Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# Invertible Harmonic Mappings in the Plane

Giovanni Alessandrini<sup>1</sup> Vincenzo Nesi<sup>2</sup>

<sup>1</sup> M Università di Trieste

<sup>2</sup>Università La Sapienza di Roma

The 4th Symposium on Analysis & PDEs, Purdue 2009

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### Giovanni Alessandrini, Vincenzo Nesi

#### Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# The Basic Question

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let  $B \subset \mathbb{R}^2$  be the unit disk. Let  $D \subset \mathbb{R}^2$  be a Jordan domain.

Given a homeomorphism  $\Phi : \partial B \mapsto \partial D$ , consider the solution  $U = (u_1, u_2) : B \mapsto \mathbb{R}^2$  to the following Dirichlet problem

$$\left\{ egin{array}{ccc} \Delta U=0, & {
m in} & B, \ U=\Phi, & {
m on} & \partial B. \end{array} 
ight.$$

Under which conditions on  $\Phi$  do we have that U is a homeomorphism of  $\overline{B} \mapsto \overline{D}$ ?

#### Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

## The Classical Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $\Phi: \partial B \mapsto \partial D,$  $\begin{cases} \Delta U = 0, \text{ in } B, \\ U = \Phi, \text{ on } \partial B. \end{cases}$ 

### Theorem (H. Kneser '26)

If D is convex, then U is a homeomorphism of  $\overline{B}$  onto  $\overline{D}$ .

Posed as a problem by Radó ('26), rediscovered by Choquet ('45).

Theorem (H. Lewy '36) If  $U : B \mapsto \mathbb{R}^2$  is a harmonic homeomorphism, then it is a diffeomorphism.

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

### The Classical Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $\Phi: \partial B \mapsto \partial D,$  $\begin{cases} \Delta U = 0, \text{ in } B, \\ U = \Phi, \text{ on } \partial B. \end{cases}$ 

### Theorem (H. Kneser '26)

If D is convex, then U is a homeomorphism of  $\overline{B}$  onto  $\overline{D}$ . Posed as a problem by Radó ('26), rediscovered by Choquet ('45).

Theorem (H. Lewy '36) If  $U : B \mapsto \mathbb{R}^2$  is a harmonic homeomorphism, then it is a diffeomorphism.

#### Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# The Classical Results

 $\Phi: \partial B \mapsto \partial D,$  $\begin{cases} \Delta U = 0, \text{ in } B, \\ U = \Phi, \text{ on } \partial B. \end{cases}$ 

### Theorem (H. Kneser '26)

If D is convex, then U is a homeomorphism of  $\overline{B}$  onto  $\overline{D}$ . Posed as a problem by Radó ('26), rediscovered by Choquet ('45).

Theorem (H. Lewy '36) If  $U: B \mapsto \mathbb{R}^2$  is a harmonic homeomorphism, then it is a diffeomorphism.

#### Giovanni Alessandrini, Vincenzo Nesi

#### Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

### • What happens in higher dimensions?

• Can we replace  $\Delta$  with other elliptic operators?

- Can we replace the diagonal △ system with other elliptic systems?
- Can we dispense with the convexity of the target D?

Natural questions.

・ コット (雪) ( 小田) ( コット 日)

- Minimal surfaces.
- Inverse problems.
- Homogenization.
- Variational grid generation.

#### Giovanni Alessandrini, Vincenzo Nesi

#### Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

### • What happens in higher dimensions?

- Can we replace  $\Delta$  with other elliptic operators?
- Can we replace the diagonal △ system with other elliptic systems?

Natural questions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Can we dispense with the convexity of the target D?

- Minimal surfaces.
- Inverse problems.
- Homogenization.
- Variational grid generation.

#### Giovanni Alessandrini, Vincenzo Nesi

### Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

### • What happens in higher dimensions?

- Can we replace △ with other elliptic operators?
- Can we replace the diagonal △ system with other elliptic systems?
- Can we dispense with the convexity of the target D?

Natural questions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Minimal surfaces.
- Inverse problems.
- Homogenization.
- Variational grid generation.

#### Giovanni Alessandrini, Vincenzo Nesi

### Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

### • What happens in higher dimensions?

- Can we replace ∆ with other elliptic operators?
- Can we replace the diagonal △ system with other elliptic systems?
- Can we dispense with the convexity of the target D?

Natural questions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Minimal surfaces.
- Inverse problems.
- Homogenization.
- Variational grid generation.

#### Giovanni Alessandrini, Vincenzo Nesi

### Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

### • What happens in higher dimensions?

- Can we replace △ with other elliptic operators?
- Can we replace the diagonal △ system with other elliptic systems?
- Can we dispense with the convexity of the target D?

Natural questions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Minimal surfaces.
- Inverse problems.
- Homogenization.
- Variational grid generation.

#### Giovanni Alessandrini, Vincenzo Nesi

### Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

### • What happens in higher dimensions?

- Can we replace  $\Delta$  with other elliptic operators?
- Can we replace the diagonal △ system with other elliptic systems?
- Can we dispense with the convexity of the target D?

Natural questions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Minimal surfaces.
- Inverse problems.
- Homogenization.
- Variational grid generation.

#### Giovanni Alessandrini, Vincenzo Nesi

### Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

### • What happens in higher dimensions?

- Can we replace △ with other elliptic operators?
- Can we replace the diagonal △ system with other elliptic systems?
- Can we dispense with the convexity of the target D?

Natural questions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Minimal surfaces.
- Inverse problems.
- Homogenization.
- Variational grid generation.

#### Giovanni Alessandrini, Vincenzo Nesi

### Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

### • What happens in higher dimensions?

- Can we replace ∆ with other elliptic operators?
- Can we replace the diagonal △ system with other elliptic systems?
- Can we dispense with the convexity of the target D?

Natural questions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Minimal surfaces.
- Inverse problems.
- Homogenization.
- Variational grid generation.

#### Giovanni Alessandrini, Vincenzo Nesi

#### Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

### • What happens in higher dimensions?

- Can we replace ∆ with other elliptic operators?
- Can we replace the diagonal △ system with other elliptic systems?
- Can we dispense with the convexity of the target D?

Natural questions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Minimal surfaces.
- Inverse problems.
- Homogenization.
- Variational grid generation.

#### Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

Higher Dimensions.

- Wood ('74): There exists a harmonic homeomorphism
   U : ℝ<sup>3</sup> → ℝ<sup>3</sup> such that det DU(0) = 0.
- Melas ('93): There exists a harmonic homeomorphism  $U: \overline{B} \mapsto \overline{B}, B \subset \mathbb{R}^3$  unit ball, such that det DU(0) = 0.
- Laugesen ('96): ∀ε > 0 ∃Φ : ∂B ↦ ∂B homeomorphism, such that |Φ(x) x| < ε, ∀x ∈ ∂B and the solution U to</li>

$$\begin{cases} \Delta U = 0, \text{ in } B, \\ U = \Phi, \text{ on } \partial B. \end{cases}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

is not one-to-one.

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# Higher Dimensions.

- Wood ('74): There exists a harmonic homeomorphism  $U : \mathbb{R}^3 \mapsto \mathbb{R}^3$  such that det DU(0) = 0.
- Melas ('93): There exists a harmonic homeomorphism  $U: \overline{B} \mapsto \overline{B}, B \subset \mathbb{R}^3$  unit ball, such that det DU(0) = 0.
- Laugesen ('96):  $\forall \varepsilon > 0 \exists \Phi : \partial B \mapsto \partial B$ homeomorphism, such that  $|\Phi(x) - x| < \varepsilon, \forall x \in \partial B$ and the solution *U* to

$$\begin{cases} \Delta U = 0, \text{ in } B, \\ U = \Phi, \text{ on } \partial B. \end{cases}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

is not one-to-one.

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# Higher Dimensions.

- Wood ('74): There exists a harmonic homeomorphism  $U : \mathbb{R}^3 \mapsto \mathbb{R}^3$  such that det DU(0) = 0.
- Melas ('93): There exists a harmonic homeomorphism  $U: \overline{B} \mapsto \overline{B}, B \subset \mathbb{R}^3$  unit ball, such that det DU(0) = 0.
- Laugesen ('96): ∀ε > 0 ∃Φ : ∂B → ∂B homeomorphism, such that |Φ(x) - x| < ε, ∀x ∈ ∂B and the solution U to

$$\begin{cases} \Delta U = 0, & \text{in } B, \\ U = \Phi, & \text{on } \partial B. \end{cases}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

is not one-to-one.

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

### Bauman-Marini-Nesi ('01):

1

$$\operatorname{div}(\sigma \nabla u_i) = \mathbf{0}, i = \mathbf{1}, \mathbf{2},$$

Elliptic Operators.

$$\sigma = \{\sigma_{ij}\} \;,\; \textit{K}^{-1}\textit{I} \leq \sigma \leq \textit{K}\textit{I} \;,\; \sigma \in \textit{C}^{lpha} \;.$$

the Kneser and the Lewy theorems continue to hold. • A.-Nesi ('01):

$$\sigma = \{\sigma_{ij}\}, \ K^{-1}I \le \sigma \le KI, \ \sigma \in L^{\infty}$$

the Kneser theorem holds true the Lewy theorem is replaced with

Theorem If  $U: B \mapsto \mathbb{R}^2$  is a  $\sigma$ -harmonic homeomorphism, then

 $\log |\det DU| \in BMO$ .

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

### Bauman-Marini-Nesi ('01):

$$\operatorname{div}(\sigma \nabla u_i) = \mathbf{0}, i = \mathbf{1}, \mathbf{2},$$

Elliptic Operators.

$$\sigma = \{\sigma_{ij}\} , \ K^{-1}I \leq \sigma \leq KI , \ \sigma \in C^{lpha} .$$

the Kneser and the Lewy theorems continue to hold.A.-Nesi ('01):

$$\sigma = \{\sigma_{ij}\}, \ \mathbf{K}^{-1}\mathbf{I} \le \sigma \le \mathbf{K}\mathbf{I}, \ \sigma \in \mathbf{L}^{\infty}$$

### the Kneser theorem holds true the Lewy theorem is replaced wit

Theorem If  $U : B \mapsto \mathbb{R}^2$  is a  $\sigma$ -harmonic homeomorphism, then

 $\log |\det DU| \in BMO$ .

.

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

### Bauman-Marini-Nesi ('01):

(

$$\operatorname{div}(\sigma \nabla u_i) = 0, i = 1, 2,$$

Elliptic Operators.

$$\sigma = \{\sigma_{ij}\} , \ \mathbf{K}^{-1}\mathbf{I} \le \sigma \le \mathbf{K}\mathbf{I} , \ \sigma \in \mathbf{C}^{lpha} .$$

the Kneser and the Lewy theorems continue to hold.A.-Nesi ('01):

$$\sigma = \{\sigma_{ij}\}, \ \mathbf{K}^{-1}\mathbf{I} \le \sigma \le \mathbf{K}\mathbf{I}, \ \sigma \in \mathbf{L}^{\infty}$$

the Kneser theorem holds true the Lewy theorem is replaced with

### Theorem

If  $U: B \mapsto \mathbb{R}^2$  is a  $\sigma$ -harmonic homeomorphism, then

 $\log |\det DU| \in BMO$ .

#### Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

#### Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# Elliptic Operators.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

### A.-Sigalotti('01):

$$div(|\sigma \nabla u_i \cdot \nabla u_i|^{\frac{p-2}{2}} \sigma \nabla u_i) = 0, i = 1, 2, p > 1,$$
  
$$\sigma = \{\sigma_{ij}\}, \ K^{-1}I \le \sigma \le KI, \ \sigma \in C^{0,1}.$$

the Kneser and the Lewy theorems continue to hold.

#### Giovanni Alessandrini, Vincenzo Nesi

#### Introduction

Higher Dimensions

Elliptic Operators

#### Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# Elliptic Systems.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

• Harmonic mappings between Riemann surfaces, Shoen and Yau ('78), Jost ('81).

 $\begin{cases} \operatorname{div}(M \nabla u_1 + N \nabla u_2) = 0, \\ \operatorname{div}(P \nabla u_1 + Q \nabla u_2) = 0. \end{cases}$ 

M, N, P, Q are 2 × 2 real constant symmetric matrices. Legendre–Hadamard condition

 $\eta_1^2 M \xi \cdot \xi + \eta_1 \eta_2 (N+P) \xi \cdot \xi + \eta_2^2 Q \xi \cdot \xi > 0, \quad \forall \xi, \eta \in \mathbb{R}^2 \setminus \{0\}.$ 

#### Giovanni Alessandrini, Vincenzo Nesi

#### Introduction

Higher Dimensions

Elliptic Operators

#### Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# Elliptic Systems.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Harmonic mappings between Riemann surfaces, Shoen and Yau ('78), Jost ('81).

$$\begin{cases} \operatorname{div}(M\nabla u_1 + N\nabla u_2) = 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) = 0. \end{cases}$$

M, N, P, Q are 2  $\times$  2 real constant symmetric matrices. Legendre–Hadamard condition

$$\eta_1^2 M \xi \cdot \xi + \eta_1 \eta_2 (N + P) \xi \cdot \xi + \eta_2^2 Q \xi \cdot \xi > 0, \quad \forall \xi, \eta \in \mathbb{R}^2 \setminus \{0\}.$$

#### Giovanni Alessandrini, Vincenzo Nesi

#### Introduction

Higher Dimensions

Elliptic Operators

#### Elliptic Systems

Non-convex Target

The counterexample

Open issue

End

### Elliptic Systems. Equivalence.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### We say

$$\begin{cases} \operatorname{div}(M \nabla u_1 + N \nabla u_2) = 0, \\ \operatorname{div}(P \nabla u_1 + Q \nabla u_2) = 0, \end{cases} \sim \begin{cases} \operatorname{div}(M' \nabla u_1 + N' \nabla u_2) = 0, \\ \operatorname{div}(P' \nabla u_1 + Q' \nabla u_2) = 0, \end{cases}$$

f there exists a non-singular 2 imes 2 matrix  $\left(egin{array}{cc} lpha & eta \\ \gamma & \delta \end{array}
ight)$  such

 $\begin{pmatrix} M & N \\ P & Q \end{pmatrix} = \begin{pmatrix} \alpha \mathrm{Id} & \beta \mathrm{Id} \\ \gamma \mathrm{Id} & \delta \mathrm{Id} \end{pmatrix} \begin{pmatrix} M' & N' \\ P' & Q' \end{pmatrix}$ 

#### Giovanni Alessandrini, Vincenzo Nesi

### Elliptic Systems. Equivalence.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### Introduction

Higher Dimensions

We sav

Elliptic Operators

#### Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

$$\begin{cases} \operatorname{div}(M\nabla u_1 + N\nabla u_2) = 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) = 0, \end{cases} \sim \begin{cases} \operatorname{div}(M'\nabla u_1 + N'\nabla u_2) = 0, \\ \operatorname{div}(P'\nabla u_1 + Q'\nabla u_2) = 0, \end{cases}$$

if there exists a non-singular 2 × 2 matrix  $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$  such that

 $\left(\begin{array}{cc} M & N \\ P & Q \end{array}\right) = \left(\begin{array}{cc} \alpha \mathrm{Id} & \beta \mathrm{Id} \\ \gamma \mathrm{Id} & \delta \mathrm{Id} \end{array}\right) \left(\begin{array}{cc} M' & N' \\ P' & Q' \end{array}\right).$ 

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-conve Target

The counterexample

Open issues

End

# Elliptic Systems.

The Kneser theorem fails.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

### A.-Nesi ('09). Either

$$\begin{array}{l} \operatorname{div}(M\nabla u_1 + N\nabla u_2) = 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) = 0, \end{array} \sim \begin{cases} \operatorname{div}(M\nabla u_1) = 0, \\ \operatorname{div}(M\nabla u_2) = 0, \end{cases} \text{ (pure diag)} \end{array}$$

or

there exists a polynomial solution U to

 $\begin{aligned} \operatorname{div}(M\nabla u_1 + N\nabla u_2) &= 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) &= 0, \end{aligned}$ 

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-conve Target

The counterexample

Open issues

End

# Elliptic Systems.

The Kneser theorem fails.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

### A.-Nesi ('09). Either

$$\begin{array}{l} \operatorname{div}(M\nabla u_1 + N\nabla u_2) = 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) = 0, \end{array} \sim \left\{ \begin{array}{l} \operatorname{div}(M\nabla u_1) = 0, \\ \operatorname{div}(M\nabla u_2) = 0, \end{array} \right. \text{ (pure diag.} \end{array}$$

or

there exists a polynomial solution U to

 $\begin{aligned} \operatorname{div}(M\nabla u_1 + N\nabla u_2) &= 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) &= 0, \end{aligned}$ 

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# Elliptic Systems.

The Kneser theorem fails.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

### A.-Nesi ('09). Either

$$\begin{array}{l} \operatorname{div}(M\nabla u_1 + N\nabla u_2) = 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) = 0, \end{array} \sim \left\{ \begin{array}{l} \operatorname{div}(M\nabla u_1) = 0, \\ \operatorname{div}(M\nabla u_2) = 0, \end{array} \right. \text{ (pure diag.)} \end{array}$$

or

there exists a polynomial solution U to

 $\begin{aligned} \operatorname{div}(M\nabla u_1 + N\nabla u_2) &= 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) &= 0, \end{aligned}$ 

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-conve Target

The counterexample

Open issues

End

# Elliptic Systems.

The Kneser theorem fails.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### A.-Nesi ('09). Either

$$\begin{cases} \operatorname{div}(M\nabla u_1 + N\nabla u_2) = 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) = 0, \end{cases} \sim \begin{cases} \operatorname{div}(M\nabla u_1) = 0, \\ \operatorname{div}(M\nabla u_2) = 0, \end{cases} \text{ (pure diag.)}$$

or

there exists a polynomial solution U to

$$\begin{aligned} \operatorname{div}(M\nabla u_1 + N\nabla u_2) &= 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) &= 0, \end{aligned}$$

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-conve> Target

The counterexample

Open issues

End

# Elliptic Systems.

The Lewy theorem fails.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### A.-Nesi ('09). Either

$$\begin{cases} \operatorname{div}(M\nabla u_1 + N\nabla u_2) = 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) = 0, \end{cases} \sim \begin{cases} \operatorname{div}(M\nabla u_1) = 0, \\ \operatorname{div}(M\nabla u_2) = 0, \end{cases} \text{ (pure diag.)}$$

there exists a polynomial solution U to

 $\begin{aligned} \operatorname{div}(M \nabla u_1 + N \nabla u_2) &= 0, \\ \operatorname{div}(P \nabla u_1 + Q \nabla u_2) &= 0, \end{aligned}$ 

which is a homeomorphism of *B* onto U(B) but det DU(0) = 0.

Giovanni Alessandrini, Vincenzo Nesi

#### Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# Elliptic Systems.

The Lewy theorem fails.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### A.-Nesi ('09). Either

$$\begin{cases} \operatorname{div}(M\nabla u_1 + N\nabla u_2) = 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) = 0, \end{cases} \sim \begin{cases} \operatorname{div}(M\nabla u_1) = 0, \\ \operatorname{div}(M\nabla u_2) = 0, \end{cases} \text{ (pure diag.)}$$

or

there exists a polynomial solution U to

$$\begin{aligned} \operatorname{div}(M\nabla u_1 + N\nabla u_2) &= 0, \\ \operatorname{div}(P\nabla u_1 + Q\nabla u_2) &= 0, \end{aligned}$$

which is a homeomorphism of *B* onto U(B) but det DU(0) = 0.

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

### Elliptic Systems. Examples.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

For any ε > 0 the system

$$\begin{cases} u_{1,xx} + u_{1,yy} = 0, \\ (1 + \varepsilon)u_{2,xx} + u_{2,yy} = 0, \end{cases}$$

### is not equivalent to a pure diagonal system.

• The Lamé system

 $\mu \operatorname{div}((DU)^T + DU) + \lambda \nabla(\operatorname{div} U) = 0.$ 

 $\mu, \lambda \in \mathbb{R}$  with  $\mu > 0$  and  $\mu + \lambda > 0$  is not equivalent to a pure diagonal system.

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

### Elliptic Systems. Examples.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

For any ε > 0 the system

$$\begin{cases} u_{1,xx} + u_{1,yy} = 0, \\ (1 + \varepsilon)u_{2,xx} + u_{2,yy} = 0, \end{cases}$$

is not equivalent to a pure diagonal system.

The Lamé system

$$\mu \operatorname{div}((DU)^{T} + DU) + \lambda \nabla(\operatorname{div} U) = 0.$$

 $\mu, \lambda \in \mathbb{R}$  with  $\mu > 0$  and  $\mu + \lambda > 0$  is not equivalent to a pure diagonal system.

# Elliptic Systems.

The Kneser theorem fails for Lamé,  $\mu = \lambda = 1$ 

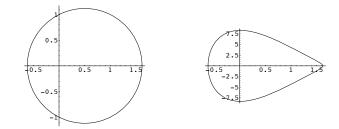


Figure:  $\partial B$  and its image  $\Phi(\partial B)$ .

Giovanni Alessandrini, Vincenzo Nesi

Invertible Harmonic

Mappings

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

#### Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

### Elliptic Systems.

(日)

The Kneser theorem fails for Lamé,  $\mu = \lambda = 1$ 

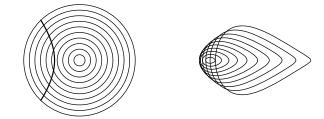


Figure: Left: circles  $C_r$  of varying radii and the nodal line of the Jacobian (an hyperbola) drawn within *B*. Right: the images  $U(C_r)$ .

#### Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# $\Phi: \partial B \mapsto \partial D,$ $\Delta U = 0, \quad \text{in} \quad B.$

Non-convex Target.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- $\left\{ \begin{array}{ll} \Delta U=0, & \text{in} \quad B, \\ U=\Phi, & \text{on} \quad \partial B. \end{array} \right.$
- Choquet ('45): If *D* is not convex, then there exists a homeomorphism Φ : ∂B → ∂D such that *U* is not one-to-one.
- A:-Nesi ('09): another example.

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

### Non-convex Target.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $\Phi: \partial B \mapsto \partial D,$  $\begin{cases} \Delta U = 0, & \text{in } B, \\ U = \Phi, & \text{on } \partial B. \end{cases}$ 

- Choquet ('45): If *D* is not convex, then there exists a homeomorphism Φ : ∂B → ∂D such that *U* is not one-to-one.
- A:-Nesi ('09): another example.

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

### Non-convex Target.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $\Phi: \partial B \mapsto \partial D,$  $\begin{cases} \Delta U = 0, & \text{in } B, \\ U = \Phi, & \text{on } \partial B. \end{cases}$ 

- Choquet ('45): If *D* is not convex, then there exists a homeomorphism Φ : ∂B → ∂D such that *U* is not one-to-one.
- A:-Nesi ('09): another example.

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# Non-convex Target.

Given D, possibly non-convex,

• what are the additional conditions on the homeomorphism

$$\Phi:\partial B\mapsto \partial D,$$

such that the solution U to

$$\left\{ \begin{array}{ll} \Delta U = 0, & \text{in} \quad B, \\ U = \Phi, & \text{on} \quad \partial B. \end{array} \right.$$

### is a homeomorphism of $\overline{B} \mapsto \overline{D}$ ?

• assume in addition  $U \in C^1(\overline{B}; \mathbb{R}^2)$ , under which conditions on  $\Phi$  do we have that U is a diffeomorphism of  $\overline{B} \mapsto \overline{D}$ ?

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# Non-convex Target.

Given D, possibly non-convex,

• what are the additional conditions on the homeomorphism

$$\Phi:\partial B\mapsto \partial D,$$

such that the solution U to

$$\begin{cases} \Delta U = 0, \text{ in } B, \\ U = \Phi, \text{ on } \partial B. \end{cases}$$

is a homeomorphism of  $\overline{B} \mapsto \overline{D}$ ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 assume in addition U ∈ C<sup>1</sup>(B; R<sup>2</sup>), under which conditions on Φ do we hav

*U* is a diffeomorphism of  $\overline{B} \mapsto \overline{D}$ ?

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# Non-convex Target.

Given D, possibly non-convex,

• what are the additional conditions on the homeomorphism

$$\Phi:\partial B\mapsto \partial D,$$

such that the solution U to

$$\begin{cases} \Delta U = 0, & \text{in } B, \\ U = \Phi, & \text{on } \partial B. \end{cases}$$

is a homeomorphism of  $\overline{B} \mapsto \overline{D}$ ?

• assume in addition  $U \in C^1(\overline{B}; \mathbb{R}^2)$ , under which conditions on  $\Phi$  do we have that U is a diffeomorphism of  $\overline{B} \mapsto \overline{D}$ ?

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# Non-convex Target.

The necessary condition.

(ロ) (同) (三) (三) (三) (○) (○)

If U is an orientation preserving diffeomorphism then, in particular,

det DU > 0 everywhere on  $\partial B$ . (1) =  $(\varphi, \psi)$ , and denote  $dg(\theta) = \frac{1}{2\pi} \text{P.V.} \int_{0}^{2\pi} \frac{g(\tau)}{\tan\left(\frac{\theta-\tau}{2}\right)} d\tau, \quad \theta \in [0, 2\pi],$ 

(1) is equivalent to

 $\frac{\partial \phi}{\partial \theta} H\left(\frac{\partial \psi}{\partial \theta}\right) - \frac{\partial \psi}{\partial \theta} H\left(\frac{\partial \phi}{\partial \theta}\right) > 0 \quad \text{everywhere on } \partial B. \quad (2)$ 

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# Non-convex Target.

The necessary condition.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If U is an orientation preserving diffeomorphism then, in particular,

det 
$$DU > 0$$
 everywhere on  $\partial B$ . (1)

Set  $\Phi = (\varphi, \psi)$ , and denote

$$Hg( heta) = rac{1}{2\pi} ext{ P.V.} \int_{0}^{2\pi} rac{g( au)}{ an\left(rac{ heta- au}{2}
ight)} d au, \qquad heta \in [0,2\pi],$$

(1) is equivalent to

 $\frac{\partial \phi}{\partial \theta} H\left(\frac{\partial \psi}{\partial \theta}\right) - \frac{\partial \psi}{\partial \theta} H\left(\frac{\partial \phi}{\partial \theta}\right) > 0 \quad \text{everywhere on } \partial B. \quad (2)$ 

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# Non-convex Target.

The necessary condition.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

If U is an orientation preserving diffeomorphism then, in particular,

det 
$$DU > 0$$
 everywhere on  $\partial B$ . (1)

Set  $\Phi = (\varphi, \psi)$ , and denote

$$Hg( heta)=rac{1}{2\pi} ext{ P.V.} \int_{0}^{2\pi}rac{g( au)}{ an\left(rac{ heta- au}{2}
ight)}d au,\qquad heta\in[0,2\pi],$$

(1) is equivalent to

$$\frac{\partial \phi}{\partial \theta} H\left(\frac{\partial \psi}{\partial \theta}\right) - \frac{\partial \psi}{\partial \theta} H\left(\frac{\partial \phi}{\partial \theta}\right) > 0 \quad \text{everywhere on } \partial B. \quad (2)$$

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# Non-convex Target.

The main theorem.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### Theorem (A.- Nesi '09)

Let  $\Phi : \partial B \mapsto \partial D$  be an orientation preserving diffeomorphism of class  $C^1$ . Let U be the solution to

$$\left\{ egin{array}{ccc} \Delta U=0, & \mbox{in} & B, \ U=\Phi, & \mbox{on} & \partial B. \end{array} 
ight.$$

and assume, in addition, that  $U \in C^1(\overline{B}; \mathbb{R}^2)$ . The mapping U is a diffeomorphism of  $\overline{B}$  onto  $\overline{D}$  if and only if

det DU > 0 everywhere on  $\partial B$ .

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issue

End

## Non-convex Target.

The main theorem, remark. Let co(D) be the convex hull of D. We define the convex part of  $\partial D$  as the closed set

 $\gamma_{c} = \partial D \cap \partial (co(D)).$ 

We define the non–convex part of  $\partial D$  as the open set

 $\gamma_{nc} = \partial D \setminus \partial(co(D)).$ 

### emma

Let  $\Phi : \partial B \mapsto \partial D$  be an orientation preserving diffeomorphism of class  $C^1$ , and assume that  $U \in C^1(\overline{B}; \mathbb{R}^2)$ . We always have

det DU > 0 everywhere on  $\Phi^{-1}(\gamma_c)$ .

(ロ) (同) (三) (三) (三) (○) (○)

### Proof: Hopf lemma

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

## Non-convex Target.

The main theorem, remark. Let co(D) be the convex hull of D. We define the convex part of  $\partial D$  as the closed set

 $\gamma_{c} = \partial D \cap \partial (co(D)).$ 

We define the non–convex part of  $\partial D$  as the open set

$$\gamma_{nc} = \partial D \setminus \partial(co(D)).$$

#### Lemma

Let  $\Phi : \partial B \mapsto \partial D$  be an orientation preserving diffeomorphism of class  $C^1$ , and assume that  $U \in C^1(\overline{B}; \mathbb{R}^2)$ . We always have

det DU > 0 everywhere on  $\Phi^{-1}(\gamma_c)$ .

(ロ) (同) (三) (三) (三) (○) (○)

#### **Proof:** Hopf lemma

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

## Non-convex Target.

The main theorem, remark. Let co(D) be the convex hull of D. We define the convex part of  $\partial D$  as the closed set

 $\gamma_{c} = \partial D \cap \partial (co(D)).$ 

We define the non–convex part of  $\partial D$  as the open set

$$\gamma_{nc} = \partial D \setminus \partial(co(D)).$$

#### Lemma

Let  $\Phi : \partial B \mapsto \partial D$  be an orientation preserving diffeomorphism of class  $C^1$ , and assume that  $U \in C^1(\overline{B}; \mathbb{R}^2)$ . We always have

det DU > 0 everywhere on  $\Phi^{-1}(\gamma_c)$ .

#### **Proof: Hopf lemma**

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# Non-convex Target.

The main theorem, improved.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### Theorem (A.- Nesi '09)

Let  $\Phi : \partial B \mapsto \partial D$  be an orientation preserving diffeomorphism of class  $C^1$ . Let U be the solution to

$$\left\{ \begin{array}{ll} \Delta U = 0, & \text{in} \quad B, \\ U = \Phi, & \text{on} \quad \partial B. \end{array} \right.$$

and assume, in addition, that  $U \in C^1(\overline{B}; \mathbb{R}^2)$ . The mapping U is a diffeomorphism of  $\overline{B}$  onto  $\overline{D}$  if and only if

det DU > 0 everywhere on  $\Phi^{-1}(\gamma_{nc})$ .

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# Non-convex Target.

The main theorem, improved.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### Theorem (A.- Nesi '09)

Let  $\Phi : \partial B \mapsto \partial D$  be an orientation preserving diffeomorphism of class  $C^1$ . Let U be the solution to

$$\begin{cases} \Delta U = 0, & \text{in } B, \\ U = \Phi, & \text{on } \partial B. \end{cases}$$

and assume, in addition, that  $U \in C^1(\overline{B}; \mathbb{R}^2)$ . The mapping U is a diffeomorphism of  $\overline{B}$  onto  $\overline{D}$  if and only if

det DU > 0 everywhere on  $\Phi^{-1}(\gamma_{nc})$ .

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

## Non-convex Target.

The main theorem, proof (i).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### We assume

det DU > 0 everywhere on  $\partial B$ .

The crucial point is to prove that

det DU > 0 everywhere in B.

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

## Non-convex Target.

The main theorem, proof (i).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### We assume

det DU > 0 everywhere on  $\partial B$ .

The crucial point is to prove that

det DU > 0 everywhere in B.

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

## The Jacobian may change sign.

a polynomial example (i)

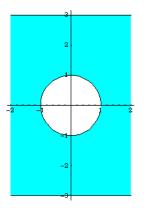


Figure: 
$$u_1 = \Re\{\frac{(z+1)^2 - 1}{2}\}, u_2 = \Im\{\frac{1 - (z-1)^2}{2}\}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# The Jacobian may change sign.

a polynomial example (ii)

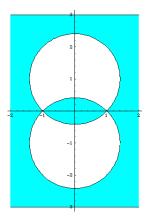


Figure:  $u_1 = \Re\{(z+1)^3\}, u_2 = \Im\{(z-1)^3\}$ 

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# Non-convex Target.

The main theorem, proof (ii).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The condition

 $\det DU > 0 \text{ everywhere in } B,$ 

is equivalent to

 $abla(au_1 + bu_2) \neq 0$  everywhere in B.

for every  $(a, b) \neq (0, 0)$ .

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# Non-convex Target.

The main theorem, proof (iii).

• Fix (*a*, *b*) and denote  $u = au_1 + bu_2$ ,  $\tilde{u}$  its harmonic conjugate and

$$f = u + i\tilde{u}$$

Denote

$$WN(f(\partial B)) = \frac{1}{2\pi} \int_{\partial B} d \arg\left(\frac{\partial f}{\partial \theta}\right).$$

The argument principle says
 WN(f(∂B)) = ♯ critical points of u + 1.

• We prove

 $\operatorname{WN}(f(\partial B)) = \operatorname{WN}(\Phi(\partial B)) = 1.$ 

・ロット (雪) (日) (日) (日)

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counter example

Open issues

End

# Non-convex Target.

The main theorem, proof (iii).

• Fix (*a*, *b*) and denote  $u = au_1 + bu_2$ ,  $\tilde{u}$  its harmonic conjugate and

$$f = u + i\tilde{u}$$

Denote

WN(
$$f(\partial B)$$
) =  $\frac{1}{2\pi} \int_{\partial B} d \arg\left(\frac{\partial f}{\partial \theta}\right)$ .

The argument principle says
 WN(f(∂B)) = ♯ critical points of u + 1.

• We prove

 $\operatorname{WN}(f(\partial B)) = \operatorname{WN}(\Phi(\partial B)) = 1.$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# Non-convex Target.

The main theorem, proof (iii).

• Fix (*a*, *b*) and denote  $u = au_1 + bu_2$ ,  $\tilde{u}$  its harmonic conjugate and

$$f = u + i\tilde{u}$$

Denote

$$\operatorname{WN}(f(\partial B)) = \frac{1}{2\pi} \int_{\partial B} \mathrm{d} \arg\left(\frac{\partial f}{\partial \theta}\right).$$

The argument principle says
 WN(f(∂B)) = ♯ critical points of u + 1.

• We prove

 $WN(f(\partial B)) = WN(\Phi(\partial B)) = 1.$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-convex Target

The counterexample

Open issues

End

# Non-convex Target.

The main theorem, proof (iii).

• Fix (*a*, *b*) and denote  $u = au_1 + bu_2$ ,  $\tilde{u}$  its harmonic conjugate and

$$f = u + i\tilde{u}$$

Denote

$$\operatorname{WN}(f(\partial B)) = \frac{1}{2\pi} \int_{\partial B} \mathrm{d} \arg\left(\frac{\partial f}{\partial \theta}\right).$$

The argument principle says
 WN(f(∂B)) = ♯ critical points of u + 1.

• We prove

 $WN(f(\partial B)) = WN(\Phi(\partial B)) = 1.$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator

Elliptic Systems

Non-conve> Target

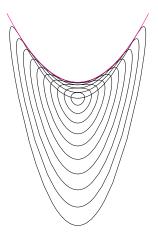
The counterexample

Open issues

End

# Non-convex Target.

The Counterexample.  $U(x, y) = (x, x^2 - y^2)$ .



ヘロン 人間 とくほど 人ほど 一日

#### Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operators

Elliptic Systems

Non-conve> Target

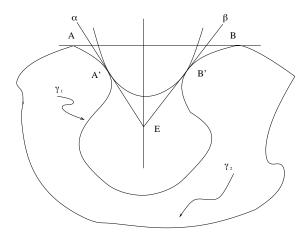
The counterexample

Open issues

End

### Non-convex Target.

The Counterexample, continued.



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

#### Giovanni Alessandrini, Vincenzo Nesi

#### Introduction

- Higher Dimensions
- Elliptic Operators
- Elliptic Systems
- Non-convex Target
- The counter example
- Open issues
- End

### • What if $\Phi : \partial B \mapsto \partial D$ is only a homeomorphism?

- Can we replace  $\Delta$  with div( $\sigma \nabla \cdot$ )?
- Higher dimensions?

## Open issues.

#### Giovanni Alessandrini, Vincenzo Nesi

#### Introduction

- Higher Dimensions
- Elliptic Operators
- Elliptic Systems
- Non-convex Target
- The counter example
- Open issues
- End

### • What if $\Phi : \partial B \mapsto \partial D$ is only a homeomorphism?

- Can we replace  $\Delta$  with div $(\sigma \nabla \cdot)$ ?
- Higher dimensions?

## Open issues.



### Open issues.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

#### Giovanni Alessandrini, Vincenzo Nesi

Invertible Harmonic

Mappings

#### Introduction

- Higher Dimensions
- Elliptic Operators
- Elliptic Systems
- Non-convex Target
- The counter example

#### Open issues

End

- What if  $\Phi : \partial B \mapsto \partial D$  is only a homeomorphism?
- Can we replace  $\Delta$  with div $(\sigma \nabla \cdot)$ ?
- Higher dimensions?

### Open issues.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

#### Giovanni Alessandrini, Vincenzo Nesi

Invertible Harmonic

Mappings

#### Introduction

- Higher Dimensions
- Elliptic Operators
- Elliptic Systems
- Non-convex Target
- The counter example
- Open issues
- End

- What if  $\Phi : \partial B \mapsto \partial D$  is only a homeomorphism?
- Can we replace  $\Delta$  with div $(\sigma \nabla \cdot)$ ?
- Higher dimensions?

#### Giovanni Alessandrini, Vincenzo Nesi

Introduction

Higher Dimensions

Elliptic Operator:

Elliptic Systems

Non-conve> Target

The counter example

Open issues

End

### Thanks!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ





### Auguri Nico !!