D1, ∂D2) ≤ ω(2)(ε).
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step 4

How to improve the propagation of smallness?
Doubling at the boundary, with Neumann condition.
Adolfsson and Escauriaza (1997).
If ∂D1 ∈ C1,1 then ∀x ∈ ∂D1∫

B2ρ\D1
|∇u1|2 ≤ C(F )

∫
Bρ\D1

|∇u1|2

⇓∫
Bρ(x)\D1

|∇u1|2 ≥ CρK
∫
Ω\D1

|∇u1|2.

with C,K > 0 depending on F .



Unknown
Boundaries

Giovanni
Alessandrini

Introduction

Insulating
cavity in a
conductor.
Strategy for
uniqueness.

Tools for stability.

Cavity with
boundary
impedance.

Rigid inclusion
in an elastic
body.

End.

Tools for stability.
step 4

How to improve the propagation of smallness?
Doubling at the boundary, with Neumann condition.
Adolfsson and Escauriaza (1997).
If ∂D1 ∈ C1,1 then ∀x ∈ ∂D1∫

B2ρ\D1
|∇u1|2 ≤ C(F )

∫
Bρ\D1

|∇u1|2

⇓∫
Bρ(x)\D1

|∇u1|2 ≥ CρK
∫
Ω\D1

|∇u1|2.

with C,K > 0 depending on F .



Unknown
Boundaries

Giovanni
Alessandrini

Introduction

Insulating
cavity in a
conductor.
Strategy for
uniqueness.

Tools for stability.

Cavity with
boundary
impedance.

Rigid inclusion
in an elastic
body.

End.

Tools for stability.
step 4

How to improve the propagation of smallness?
Doubling at the boundary, with Neumann condition.
Adolfsson and Escauriaza (1997).
If ∂D1 ∈ C1,1 then ∀x ∈ ∂D1∫

B2ρ\D1
|∇u1|2 ≤ C(F )

∫
Bρ\D1

|∇u1|2

⇓∫
Bρ(x)\D1

|∇u1|2 ≥ CρK
∫
Ω\D1

|∇u1|2.

with C,K > 0 depending on F .



Unknown
Boundaries

Giovanni
Alessandrini

Introduction

Insulating
cavity in a
conductor.
Strategy for
uniqueness.

Tools for stability.

Cavity with
boundary
impedance.

Rigid inclusion
in an elastic
body.

End.

Tools for stability.
step 4

How to improve the propagation of smallness?
Doubling at the boundary, with Neumann condition.
Adolfsson and Escauriaza (1997).
If ∂D1 ∈ C1,1 then ∀x ∈ ∂D1∫

B2ρ\D1
|∇u1|2 ≤ C(F )

∫
Bρ\D1

|∇u1|2

⇓∫
Bρ(x)\D1

|∇u1|2 ≥ CρK
∫
Ω\D1

|∇u1|2.

with C,K > 0 depending on F .



Unknown
Boundaries

Giovanni
Alessandrini

Introduction

Insulating
cavity in a
conductor.
Strategy for
uniqueness.

Tools for stability.

Cavity with
boundary
impedance.

Rigid inclusion
in an elastic
body.

End.

Tools for stability.
conclusion

In summary:
we obtain

dH(∂D1, ∂D2) ≤ ω(2)(ε).

using

stability for the Cauchy pb. and propagation of smallness
⇑

three spheres inequality

If we also have the

doubling inequality at the boundary

then we arrive at

dH(∂D1, ∂D2) ≤ ω(ε).

A., Beretta, Rosset, Vessella (2000).
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Tools for stability.
the three spheres inequality

For every 0 < r1 < r2 < r3∫
Br2

|u|2 ≤ C

(∫
Br1

|u|2
)α(∫

Br3

|u|2
)1−α

with C > 0,0 < α < 1 only depending on r2
r1
, r3

r2
.
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Cavity with impedance.


∆u = 0, in Ω \ D,
∇u · ν + γu = 0, on ∂D, γ ≥ 0
∇u · ν = ψ, on ∂Ω.

ν exterior unit normal to ∂(Ω \ D).

• Non-uniqueness: one pair of Cauchy data (ψ,u|∂Ω)
does not suffice to uniquely determine D (and γ).
Cakoni, Kress (2007), Rundell (2008).

• Uniqueness: two pairs of Cauchy data (ψ,u|∂Ω) and
(ψ̃, ũ|∂Ω), with linearly independent ψ, ψ̃ and ψ ≥ 0
uniquely determine D and γ. Bacchelli (2009), Pagani,
Pierotti (2009).

• Stability: with two such pairs there is log-stability.
Sincich (2010).



Unknown
Boundaries

Giovanni
Alessandrini

Introduction

Insulating
cavity in a
conductor.
Strategy for
uniqueness.

Tools for stability.

Cavity with
boundary
impedance.

Rigid inclusion
in an elastic
body.

End.

Cavity with impedance.


∆u = 0, in Ω \ D,
∇u · ν + γu = 0, on ∂D, γ ≥ 0
∇u · ν = ψ, on ∂Ω.

ν exterior unit normal to ∂(Ω \ D).

• Non-uniqueness: one pair of Cauchy data (ψ,u|∂Ω)
does not suffice to uniquely determine D (and γ).
Cakoni, Kress (2007), Rundell (2008).

• Uniqueness: two pairs of Cauchy data (ψ,u|∂Ω) and
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Cavity with impedance.
what goes wrong?

Figure: the set E2 ⊃ D2 \ D1.


∆u1 = 0, in E2,
∇u1 · ν + γ1u1 = 0, on ∂E2 ∩ ∂D1,
−∇u1 · ν + γ2u1 = 0, on ∂E2 ∩ ∂D2,

ν exterior unit normal to E2.
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Cavity with impedance.
the approach by Sincich

Let ui be the potential corresponding to Di , i = 1,2.
If ψ  0 then (strong maximum principle) ui > 0.
Set

vi =
ũi

ui
,

then 
div(u2

i ∇vi) = 0, in Ω \ Di ,

u2
i ∇vi · ν = 0, on ∂Di ,

u2
i ∇vi · ν = ui ψ̃ − ũiψ, on ∂Ω.
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Cavity with impedance.
open problem

What if both ψ, ψ̃ change sign?
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Rigid inclusion in elastic body.

In R3 (or R2).
div(µ(∇u +∇uT )) +∇(λdivu) = 0, in Ω \ D,
u ∈ R, on ∂D,
(µ(∇u +∇uT ) + (λdivu)I)ν = ψ, on ∂Ω.

Lamè parameters µ, λ ∈ C1,1 satisfying strong convexity
µ ≥ α > 0, 2µ+ 3λ ≥ β > 0.

R = space of infinitesimal rigid displacements =
=
{

r(x)|r(x) = c + Wx , c ∈ R3,W + W T = 0
}

+ equilibrium condition∫
∂D

(µ(∇u +∇uT ) + (λdivu)I)ν · r = 0 ∀r ∈ R
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Rigid inclusion in elastic body.

Inverse problem: given u|∂Ω find D.
Morassi and Rosset (2009): uniqueness and log − log
stability.
Let ui be the displacement field corresponding to Di ,i = 1,2,
we have ui = ri ∈ R, with ri unknown possibly different.
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Rigid inclusion in elastic body.

Figure: the set E2 ⊃ D2 \ D1.


div(µ(∇u1 +∇u1

T )) +∇(λdivu1) = 0, in E2,
u1 = r1, on ∂E2 ∩ ∂D1,
u1 = r2, on ∂E2 ∩ ∂D2,
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Rigid inclusion in elastic body.

Two cases

1 ∂E2 ∩ ∂D1 ∩ ∂D2 contains at least three points not
aligned.

2 ∂E2 ∩ ∂D1 ∩ ∂D2 ⊂ segment.

1 r1 = r2 ⇒ u1 ≡ r2 in E2.

2 topological argument ⇒ D1 ⊂ D2 (or viceversa).
Equilibrium condition + Korn inequality ⇒ u1 ≡ r2.
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Rigid inclusions or cavities in
elastic body.

open problem

Doubling at the boundary?
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The end.

THANKS!
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