Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End

Inverse problems with unknown boundaries: uniqueness and stability

Giovanni Alessandrini¹

¹ DMi Università di Trieste

Cartagena, PICOF 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

A family of problems

Consider a body $\Omega \subset \mathbb{R}^n$ which might contain an unknown, inaccessible, cavity *D* (or an inclusion). To detect the presence and the shape of *D* from measurements taken from the exterior, accessible, boundary of Ω , when some field (electric, electromagnetic, thermal, elastic, ...) is applied to it.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

A family of problems

- Ω electrical conductor, *D* cavity with insulating boundary,
- Ω electrical conductor, *D* perfectly conducting inclusion,

Andrieux, Ben Abda, Jaoua (1993), Beretta, Vessella (1996), Bukhgeim, Cheng, Yamamoto (1998, 1999, 2000) Cheng, Hon and Yamamoto (2001), A., Beretta, Rosset, Vessella (2000), A., Rondi (2001).

• Ω electrical conductor, *D* cavity with boundary impedance,

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

A family of problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Ω electrical conductor, *D* cavity with insulating boundary,

• Ω electrical conductor, *D* perfectly conducting inclusion,

Andrieux, Ben Abda, Jaoua (1993), Beretta, Vessella (1996), Bukhgeim, Cheng, Yamamoto (1998, 1999, 2000) Cheng, Hon and Yamamoto (2001), A., Beretta, Rosset, Vessella (2000), A., Rondi (2001).

• Ω electrical conductor, *D* cavity with boundary impedance,

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

A family of problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Ω electrical conductor, *D* cavity with insulating boundary,
- Ω electrical conductor, D perfectly conducting inclusion,

Andrieux, Ben Abda, Jaoua (1993), Beretta, Vessella (1996), Bukhgeim, Cheng, Yamamoto (1998, 1999, 2000) Cheng, Hon and Yamamoto (2001), A., Beretta, Rosset, Vessella (2000), A., Rondi (2001).

• Ω electrical conductor, *D* cavity with boundary impedance,

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

A family of problems

- Ω electrical conductor, *D* cavity with insulating boundary,
- Ω electrical conductor, D perfectly conducting inclusion,

Andrieux, Ben Abda, Jaoua (1993), Beretta, Vessella (1996), Bukhgeim, Cheng, Yamamoto (1998, 1999, 2000) Cheng, Hon and Yamamoto (2001), A., Beretta, Rosset, Vessella (2000), A., Rondi (2001).

• Ω electrical conductor, *D* cavity with boundary impedance,

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

A family of problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Ω electrical conductor, *D* cavity with insulating boundary,
- Ω electrical conductor, *D* perfectly conducting inclusion,

Andrieux, Ben Abda, Jaoua (1993), Beretta, Vessella (1996), Bukhgeim, Cheng, Yamamoto (1998, 1999, 2000) Cheng, Hon and Yamamoto (2001), A., Beretta, Rosset, Vessella (2000), A., Rondi (2001).

• Ω electrical conductor, *D* cavity with boundary impedance,

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

A family of problems

- Ω electrical conductor, *D* cavity with insulating boundary,
- Ω electrical conductor, D perfectly conducting inclusion,

Andrieux, Ben Abda, Jaoua (1993), Beretta, Vessella (1996), Bukhgeim, Cheng, Yamamoto (1998, 1999, 2000) Cheng, Hon and Yamamoto (2001), A., Beretta, Rosset, Vessella (2000), A., Rondi (2001).

• Ω electrical conductor, *D* cavity with boundary impedance,

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

A family of problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ω elastic body, D cavity,

ligashimori (2002), Morassi, Rosset (2004).

• Ω elastic body, *D* rigid inclusion,

Morassi, Rosset (2009).

• Ω fluid container, D immersed body,

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

A family of problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ω elastic body, D cavity,

Higashimori (2002), Morassi, Rosset (2004).

• Ω elastic body, *D* rigid inclusion,

Morassi, Rosset (2009)

• Ω fluid container, *D* immersed body,

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

A family of problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Ω elastic body, D cavity,

Higashimori (2002), Morassi, Rosset (2004).

• Ω elastic body, D rigid inclusion,

Morassi, Rosset (2009)

• Ω fluid container, D immersed body,

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

A family of problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ω elastic body, D cavity,

Higashimori (2002), Morassi, Rosset (2004).

• Ω elastic body, D rigid inclusion,

Morassi, Rosset (2009).

• Ω fluid container, D immersed body,

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

A family of problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ω elastic body, D cavity,

Higashimori (2002), Morassi, Rosset (2004).

• Ω elastic body, D rigid inclusion,

Morassi, Rosset (2009).

• Ω fluid container, D immersed body,

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

A family of problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Ω elastic body, D cavity,

Higashimori (2002), Morassi, Rosset (2004).

• Ω elastic body, D rigid inclusion,

Morassi, Rosset (2009).

• Ω fluid container, D immersed body,

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

The prototype.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

insulating cavity in a conductor

Assume $\Omega \setminus \overline{D}$ connected.

$$\begin{cases} \Delta u = 0, & \text{in} \quad \Omega \setminus \overline{D}, \\ \nabla u \cdot \nu = 0, & \text{on} \quad \partial D, \\ \nabla u \cdot \nu = \psi, & \text{on} \quad \partial \Omega. \end{cases}$$

u exterior unit normal to $\partial(\Omega \setminus \overline{D})$. $\int_{\partial\Omega} \psi = 0$. Find *D* given $u|_{\partial\Omega}$.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

The prototype.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

insulating cavity in a conductor

Assume $\Omega \setminus \overline{D}$ connected.

$$\left\{ \begin{array}{ll} \Delta u = 0, & \text{in} \quad \Omega \setminus \overline{D}, \\ \nabla u \cdot \nu = 0, & \text{on} \quad \partial D, \\ \nabla u \cdot \nu = \psi, & \text{on} \quad \partial \Omega. \end{array} \right.$$

 ν exterior unit normal to $\partial(\Omega \setminus \overline{D})$. $\int_{\partial\Omega} \psi = 0$. Find *D* given $u|_{\partial\Omega}$.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

The prototype.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

insulating cavity in a conductor

Assume $\Omega \setminus \overline{D}$ connected.

$$\left\{ \begin{array}{ll} \Delta u = 0, & \text{in} \quad \Omega \setminus \overline{D}, \\ \nabla u \cdot \nu = 0, & \text{on} \quad \partial D, \\ \nabla u \cdot \nu = \psi, & \text{on} \quad \partial \Omega. \end{array} \right.$$

 ν exterior unit normal to $\partial(\Omega \setminus \overline{D})$. $\int_{\partial\Omega} \psi = 0$. Find *D* given $u|_{\partial\Omega}$.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

The prototype.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A.–Rondi (2001). Let n = 2, $\Omega = B_1(0)$, $D_0 = B_{1/2}(0)$, denote z = x + iy and

$$f_k(z) = z \exp[\epsilon_k(z^k - z^{-k})], z \neq 0,$$

with

$$\epsilon_k = O(k^{-M}2^{-k}) \in \mathbb{R}, \ k = 1, 2, \dots$$

denote $D_k = f(D_0)$. Then D_k are uniformly C^M -smooth and

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

The prototype.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A.–Rondi (2001). Let n = 2, $\Omega = B_1(0)$, $D_0 = B_{1/2}(0)$, denote z = x + iy and

$$f_k(z) = z \exp[\epsilon_k(z^k - z^{-k})], z \neq 0,$$

with

$$\epsilon_{k}=\mathsf{O}(k^{-M}2^{-k})\in\mathbb{R},\;k=1,2,\ldots$$

denote $D_k = f(D_0)$. Then D_k are uniformly C^M -smooth and

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

The prototype. instability

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$d_{\mathcal{H}}(\partial D_0, \partial D_k) \sim k^{-M} \rightarrow 0$$
 polynomially,

whereas,

letting u_k be the potential corresponding to D_k , k = 0, 1, ...

$$\|u_k - u_0\|_{L^2(\partial\Omega)} \sim \epsilon_k^{1/2} \to 0$$
 exponentially.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

The prototype.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$d_{\mathcal{H}}(\partial D_0, \partial D_k) \sim k^{-M} \rightarrow 0$$
 polynomially

whereas,

letting u_k be the potential corresponding to D_k , k = 0, 1, ...

$$\|u_k - u_0\|_{L^2(\partial\Omega)} \sim \epsilon_k^{1/2} \to 0$$
 exponentially .

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Strategy for uniqueness.

Given two cavities D_1 , D_2 , and given a nontrivial boundary current density ψ , let u_1 , u_2 solve for i = 1, 2

$$\begin{cases} \Delta u_i = 0, & \text{in} \quad \Omega \setminus \overline{D_i}, \\ \nabla u_i \cdot \nu = 0, & \text{on} \quad \partial D_i, \\ \nabla u_i \cdot \nu = \psi, & \text{on} \quad \partial \Omega, \end{cases}$$

and suppose D_1, D_2 give rise to the same potential on $\partial \Omega$: $u_1|_{\partial \Omega} = u_2|_{\partial \Omega}$. If we had $D_1 \neq D_2$, we might assume w.l.o.g. $D_2 \setminus \overline{D_1} \neq \emptyset$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Strategy for uniqueness.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Figure: two cavities.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Strategy for uniqueness.

Figure: the set G.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

G: connected component of $\Omega \setminus (\overline{D_1 \cup D_2})$ such that $\partial \Omega \subset \partial G$.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Strategy for uniqueness.

Figure: the set $E_2 \supset D_2 \setminus \overline{D_1}$.

 $\begin{aligned} E_2 &= \Omega \setminus \overline{D_1 \cup G} \\ \partial E_2 &= \Gamma_1 \cup \Gamma_2, \, \Gamma_1 \subset (\partial D_1 \setminus G), \, \Gamma_2 \subset (\partial D_2 \cap \partial G). \end{aligned}$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Strategy for uniqueness.

 u_1, u_2 have the same Cauchy data on $\partial \Omega$:

$$\nabla u_1 \cdot \nu = \nabla u_2 \cdot \nu = \psi$$
 and $u_1 = u_2$ on $\partial \Omega$.

lence, by unique continuation,

 $u_1 \equiv u_2$ in G,

 $abla u_1 \cdot \nu =
abla u_2 \cdot \nu = 0 ext{ on } \Gamma_2 \subset (\partial D_2 \cap \partial G)$

Therefore

 $\int_{D_2 \setminus \overline{D_1}} |\nabla u_1|^2 \leq \int_{E_2} |\nabla u_1|^2 \leq$ $\leq \int_{\Gamma_1} |u_1 \nabla u_1 \cdot \nu| + \int_{\Gamma_2} |u_1 \nabla u_2 \cdot \nu| = 0.$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Strategy for uniqueness.

 u_1, u_2 have the same Cauchy data on $\partial \Omega$:

$$\nabla u_1 \cdot \nu = \nabla u_2 \cdot \nu = \psi$$
 and $u_1 = u_2$ on $\partial \Omega$.

Hence, by unique continuation,

 $u_1 \equiv u_2$ in G,

 $\nabla u_1 \cdot \nu = \nabla u_2 \cdot \nu = 0 \text{ on } \Gamma_2 \subset (\partial D_2 \cap \partial G)$

Therefore

 $\int_{D_2 \setminus \overline{D_1}} |\nabla u_1|^2 \leq \int_{E_2} |\nabla u_1|^2 \leq$ $\leq \int_{\Gamma_1} |u_1 \nabla u_1 \cdot \nu| + \int_{\Gamma_2} |u_1 \nabla u_2 \cdot \nu| = 0.$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Strategy for uniqueness.

 u_1, u_2 have the same Cauchy data on $\partial \Omega$:

$$\nabla u_1 \cdot \nu = \nabla u_2 \cdot \nu = \psi$$
 and $u_1 = u_2$ on $\partial \Omega$.

Hence, by unique continuation,

 $u_1 \equiv u_2$ in G,

 \Downarrow

 $\nabla u_1 \cdot \nu = \nabla u_2 \cdot \nu = 0 \text{ on } \Gamma_2 \subset (\partial D_2 \cap \partial G)$

Therefore

$$\int_{D_2 \setminus \overline{D_1}} |\nabla u_1|^2 \leq \int_{E_2} |\nabla u_1|^2 \leq$$
$$\leq \int_{\Gamma_1} |u_1 \nabla u_1 \cdot \nu| + \int_{\Gamma_2} |u_1 \nabla u_2 \cdot \nu| = 0.$$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Strategy for uniqueness.

 u_1, u_2 have the same Cauchy data on $\partial \Omega$:

$$\nabla u_1 \cdot \nu = \nabla u_2 \cdot \nu = \psi$$
 and $u_1 = u_2$ on $\partial \Omega$.

Hence, by unique continuation,

 $u_1 \equiv u_2$ in G,

$$\Downarrow$$

 $\nabla u_1 \cdot \nu = \nabla u_2 \cdot \nu = 0 \text{ on } \Gamma_2 \subset (\partial D_2 \cap \partial G)$

Therefore

$$\begin{split} \int_{D_2 \setminus \overline{D_1}} |\nabla u_1|^2 &\leq \int_{E_2} |\nabla u_1|^2 \leq \\ &\leq \int_{\Gamma_1} |u_1 \nabla u_1 \cdot \nu| + \int_{\Gamma_2} |u_1 \nabla u_2 \cdot \nu| = 0. \end{split}$$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Either:

Strategy for uniqueness.

 $u_1 \equiv \text{ constant on an open set}$

 $D_2 \setminus \overline{D_1} = \emptyset.$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Either:

Strategy for uniqueness.

 $u_1 \equiv \text{ constant on an open set}$

unique continuation ↓

 $\psi \equiv \mathbf{0},$

 $D_2 \setminus \overline{D_1} = \emptyset.$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Either:

or

Strategy for uniqueness.

 $u_1 \equiv \text{ constant on an open set}$

unique continuation ↓

 $\psi \equiv \mathbf{0},$

 $D_2 \setminus \overline{D_1} = \emptyset.$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Assume a-priori C^{1,α} bounds on ∂D₁, ∂D₂ and on ∂Ω.
Assume ψ nontrivial:

$$\frac{\|\psi\|_{L^2(\partial\Omega)}}{\|\psi\|_{H^{-1/2}(\partial\Omega)}} \leq F.$$

 $\|u_1-u_2\|_{L^2(\partial\Omega)}\leq\epsilon.$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Assume a-priori C^{1,α} bounds on ∂D₁, ∂D₂ and on ∂Ω. Assume ψ nontrivial:

$$\frac{\|\psi\|_{L^2(\partial\Omega)}}{\|\psi\|_{H^{-1/2}(\partial\Omega)}} \leq F.$$

Assume

 $\|u_1-u_2\|_{L^2(\partial\Omega)}\leq\epsilon.$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Assume a-priori C^{1,α} bounds on ∂D₁, ∂D₂ and on ∂Ω.
Assume ψ nontrivial:

$$\frac{\|\psi\|_{L^2(\partial\Omega)}}{\|\psi\|_{H^{-1/2}(\partial\Omega)}} \leq F.$$

Assume

 $\|u_1-u_2\|_{L^2(\partial\Omega)}\leq\epsilon.$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Assume a-priori C^{1,α} bounds on ∂D₁, ∂D₂ and on ∂Ω.
Assume ψ nontrivial:

$$\frac{\|\psi\|_{L^2(\partial\Omega)}}{\|\psi\|_{H^{-1/2}(\partial\Omega)}} \le F.$$

Assume

$$\|u_1-u_2\|_{L^2(\partial\Omega)}\leq\epsilon.$$
Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

Tools for stability. step 1

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Stability for a Cauchy problem in G.

 $\int_{D_2 \setminus \overline{D_1}} |\nabla u_1|^2 \le \omega^{(2)}(\epsilon)$ where $\omega^{(2)}(\epsilon) = \omega \circ \omega(\epsilon)$ and

Improved stability for a Cauchy problem in *G*. If in addition, *G* is known to be Lipschitz, then

 $\int_{D_2 \setminus \overline{D_1}} |\nabla u_1|^2 \le \omega(\epsilon)$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

Tools for stability. step 1

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Stability for a Cauchy problem in G.

 $\int_{D_2 \setminus \overline{D_1}} |
abla u_1|^2 \leq \omega^{(2)}(\epsilon)$

where $\omega^{(2)}(\epsilon) = \omega \circ \omega(\epsilon)$ and

 $\omega(\epsilon) \sim |\log \epsilon|^{-\gamma}, \text{ as } \epsilon
ightarrow 0.$

Improved stability for a Cauchy problem in *G*. If in addition, *G* is known to be Lipschitz, then

 $\int_{D_2 \setminus \overline{D_1}} |\nabla u_1|^2 \le \omega(\epsilon)$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability. step 1

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Stability for a Cauchy problem in G.

$$\int_{D_2 \setminus \overline{D_1}} |
abla u_1|^2 \leq \omega^{(2)}(\epsilon)$$

where
$$\omega^{(2)}(\epsilon) = \omega \circ \omega(\epsilon)$$
 and

$$\omega(\epsilon) \sim |\log \epsilon|^{-\gamma}, \text{ as } \epsilon \to 0.$$

Improved stability for a Cauchy problem in *G*. If in addition, *G* is known to be Lipschitz, then

 $\int_{D_2 \setminus \overline{D_1}} |\nabla u_1|^2 \le \omega(\epsilon)$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability. step 1

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Stability for a Cauchy problem in G.

$$\int_{D_2 \setminus \overline{D_1}} |\nabla u_1|^2 \leq \omega^{(2)}(\epsilon)$$

where
$$\omega^{(2)}(\epsilon) = \omega \circ \omega(\epsilon)$$
 and

$$\omega(\epsilon) \sim |\log \epsilon|^{-\gamma}, \text{ as } \epsilon \to 0.$$

Improved stability for a Cauchy problem in *G*. If in addition, *G* is known to be Lipschitz, then

$$\int_{D_2 \setminus \overline{D_1}} |\nabla u_1|^2 \leq \omega(\epsilon)$$

Giovanni Alessandrini

Tools for stability. step 2

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Propagation of smallness.

If, for a suitable s > 1, $B_{s\rho}(x) \subset \Omega \setminus \overline{D_1}$ then

Giovanni Alessandrini

Tools for stability. step 2

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Propagation of smallness. If, for a suitable s > 1, $B_{s\rho}(x) \subset \Omega \setminus \overline{D_1}$ then

$$\int_{B_{\rho}(x)} |\nabla u_1|^2 \geq \frac{C(F)}{\exp[A\rho^{-B}]} \int_{\Omega \setminus \overline{D_1}} |\nabla u_1|^2.$$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability. step 3

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Geometric argument.

 $inradius(D_2 \setminus \overline{D_1}) + inradius(D_1 \setminus \overline{D_2}) \le \omega^{(3)}(\epsilon)$

using the $C^{1,\alpha}$ a-priori bound

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) \leq \omega^{(3)}(\epsilon).$

When ϵ is small enough, then the above rough bound implies that *G* is Lipschitz, we can use the improved estimate for the Cauchy problem and arrive at

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

Tools for stability. step 3

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Geometric argument.

 $inradius(D_2 \setminus \overline{D_1}) + inradius(D_1 \setminus \overline{D_2}) \le \omega^{(3)}(\epsilon)$

using the $C^{1,\alpha}$ a-priori bound

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) \leq \omega^{(3)}(\epsilon).$

When ϵ is small enough, then the above rough bound implies that *G* is Lipschitz, we can use the improved estimate for the Cauchy problem and arrive at

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability. step 3

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Geometric argument.

 $inradius(D_2 \setminus \overline{D_1}) + inradius(D_1 \setminus \overline{D_2}) \le \omega^{(3)}(\epsilon)$

using the $C^{1,\alpha}$ a-priori bound

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) \leq \omega^{(3)}(\epsilon).$

When ϵ is small enough, then the above rough bound implies that *G* is Lipschitz, we can use the improved estimate for the Cauchy problem and arrive at

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability. step 3

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Geometric argument.

 $inradius(D_2 \setminus \overline{D_1}) + inradius(D_1 \setminus \overline{D_2}) \le \omega^{(3)}(\epsilon)$

using the $C^{1,\alpha}$ a-priori bound

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) \leq \omega^{(3)}(\epsilon).$

When ϵ is small enough, then the above rough bound implies that *G* is Lipschitz, we can use the improved estimate for the Cauchy problem and arrive at

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability. step 3

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Geometric argument.

 $inradius(D_2 \setminus \overline{D_1}) + inradius(D_1 \setminus \overline{D_2}) \le \omega^{(3)}(\epsilon)$

using the $C^{1,\alpha}$ a-priori bound

$$d_{\mathcal{H}}(\partial D_1, \partial D_2) \leq \omega^{(3)}(\epsilon).$$

When ϵ is small enough, then the above rough bound implies that *G* is Lipschitz, we can use the improved estimate for the Cauchy problem and arrive at

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability. step 4

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

How to improve the propagation of smallness?

Doubling at the boundary, with Neumann condition. Adolfsson and Escauriaza (1997). If $\partial D_1 \in C^{1,1}$ then $\forall x \in \partial D_1$

 $\int_{B_{2\rho}\setminus\overline{D_{1}}} |\nabla u_{1}|^{2} \leq C(F) \int_{B_{\rho}\setminus\overline{D_{1}}} |\nabla u_{1}|^{2}$ \downarrow $\int_{B_{\rho}(x)\setminus\overline{D_{1}}} |\nabla u_{1}|^{2} \geq C\rho^{K} \int_{\Omega\setminus\overline{D_{1}}} |\nabla u_{1}|^{2}.$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability. step 4

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

How to improve the propagation of smallness? Doubling at the boundary, with Neumann condition. Adolfsson and Escauriaza (1997).

 $\partial D_1 \in C^{1,1}$ then $\forall x \in \partial D_1$

$$\begin{split} \int_{B_{2\rho}\setminus\overline{D_1}}|\nabla u_1|^2 &\leq C(F)\int_{B_{\rho}\setminus\overline{D_1}}|\nabla u_1|^2\\ & \Downarrow\\ \int_{B_{\rho}(x)\setminus\overline{D_1}}|\nabla u_1|^2 &\geq C\rho^K\int_{\Omega\setminus\overline{D_1}}|\nabla u_1|^2. \end{split}$$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Tools for stability.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

How to improve the propagation of smallness? Doubling at the boundary, with Neumann condition. Adolfsson and Escauriaza (1997). If $\partial D_1 \in C^{1,1}$ then $\forall x \in \partial D_1$

 $\int_{B_{2\rho}\setminus\overline{D_{1}}} |\nabla u_{1}|^{2} \leq C(F) \int_{B_{\rho}\setminus\overline{D_{1}}} |\nabla u_{1}|^{2}$ \downarrow $\int_{B_{\rho}(x)\setminus\overline{D_{1}}} |\nabla u_{1}|^{2} \geq C\rho^{K} \int_{\Omega\setminus\overline{D_{1}}} |\nabla u_{1}|^{2}.$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Tools for stability. step 4

How to improve the propagation of smallness? Doubling at the boundary, with Neumann condition. Adolfsson and Escauriaza (1997). If $\partial D_1 \in C^{1,1}$ then $\forall x \in \partial D_1$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability.

In summary: we obtain

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) < \omega^{(2)}(\epsilon).$

using

stability for the Cauchy pb. and propagation of smallness ↑ three spheres inequality

If we also have the

doubling inequality at the boundary

then we arrive at

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) \leq \omega(\epsilon).$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability.

In summary: we obtain

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) < \omega^{(2)}(\epsilon).$

using

If we also have the

doubling inequality at the boundary

then we arrive at

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) \leq \omega(\epsilon).$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability.

In summary: we obtain

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) < \omega^{(2)}(\epsilon).$

using

If we also have the

doubling inequality at the boundary

then we arrive at

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) \leq \omega(\epsilon).$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability.

In summary: we obtain

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) < \omega^{(2)}(\epsilon).$

using

stability for the Cauchy pb. and propagation of smallness

three spheres inequality

If we also have the

doubling inequality at the boundary

then we arrive at

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) \leq \omega(\epsilon).$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability.

In summary: we obtain

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) < \omega^{(2)}(\epsilon).$

using

stability for the Cauchy pb. and propagation of smallness

three spheres inequality

If we also have the

doubling inequality at the boundary

then we arrive at

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) \leq \omega(\epsilon).$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Tools for stability.

In summary: we obtain

$$d_{\mathcal{H}}(\partial D_1, \partial D_2) \leq \omega^{(2)}(\epsilon).$$

using

stability for the Cauchy pb. and propagation of smallness

three spheres inequality

If we also have the

doubling inequality at the boundary

then we arrive at

 $d_{\mathcal{H}}(\partial D_1, \partial D_2) \leq \omega(\epsilon).$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness.

Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Tools for stability.

the three spheres inequality

▲□▶▲□▶▲□▶▲□▶ □ のQ@

For every
$$0 < r_1 < r_2 < r_3$$

$$\int_{B_{r_2}} |u|^2 \le C \left(\int_{B_{r_1}} |u|^2 \right)^{\alpha} \left(\int_{B_{r_3}} |u|^2 \right)^{1-\alpha}$$

with $C > 0, 0 < \alpha < 1$ only depending on $\frac{r_2}{r_1}, \frac{r_3}{r_2}$.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Cavity with impedance.

$$\begin{cases} \Delta u = 0, & \text{in } \Omega \setminus \overline{D}, \\ \nabla u \cdot \nu + \gamma u = 0, & \text{on } \partial D, \\ \nabla u \cdot \nu = \psi, & \text{on } \partial \Omega. \end{cases} \gamma \ge 0$$

ν exterior unit normal to $\partial(\Omega \setminus \overline{D})$.

- Non-uniqueness: one pair of Cauchy data (ψ, u|_{∂Ω}) does not suffice to uniquely determine D (and γ). Cakoni, Kress (2007), Rundell (2008).
- Uniqueness: two pairs of Cauchy data $(\psi, u|_{\partial\Omega})$ and $(\widetilde{\psi}, \widetilde{u}|_{\partial\Omega})$, with linearly independent $\psi, \widetilde{\psi}$ and $\psi \ge \mathbf{0}$ uniquely determine *D* and γ . Bacchelli (2009), Pagani, Pierotti (2009).
- Stability: with two such pairs there is *log*-stability. Sincich (2010).

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Cavity with impedance.

$$\begin{cases} \Delta u = 0, & \text{in } \Omega \setminus \overline{D}, \\ \nabla u \cdot \nu + \gamma u = 0, & \text{on } \partial D, \\ \nabla u \cdot \nu = \psi, & \text{on } \partial \Omega. \end{cases} \gamma \ge 0$$

- ν exterior unit normal to $\partial(\Omega \setminus \overline{D})$.
 - Non-uniqueness: one pair of Cauchy data (ψ, u|_{∂Ω}) does not suffice to uniquely determine D (and γ). Cakoni, Kress (2007), Rundell (2008).
 - Uniqueness: two pairs of Cauchy data $(\psi, u|_{\partial\Omega})$ and $(\widetilde{\psi}, \widetilde{u}|_{\partial\Omega})$, with linearly independent $\psi, \widetilde{\psi}$ and $\psi \ge \mathbf{0}$ uniquely determine *D* and γ . Bacchelli (2009), Pagani, Pierotti (2009).
 - Stability: with two such pairs there is *log*-stability. Sincich (2010).

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Cavity with impedance.

$$\begin{cases} \Delta u = 0, & \text{in } \Omega \setminus \overline{D}, \\ \nabla u \cdot \nu + \gamma u = 0, & \text{on } \partial D, \\ \nabla u \cdot \nu = \psi, & \text{on } \partial \Omega. \end{cases} \gamma \ge 0$$

- ν exterior unit normal to $\partial(\Omega \setminus \overline{D})$.
 - Non-uniqueness: one pair of Cauchy data (ψ, u|_{∂Ω}) does not suffice to uniquely determine D (and γ). Cakoni, Kress (2007), Rundell (2008).
 - Uniqueness: two pairs of Cauchy data $(\psi, u|_{\partial\Omega})$ and $(\widetilde{\psi}, \widetilde{u}|_{\partial\Omega})$, with linearly independent $\psi, \widetilde{\psi}$ and $\psi \ge 0$ uniquely determine *D* and γ . Bacchelli (2009), Pagani, Pierotti (2009).
 - Stability: with two such pairs there is *log*-stability. Sincich (2010).

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Cavity with impedance.

$$\begin{cases} \Delta u = 0, & \text{in } \Omega \setminus \overline{D}, \\ \nabla u \cdot \nu + \gamma u = 0, & \text{on } \partial D, \\ \nabla u \cdot \nu = \psi, & \text{on } \partial \Omega. \end{cases} \gamma \ge 0$$

- ν exterior unit normal to $\partial(\Omega \setminus \overline{D})$.
 - Non-uniqueness: one pair of Cauchy data (ψ, u|_{∂Ω}) does not suffice to uniquely determine D (and γ). Cakoni, Kress (2007), Rundell (2008).
 - Uniqueness: two pairs of Cauchy data $(\psi, u|_{\partial\Omega})$ and $(\widetilde{\psi}, \widetilde{u}|_{\partial\Omega})$, with linearly independent $\psi, \widetilde{\psi}$ and $\psi \ge 0$ uniquely determine *D* and γ . Bacchelli (2009), Pagani, Pierotti (2009).
 - Stability: with two such pairs there is *log*-stability. Sincich (2010).

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Cavity with impedance.

what goes wrong?

Figure: the set $E_2 \supset D_2 \setminus \overline{D_1}$.

$$\begin{cases} \Delta u_1 = 0, & \text{in } E_2, \\ \nabla u_1 \cdot \nu + \gamma_1 u_1 = 0, & \text{on } \partial E_2 \cap \partial D_1, \\ -\nabla u_1 \cdot \nu + \gamma_2 u_1 = 0, & \text{on } \partial E_2 \cap \partial D_2, \end{cases}$$

 ν exterior unit normal to E_2 .

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Cavity with impedance.

the approach by Sincich

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let u_i be the potential corresponding to D_i , i = 1, 2. If $\psi \ge 0$ then (strong maximum principle) $u_i > 0$. Set

$$V_i=\frac{U_i}{U_i},$$

then

 $\begin{cases} \operatorname{div}(u_i^2 \nabla v_i) = 0, & \text{in} \quad \Omega \setminus \overline{D_i}, \\ u_i^2 \nabla v_i \cdot \nu = 0, & \text{on} \quad \partial D_i, \\ u_i^2 \nabla v_i \cdot \nu = u_i \widetilde{\psi} - \widetilde{u_i} \psi, & \text{on} \quad \partial \Omega. \end{cases}$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor.

Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Cavity with impedance.

the approach by Sincich

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let u_i be the potential corresponding to D_i , i = 1, 2. If $\psi \ge 0$ then (strong maximum principle) $u_i > 0$. Set \widetilde{u}_i

$$v_i = \frac{u_i}{u_i},$$

then

 $\left\{\begin{array}{ll} \operatorname{div}(u_i^2 \nabla v_i) = 0, & \text{in} \quad \Omega \setminus \overline{D_i}, \\ u_i^2 \nabla v_i \cdot \nu = 0, & \text{on} \quad \partial D_i, \\ u_i^2 \nabla v_i \cdot \nu = u_i \widetilde{\psi} - \widetilde{u_i} \psi, & \text{on} \quad \partial \Omega. \end{array}\right.$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Cavity with impedance.

open problem

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What if both $\psi,\widetilde{\psi}$ change sign?

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body. In \mathbb{R}^3 (or \mathbb{R}^2).

 $\begin{cases} \operatorname{div}(\mu(\nabla u + \nabla u^{T})) + \nabla(\lambda \operatorname{div} u) = 0, & \text{in} \quad \Omega \setminus \overline{D}, \\ u \in \mathcal{R}, & \text{on} \quad \partial D, \\ (\mu(\nabla u + \nabla u^{T}) + (\lambda \operatorname{div} u)I)\nu = \psi, & \text{on} \quad \partial \Omega. \end{cases}$

Lamè parameters $\mu, \lambda \in C^{1,1}$ satisfying strong convexity $\mu \ge \alpha > 0, 2\mu + 3\lambda \ge \beta > 0.$

 $\mathcal{R} = \text{ space of infinitesimal rigid displacements } =$ $= \{r(x)|r(x) = c + Wx, c \in \mathbb{R}^3, W + W^T = 0\}$

+ equilibrium condition

 $\int_{\partial D} (\mu (\nabla u + \nabla u^T) + (\lambda \operatorname{div} u) I) \nu \cdot r = 0 \ \forall r \in \mathcal{R}$

・ロト・四ト・日本・日本・日本・日本

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

In \mathbb{R}^3 (or \mathbb{R}^2).

ſ	$div(\mu(\nabla u + \nabla u^{T})) + \nabla(\lambda div u) = 0,$	in	$\Omega \setminus \overline{D}$,
ł	$u \in \mathcal{R},$	on	∂D ,
l	$(\mu(\nabla u + \nabla u^T) + (\lambda \operatorname{div} u)I)\nu = \psi,$	on	$\partial \Omega.$

Lamè parameters $\mu, \lambda \in C^{1,1}$ satisfying strong convexity $\mu \geq \alpha > 0, 2\mu + 3\lambda \geq \beta > 0.$

 $\mathcal{R} = \text{ space of infinitesimal rigid displacements } =$ $= \{r(x)|r(x) = c + Wx, c \in \mathbb{R}^3, W + W^T = 0\}$

+ equilibrium condition

 $\int_{\partial D} (\mu (\nabla u + \nabla u^T) + (\lambda \operatorname{div} u) I) \nu \cdot r = 0 \ \forall r \in \mathcal{R}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End

Rigid inclusion in elastic body.

In \mathbb{R}^3 (or \mathbb{R}^2).

 $\begin{cases} \operatorname{div}(\mu(\nabla u + \nabla u^{T})) + \nabla(\lambda \operatorname{div} u) = 0, & \text{in} \quad \Omega \setminus \overline{D}, \\ u \in \mathcal{R}, & \text{on} \quad \partial D, \\ (\mu(\nabla u + \nabla u^{T}) + (\lambda \operatorname{div} u)I)\nu = \psi, & \text{on} \quad \partial \Omega. \end{cases}$

Lamè parameters $\mu, \lambda \in C^{1,1}$ satisfying strong convexity $\mu \geq \alpha > 0, 2\mu + 3\lambda \geq \beta > 0.$

R = space of infinitesimal rigid displacements = $= \{r(x)|r(x) = c + Wx, c \in \mathbb{R}^3, W + W^T = 0\}$

+ equilibrium condition

 $\int_{\partial D} (\mu (\nabla u + \nabla u^T) + (\lambda \operatorname{div} u) I) \nu \cdot r = 0 \ \forall r \in \mathcal{R}$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

In \mathbb{R}^3 (or \mathbb{R}^2).

$$\begin{cases} \operatorname{div}(\mu(\nabla u + \nabla u^{T})) + \nabla(\lambda \operatorname{div} u) = 0, & \text{in} \quad \Omega \setminus \overline{D}, \\ u \in \mathcal{R}, & \text{on} \quad \partial D, \\ (\mu(\nabla u + \nabla u^{T}) + (\lambda \operatorname{div} u)I)\nu = \psi, & \text{on} \quad \partial \Omega. \end{cases}$$

Lamè parameters $\mu, \lambda \in C^{1,1}$ satisfying strong convexity $\mu \geq \alpha > 0, 2\mu + 3\lambda \geq \beta > 0.$

 $\mathcal{R} = \text{space of infinitesimal rigid displacements} =$ = {r(x)| $r(x) = c + Wx, c \in \mathbb{R}^3, W + W^T = 0$ }

equilibrium condition

 $\int_{\partial D} (\mu (\nabla u + \nabla u^T) + (\lambda \operatorname{div} u) I) \nu \cdot r = 0 \ \forall r \in \mathcal{R}$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

In \mathbb{R}^3 (or \mathbb{R}^2).

$$\begin{cases} \operatorname{div}(\mu(\nabla u + \nabla u^{T})) + \nabla(\lambda \operatorname{div} u) = 0, & \text{in} \quad \Omega \setminus \overline{D}, \\ u \in \mathcal{R}, & \text{on} \quad \partial D, \\ (\mu(\nabla u + \nabla u^{T}) + (\lambda \operatorname{div} u)I)\nu = \psi, & \text{on} \quad \partial \Omega. \end{cases}$$

Lamè parameters $\mu, \lambda \in C^{1,1}$ satisfying strong convexity $\mu \geq \alpha > 0, 2\mu + 3\lambda \geq \beta > 0.$

 $\mathcal{R} = \text{space of infinitesimal rigid displacements} =$ = { $r(x) | r(x) = c + Wx, c \in \mathbb{R}^3, W + W^T = 0$ }

+ equilibrium condition

$$\int_{\partial D} (\mu (\nabla u + \nabla u^{\mathsf{T}}) + (\lambda \operatorname{div} u) I) \nu \cdot r = 0 \; \forall r \in \mathcal{R}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

Inverse problem: given $u|_{\partial\Omega}$ find *D*.

Morassi and Rosset (2009): uniqueness and *log – log* stability.

Let u_i be the displacement field corresponding to D_i , i = 1, 2, we have $u_i = r_i \in \mathcal{R}$, with r_i unknown possibly different.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@
Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

Inverse problem: given $u|_{\partial\Omega}$ find *D*. Morassi and Rosset (2009): uniqueness and log - log stability.

Let u_i be the displacement field corresponding to D_i , i = 1, 2, we have $u_i = r_i \in \mathcal{R}$, with r_i unknown possibly different.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

Inverse problem: given $u|_{\partial\Omega}$ find *D*. Morassi and Rosset (2009): uniqueness and log - log stability.

Let u_i be the displacement field corresponding to D_i , i = 1, 2, we have $u_i = r_i \in \mathcal{R}$, with r_i unknown possibly different.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End

Rigid inclusion in elastic body.

Figure: the set $E_2 \supset D_2 \setminus \overline{D_1}$.

$$\begin{cases} \operatorname{div}(\mu(\nabla u_1 + \nabla u_1^T)) + \nabla(\lambda \operatorname{div} u_1) = 0, & \text{in} \quad E_2, \\ u_1 = r_1, & \text{on} \quad \partial E_2 \cap \partial D_1, \\ u_1 = r_2, & \text{on} \quad \partial E_2 \cap \partial D_2, \end{cases}$$

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

Two cases

 ∂E₂ ∩ ∂D₁ ∩ ∂D₂ contains at least three points not aligned.

 $2 \ \partial E_2 \cap \partial D_1 \cap \partial D_2 \subset segment.$

 $\mathbf{1} \quad \mathbf{r}_1 = \mathbf{r}_2 \Rightarrow \mathbf{u}_1 \equiv \mathbf{r}_2 \text{ in } \mathbf{E}_2.$

2 topological argument $\Rightarrow D_1 \subset D_2$ (or viceversa). Equilibrium condition + Korn inequality $\Rightarrow u_1 \equiv r_2$.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

Two cases

1 $\partial E_2 \cap \partial D_1 \cap \partial D_2$ contains at least three points not aligned.

2 $\partial E_2 \cap \partial D_1 \cap \partial D_2 \subset \text{segment.}$

 $r_1 = r_2 \Rightarrow u_1 \equiv r_2 \text{ in } E_2.$

2 topological argument $\Rightarrow D_1 \subset D_2$ (or viceversa). Equilibrium condition + Korn inequality $\Rightarrow u_1 \equiv r_2$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

Two cases

- **1** $\partial E_2 \cap \partial D_1 \cap \partial D_2$ contains at least three points not aligned.
- **2** $\partial E_2 \cap \partial D_1 \cap \partial D_2 \subset$ segment.
 - $\mathbf{1} \quad \mathbf{r}_1 = \mathbf{r}_2 \Rightarrow \mathbf{u}_1 \equiv \mathbf{r}_2 \text{ in } \mathbf{E}_2.$
- 2 topological argument $\Rightarrow D_1 \subset D_2$ (or viceversa). Equilibrium condition + Korn inequality $\Rightarrow u_1 \equiv r_2$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

Two cases

- **1** $\partial E_2 \cap \partial D_1 \cap \partial D_2$ contains at least three points not aligned.
- **2** $\partial E_2 \cap \partial D_1 \cap \partial D_2 \subset$ segment.
- $1 r_1 = r_2 \Rightarrow u_1 \equiv r_2 \text{ in } E_2.$
- 2 topological argument $\Rightarrow D_1 \subset D_2$ (or viceversa). Equilibrium condition + Korn inequality $\Rightarrow u_1 \equiv r_2$.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

Two cases

- **1** $\partial E_2 \cap \partial D_1 \cap \partial D_2$ contains at least three points not aligned.
- **2** $\partial E_2 \cap \partial D_1 \cap \partial D_2 \subset$ segment.
- $1 r_1 = r_2 \Rightarrow u_1 \equiv r_2 \text{ in } E_2.$
- 2 topological argument $\Rightarrow D_1 \subset D_2$ (or viceversa). Equilibrium condition + Korn inequality $\Rightarrow u_1 \equiv r_2$.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

Two cases

- **1** $\partial E_2 \cap \partial D_1 \cap \partial D_2$ contains at least three points not aligned.
- **2** $\partial E_2 \cap \partial D_1 \cap \partial D_2 \subset$ segment.
- $1 r_1 = r_2 \Rightarrow u_1 \equiv r_2 \text{ in } E_2.$
- 2 topological argument $\Rightarrow D_1 \subset D_2$ (or viceversa). Equilibrium condition + Korn inequality $\Rightarrow u_1 \equiv r_2$.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability.

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

Rigid inclusion in elastic body.

Two cases

- **1** $\partial E_2 \cap \partial D_1 \cap \partial D_2$ contains at least three points not aligned.
- **2** $\partial E_2 \cap \partial D_1 \cap \partial D_2 \subset$ segment.
- $1 r_1 = r_2 \Rightarrow u_1 \equiv r_2 \text{ in } E_2.$
- 2 topological argument $\Rightarrow D_1 \subset D_2$ (or viceversa). Equilibrium condition + Korn inequality $\Rightarrow u_1 \equiv r_2$.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End

Rigid inclusions or cavities in elastic body.

open problem

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Doubling at the boundary?

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance.

Rigid inclusion in an elastic body.

End.

My collaborators.

Andrea Ballerini, Elena Beretta, Antonino Morassi, Luca Rondi, Edi Rosset, Eva Sincich, Sergio Vessella.

Giovanni Alessandrini

Introduction

Insulating cavity in a conductor. Strategy for uniqueness. Tools for stability

Cavity with boundary impedance

Rigid inclusion in an elastic body.

End.

The end.

THANKS!